
Model Predictive Scheduling for Container Terminals

F.B. van Boetzelaer, T.J.J. van den Boom∗, R.R. Negenborn∗

Abstract— In container terminals ships are loaded and un-
loaded. In this paper the problem of scheduling quay cranes,
stack cranes, and vehicles used for the transport of containers
between quay side and stack is discussed. In particular, we
propose to model the container transport in a terminal using
a switching max-plus linear model description to account for
the synchronization between the cranes and the vehicles. The
scheduling problem is formulated using this formalism and
subsequently recast as a mixed integer linear programming
problem. We apply the developed techniques in a number of
test cases to illustrate the potential of the approach.

I. INTRODUCTION

The competitiveness of seaport container terminals is
mainly determined by the time in port for ships (transship-
ment time), and the rates for loading and discharging [12],
[15], [16]. Container terminals generally utilize quay cranes
to load and unload ships, specialized equipment to store
containers in large stacks, and vehicles to transport containers
between the quay side and the stacks. An unloading cycle
consists of three distinct steps: the unloading by a quay
crane, the transport from the crane to the stack, and finally
the stacking. The dynamics of this transportation system as
a whole can be influenced by choosing the vehicle that is
assigned to each of the container jobs, and by choosing the
order in which vehicles and stacking cranes handle their
containers. This leads to a scheduling problem.

Since the preliminary work of Johnson [6] on scheduling
problems, a lot of papers have discussed such problems,
and several recent books present general surveys on the
topic [11]. In the case of a container terminal, the set of
operations may vary over a limited set of possible sequences
of operations. One way to determine the optimal sequence of
operations is by using an integrated generic hybrid flow shop
and optimal control approach, as in [17]. Another approach
is to consider flows instead of individual containers and use
a receding flow scheduling approach, as in [1], followed by
a translation from flows to individual equipment moves. In
this paper, we investigate how, at the individual container
level, specific characteristics of the sequence of operations
can be taken into account when using a different approach:
The semi-cyclic system dynamics considered considered in
this paper are linear in the Max-Plus algebra. This means that
the system can be described by switching max-plus linear

F.B. van Boetzelaer and T.J.J. van den Boom are with the Delft Center for
Systems and Control, R.R. Negenborn is with the Department of Maritime
and Transport Technology, both in the Faculty of Mechanical, Maritime
and Materials Engineering, Delft University of Technology, Delft, The
Netherlands.

∗ Corresponding authors: a.j.j.vandenboom@tudelft.nl,
r.r.negenborn@tudelft.nl

(SMPL) models [14], which can switch between different
modes representing alternative decisions or circumstances. In
this paper we extend the work of [10], [13] for scheduling
of semi-cyclic discrete event systems.

The use of SMPL systems in the scheduling procedure
is motivated as follows: SMPL systems are appropriate for
simulating the system by analyzing the evolution of its
state. There are many system theoretical results for max-
plus linear systems in literature. We can use these for finding
bottlenecks in the scheduling process and for finding good
initial scheduling values by using system properties, such as
the max-plus eigenvalue and eigenvectors. Due to the close
relation between a max-plus linear model and the graph
representation of the system, graph based methods can be
used in the scheduling procedure (see [9]) by transforming
the implicit representation of an SMPL model into an explicit
form from which the computation time may be reduced
significantly [7].

The goal of this paper is to reduce transshipment times
in container terminals by using Model Predictive Scheduling
(MPS), which optimizes future control decisions by using
predictions of the future behavior of the system. We aim for
reactive operational scheduling which means that based on
observations of the systems behavior we can reschedule the
routes of the containers to optimize the performance of the
system.

This paper is organized as follows. In Section II, we give
a concise introduction to max-plus algebra. In Section III,
we derive a max-plus linear model for container transport.
In Section IV, the scheduling problem will be recast as a
mixed integer linear programming problem, and in Section V
we give some test cases. Conclusions and future research are
given in Section VI.

II. MAX-PLUS ALGEBRA

We start by summarizing the most important features
of the max-plus algebra. The max-plus algebra consists of
the set Rmax, and two associated operations, the max-plus
addition and the max-plus multiplication [13]. The set Rmax

and the scalar max-plus-algebraic addition and multiplication
are defined, respectively, as:

Rmax = R ∪ {−∞}
x⊕ y = max(x, y)

x⊗ y = x+ y.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 5091



d
(
wv(k)

)
a(k)

r
(
wc(k)

)
s1(k) f1(k) s2(k) f2(k)

r(k)

d(k)

0 τc1(k) τc2(k)
0

τv(k,wv(k))
0

τ∆(k)

Fig. 1. Graph representing one container transfer cycle.

Furthermore, we define:

[A⊕B]i,j = ai,j ⊕ bij = max(aij , bij) (1)

[A⊗C]i,j =

n⊕
k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj) (2)

[A�B]i,j = aij ⊗ bij = aij + bij , (3)

for matrices A,B ∈ Rm×nmax and C ∈ Rn×pmax . The neutral
element of max plus addition ε, and the neutral element of
max-plus multiplication e are defined as:

ε = −∞ e = 0.

III. MODELING OF CONTAINER TRANSPORT

In this section we model the relevant operations that take
place inside a container terminal and rewrite these in a max-
plus linear model. We consider a container terminal that
utilizes multiple quay cranes to unload ships, multiple stack
cranes to store containers in stacks, and multiple vehicles
to transport containers between quay cranes and stacks.
The sequence of events that occurs when one container is
transferred between a crane and a vehicle will be called a
container transfer cycle. Such a cycle is characterized by
three processes. Firstly the vehicle needs to travel from its
previous location to the crane where the container transfer
will take place. At the same time, the crane needs to prepare
itself for the container transfer. Once the vehicle has arrived
and the crane has finished preparing itself, the container can
be transferred between the crane and the vehicle. Finally, the
crane may need some time to finish handling this container
before it can start its next cycle.

These processes are represented by the graph in Fig. 1.
In this graph d and a represent a vehicle’s departure and
arrival times; s1, f1, s2 and f2 represent the times at which
a crane starts and finishes its processes before and after the
container has been transferred; r represents the time at which
the crane is ready to start its next cycle; wv and wc are the
event counters of the preceding cycles of the vehicle and the
crane; τv is the vehicle travel time; τc1 and τc2 are the times
required by the crane to handle the container, and τ∆ is the
time required to transfer the container between the crane and
the vehicle. Because the vehicle travel time depends on the
distance between the current and the preceding crane, τv is
a function of both k and wv(k). The closed nodes in this

graph represent all events which belong to cycle k, while
the open nodes are events belonging to the preceding cycles.

Using the relation between directed graphs and max-plus
algebra [5], the following equations for r(k) and d(k) can
be determined:

r(k) =τc2(k)⊗ τ∆(k)⊗
(
τc1(k)⊗ r

(
wc(k)

)
⊕

τv(k,wv(k))⊗ d
(
wv(k)

))
(4)

d(k) =
(
−τc2(k)

)
⊗ r(k). (5)

By substituting this last equation into the first equation, we
obtain the following equation describing the whole cycle:

r(k) =τc2(k)⊗ τ∆(k)⊗
(
τc1(k)⊗ r

(
wc(k)

)
⊕

τv(k,wv(k))⊗
(
−τc2

(
wv(k)

))
⊗ r
(
wv(k)

))
.

(6)

Using a receding horizon principle the schedule for the
complete loading/unloading task is not calculated at once,
but in several iterations. In every iteration the schedule is
calculated for a limited number of containers instead of
all containers in the complete loading/unloading scheduling
task. There are two main reasons for using the model
predictive scheduling method:

1) The scheduling task may contain many jobs. The com-
putation time of the optimal solution increases as the
number of scheduling variables increases. The negative
impact of the computation time can be avoided by
using the receding horizon principle.

2) We aim for reactive operational scheduling, which
means that based on observations of the system’s
behavior we can reschedule the (un)loading of the
containers to optimize the performance.

To make a prediction we stack the ready times of all cycles
in the prediction interval into one state vector x:

x0 =

 r(1)
...

r(Npast)

 xoperational =

r(Npast + 1)
...

r(N)



x =

[
x0

xoperational

]
,

where Npast is the last cycle which lays in the past, and N is
the total number of containers in the prediction interval. The
system can be controlled by choosing the preceding cycles.
This will be done by assigning the values of the elements of
the following matrices:

[Ŵv]k,j =

e
if the vehicle handled cycle j directly
before cycle k

ε otherwise

[Ŵc]k,j =

e
if the crane handled cycle j directly before
cycle k

ε otherwise.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5092



Now the ready times of the preceding cycles for the crane
and vehicle can be found by multiplying these matrices in
the max plus sense with the state vector x:

r
(
wc(k)

)
= [Ŵc ⊗ x]k

r
(
wv(k)

)
= [Ŵv ⊗ x]k.

As mentioned above, the vehicle travel time τv depends on
the cranes between which the vehicle travels. Therefore the
following matrices are defined:

[Ĉ]j,k =

{
e if cycle k takes place at crane j
ε otherwise

[T]i,j = the vehicle travel time from crane i to crane j.

Now τv(k) can be defined by using Ĉ and Ŵv to select the
correct element from T:

τv(k,wv(k)) = Ŵv ⊗ ĈT ⊗T⊗ Ĉ.

The system equation given above can then be written as one
max-plus linear matrix equation:

x = (Ŵc �Ac ⊕ Ŵv �Av)⊗ x⊕ x0, (7)

where
Ac = Tc1 �Tc2 �T∆

Av = (ĈT ⊗T⊗ Ĉ)� (−Tc2)
T �Tc2 �T∆

Tc1 =

 τc1(1) · · · τc1(1)
...

. . .
...

τc1(N) · · · τc1(N)



Tc2 =

 τc2(1) · · · τc2(1)
...

. . .
...

τc2(N) · · · τc2(N)



T∆ =

 τ∆(1) · · · τ∆(1)
...

. . .
...

τ∆(N) · · · τ∆(N)

 .
IV. MIXED INTEGER LINEAR PROGRAMMING

FORMULATION

The model derived above is formulated in the max-plus
algebra. In this section we show how this problem can
be recast as a mixed integer linear programming (MILP)
problem.

A. Conversion to linear constraints

As the first step the system equations will be rewritten in
terms of inequality constraints in the conventional plus-times
algebra. The control matrices Ŵv and Ŵc are binary in the
max-plus sense, i.e., [ŵ]j ∈ {ε, e}. Since ε is not an element
of R, these matrices will be replaced by conventional binary
matrices W̄v and W̄c. This can be done by introducing a

finite number β � 0. The max-plus control matrices in max-
plus multiplications can then be replaced by their plus-times
counterpart by writing:

ŵT ⊗ x = max
k

([ŵ]ik + [x]kj)

= max
k

([(β − βw̄]ik + [x]kj)

= (β − βw̄T)⊗ x.

Using this method one can rewrite (7) as an expression in the
conventional algebra, by replacing all max-plus operations
with their plus-times equivalent:

[x]k = max
j=1,...,N

(β − β[W̄c]k,j + [Ac]k,j + [x]j ,

β − β[W̄v]k,j + [Av]k,j + [x]j , [x0]k).

This expression finally leads to the linear constraints:

[x]k ≥β − β[W̄c]k,j + [Ac]k,j + [x]j

[x]k ≥β − β[W̄v]k,j + [Av]k,j + [x]j

[x]k ≥ [x0]k.

(8)

B. Additional constraints

Not all combinations of the decision variables represent
a valid schedule. Some examples of invalid schedules are
schedules in which cycles are preceded by multiple other
cycles at either the crane or the vehicle, cycles where
containers are unloaded from a different vehicle than they
where loaded onto, and cycles where vehicles are loaded
with more containers than they can carry. In this section
some constraints are introduced that will limit the decision
variables to their allowed space.

Each operational cycle has exactly one preceding cycle at
the crane and at the vehicle. This is represented by:∑

j

[W̄c]k,j = 1 ∀k > Npast (9)

∑
j

[W̄v]k,j = 1 ∀k > Npast. (10)

Each cycle can only precede one other cycle at the crane
and the vehicle. The last cycles that are executed, however,
precede none of the other cycles. This is represented by:∑

k

[W̄c]k,j ≤ 1 (11)

∑
k

[W̄v]k,j ≤ 1. (12)

The preceding cycle for the crane cannot take place at a
different crane:

[W̄c]k,j = 0 ∀k, j where [Ĉ]∗,k) 6= [Ĉ]∗,j . (13)

At the quay crane, the order in which containers are handled
is fixed. Therefore the preceding cycle is known for all quay
cranes. Let kpreceding(k) be the preceding cycle at the crane
for cycle k. Now one can add the following set of constraints:

[W̄c]k,j = 1
if j = kpreceding(k) and cycle j
takes place at a quay crane.

(14)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5093



If the vehicles can only carry one container at a time,
each container must be unloaded from the vehicle directly
after it was loaded onto it. Define the variable kload(k) as
the cycle in which the container which is to be unloaded in
cycle k is loaded onto the vehicle. Now one can introduce
the following sets of constraints:

[W̄v]k,kload(k) = 1 ∀ vehicle unloading cycles k. (15)

For vehicles with a carrying capacity larger than one the
problems described above need to be solved in a different
way. This can be done by keeping track of the containers
loaded onto each of the vehicles. Therefore the following
variables are defined:

[L̄]k,j =


1

if the container which is loaded onto a
vehicle in cycle j is carried by the current
vehicle after cycle k

0 otherwise.

During each cycle only one container is loaded or unloaded.
Therefore only one element of L̄ changes during each cycle,
while the other elements are equal to the corresponding
elements in W̄v · L̄. This leads to the following equations
for L̄:

[L̄]k,j =


1 if k is a loading cycle and j = k

0
if k is an unloading cycle
and j = kload(k)

[W̄v · L̄]k,j otherwise.

The expression W̄v ·L̄ results in nonlinear constraints. These
can be converted to a set of linear constraints by introducing
auxiliary variables δl(k):

[W̄v · L̄]k,j =
∑
i

[δl(k)]i,j . (16)

The auxiliary variables δl can finally be given their values
by introducing three linear inequality constraints for each
auxiliary variable [2]:

−[L̄]i,j + [δl(k)]i,j ≤ 0

−[W̄v]k,i + [δl(k)]i,j ≤ 0

[L̄]i,j + [W̄v]k,i − [δl(k)]i,j ≤ 1.

(17)

The expression for L̄ can now be written as:

[L̄]k,j =


1 if k is a loading cycle and j=k
0 if k is an unloading cycle

and j = kload(k)∑
i

[δl(k)]i,j otherwise.

Now one can make sure that each container is only
unloaded after it is loaded on the selected vehicle, by adding
the following set of constraints:∑

i

[δl(k)]i,kload(k) = 1 ∀ unloading cycles k. (18)

In order to make sure that the load capacity is not exceeded
the following set of constraints can be added:∑

j

[L̄]k,j ≤ lmax ∀ loading cycles k, (19)

where lmax is the load capacity.

Test case Ships QCs SCs Vehicles Cycles
1 1 1 3 2 8
2 1 2 6 4 16
3 1 3 9 6 24
4 2 4 12 8 32
5 2 5 15 10 40
...

...
...

...
...

...

TABLE I
USED NUMBER OF EQUIPMENT IN THE VARIOUS TEST CASES (QCS =

QUAY CRANES; SCS = STACKING CRANES).

C. Cost function

In order to complete the definition of the model predic-
tive scheduling (MPS) problem, a cost function should be
defined. The overall objective of the MPS problem is the
minimization the weighted sum of the time required by the
quay cranes to handle all containers for each ship. Because
the time required by each quay cranes to handle all of its
remaining containers might not be equal for all quay cranes,
a penalty factor [p]j will be defined for the time required
to finish each cycle. Now the following cost function can be
defined:

J(t) =

nships∑
i=1

max
j∈Ci(t)

((
[x(t)]j − t

)
· [p(t)]j

)
,

where Ci is the set of cycles in which containers for ship i
are handled. This can be written as a linear cost function by
introducing a set of linear constraints:

J(t) = min
∑
i

rmax,i (20)

subject to(
[x(t)]j − t

)
· [p(t)]j ≤ rmax,i(t)∀j ∈ Ci. (21)

The final MILP problem can now be formulated a s follows:

min
rmax,i,x,W̄c,W̄v,L̄,δl

∑
i

rmax,i,

subject to inequality constraints (8)–(19), (21), and some
equality constraints that are related to past events, i.e., the
past state x0, and the part of the control decision variables
W̄c,W̄v, L̄, δl that have already been implemented (and
therefore cannot be changed any more).

V. EXPERIMENTS

In order to test the performance of the derived algorithms,
various test cases are defined. The time constants are loosely
based on the test cases mentioned in [8], [4] and [3]. In
particular, τc1, the time required by the cranes to handle each
container, will be 75 seconds for all cycles taking place at
a quay crane, and 100 seconds for all cycles taking place
at a stacking crane (SC). τ∆, the time required to transfer a
container between a crane and a vehicle, will be 30 seconds
for all cycles.

Fig. 2 shows the layout of the terminal used in the test
cases. It can be seen in this figure that the vehicles follow a
cross-lane type guidepath. The vehicles are assumed to travel

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5094



QC
1

QC
2

QC
3

QC
nq

SC
1

SC
2

SC
3

SC
4

SC
5

SC
6

SC
7

SC
8

SC
9

SC
ns−2

SC
ns−1

SC
ns

Ship 1 Ship n
ships

Guidepath network

10m

30m

40m

Fig. 2. Layout of the terminal used in the various test cases.

through this terminal with a speed of 3 m/s. In practice most
vehicles will have a higher maximal speed than 3 m/s. The
constant speed assumed here will compensate for the time
required for acceleration, deceleration and waiting time when
another vehicle travels through the same parts of the terminal.
The total number of cranes and vehicles is chosen different
for each of these test cases, as in Table I.

The system will be initialized by adding a set of dummy
cycles. The ready times of these cycles determine the times at
which the cranes and vehicles are available for the first time,
and will be chosen from a uniform distribution of [0, 30]
seconds. The values of the vectors W̄c, W̄v and Ĉ for
these dummy cycles will be chosen in such a way, that the
initial locations of the vehicles are evenly distributed along
the cranes.

A. Greedy algorithm

As a comparison for the system’s performance, a simple
heuristic vehicle dispatching algorithm will be introduced.
This algorithm, called a greedy algorithm, can be found in
literature in, e.g., [3], [8]. The greedy algorithm is a recursive
algorithm that schedules one container per iteration. This
algorithm can be described by the following steps:

1) Find the quay crane with the lowest ready time from
the set of quay cranes which still have unscheduled
cycles.

2) If the cycle for this quay crane is an unloading cycle,
find the crane at which the container is to be loaded.
If the quay crane cycle is a loading cycle, find the
unloading crane.

3) Find the set of vehicles which can arrive in time at the
loading crane.

4a) If the set is not empty, select from this set the vehicle
which will arrive latest at the loading crane.

4b) Else, select the vehicle which can arrive earliest at the
loading crane

4) If there are still unscheduled cycles, return to step 1.

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

Test case

V
al

ue
 o

f c
os

t f
un

ct
io

n

 

 
Greedy algorithm
MPS solution

Fig. 3. Cost function value for greedy algorithm and MILP solution for
various test cases given in Table I.

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Test case

S
ol

ut
io

n 
tim

e 
(s

)

 

 

Gurobi
SCIP
CBC
Maximal allowed solution time

Fig. 4. Solution time of various MILP solvers for various test cases given
in Table I, with a maximal allowed solution time of 7200 seconds.

B. Cost function value

Because the objective function is a measure of the total
transshipment time, the cost function will be used to assess
the performance of both the MILP solution and the greedy
algorithm. Because the MPS solution is based on this cost
function, it will by definition have better or equal perfor-
mance compared to the greedy algorithm. Fig. 3 shows the
cost function value for both solutions for various test cases. It
can be seen that there is no difference in cost function value
between the greedy algorithm and the MPS solution for test
cases one to three. However, for all larger test cases the MPS
solution outperforms the greedy solution by 25-50%.

C. Calculation time

In order to put the solution to the MILP problem to use,
one should be able to find it within a reasonable time. The
solution time for MILP problems is highly dependent on
the used hardware and MILP solver. Several different MILP

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5095



1 2 3 4 5 6
0

1

2

3

4

5

6

7

Test case

So
lu

tio
n 

tim
e 

ra
tio

 

 
lmax=2 solution time

lmax=1 solution time

Fig. 5. Ratio of solution times required by the Gurobi solver for both
MILP problems, for various test cases given in Table I.

solvers have been used to find the optimal solution to the
first 20 test cases. This was done on a computer with a AMD
Athlon 7750 dual core processor running at 2.7 GHz, with
3.25 Gb of RAM installed, running a 32 bits Windows 7.
The solvers where given 7200 seconds to find the solution
to each of of the test cases. The results of this experiment
can be found in Fig. 4. In this figure the missing data points
represent occurrences where the solver did not find a solution
within 7200 seconds. In this figure it can be seen that the
required solution time grows more than linearly with the
number of predicted cycles for all solvers. In this figure it
can furthermore be seen that there is a significant difference
in solution time between the used solvers. This difference
is illustrated by the solution times for test case 5: The CBC
solver fails to find a solution in time, while the Gurobi solver
only requires 0.28 seconds to find an optimal solution.

D. Multi-load case

The MILP problem for vehicles with a carrying capacity
larger than one uses significantly more variables than the
problem for vehicles with a unit load capacity. The additional
variables L̄ and δl are by definition ∈ {0, 1}. However, these
variables are already constrained to these integer values by
the inequality constraints derived above. It is therefore not
necessary to use integrality constraints for these variables
in the MILP problem. This reduces the complexity of the
optimization problem dramatically. There is one other com-
plicating factor for the implementation of the MPS problem
for vehicles with a larger carrying capacity. The δl matrices
contain a total of Noperational·N2 variables, and 3 constraints
are added for each of these variables. This high number of
variables and constraints has a large impact on the amount of
computer memory required by the MILP solver. In our case
the MILP problem has been solved on a 32-bit operating
system, and the system is unable to allocate enough memory
to solve the problem for the test cases 7 and higher. Therefore
the MILP could only be solved for the first 6 test cases, as
can be seen in Fig. 5.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have derived a scheduling procedure for
container terminals. We have used switching max-plus linear
models to describe the system. The scheduling problem
can now be recast as a mixed integer linear programming
problem. In future research we will look at the reduction
of the computational effort. One way in which this problem
will be addressed is by a priori eliminating certain combi-
nations of binary decision values that will lead to infeasible
schedules. Moreover, we will investigate the integration of
the scheduling approach proposed here into a framework
that also considers the operational control of the container
terminal equipment itself.

ACKNOWLEDGMENT

This research is supported by the VENI project “Intelligent multi-agent
control for flexible coordination of transport hubs” (project 11210) of the
Dutch Technology Foundation STW.

REFERENCES

[1] A. Alessandri, S. Sacone, and S. Siri. Modelling and optimal
receding horizon control of maritime container terminals. Journal
of Mathematical Modelling and Algorithms, 6:109–133, 2007.

[2] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35:407–427, 1999.

[3] Y. L. Cheng, H. C. Sen, K. Natarajan, C. P. Teo, and K. C. Tan.
Dispatching automated guided vehicles in a container terminal. In
Supply Chain Optimization. Springer US, 2005.

[4] M. B. Duinkerken and J. A. Ottjes. A simulation model for automated
container terminals. In Proceedings of the Business and Industry
Simulation Symposium (ASTC 1999), 2000.

[5] B. Heidergott, G. J. Olsder, and J. W. van der Woude. Max Plus
at Work: Modeling and Analysis of Synchronized Systems. Princeton
Series in Applied Mathematics. Princeton University Press, 2006.

[6] S.M. Johnson. Optimal two- and three-stage production schedule with
setup times included. Naval Research Logistics Quarterly, 1(1):61–68,
1954.

[7] B. Kersbergen, T. van den Boom, and B. De Schutter. Reducing
the time needed to solve the global rescheduling problem for railway
networks. In 16th International IEEE Annual Conference on Intelligent
Transportation Systems, The Hague, The Netherlands, October 2013.

[8] D. H. Lee, J. X. Cao, and Q. X. Shi. Synchronization of yard truck
scheduling and storage allocation in container terminals. Engineering
Optimization, 41(7):659–672, 2009.

[9] A. Mascis and D. Pacciarelli. Job shop scheduling with blocking
and no-wait constraints. European Journal of Operations Research,
143(3):498–517, 2002.

[10] A. Nambiar and R. Judd. Max-plus-based mathematical formulation
for cyclic permutation flow-shops. International Journal of Mathe-
matical Modelling and Numerical Optimisation, 2:85–97, 2011.

[11] M. Pinedo. Scheduling: Theory, Algorithms and Systems, second ed.
Prentice-Hall, Englewood Cliffs, NJ, 2001.

[12] R. Stahlbock and S. Voß. Operations research at container terminals:
a literature update. OR Spectrum, 30(1):1–52, 2007.

[13] T. J. J. van den Boom, B. Kersbergen, and B. de Schutter. Structured
modeling, analysis, and control of complex railway operations. In
Conference on Decision and Control, pages 7366–7371, Hawaii, 2012.

[14] T.J.J. van den Boom and B. De Schutter. Modelling and control
of discrete event systems using switching max-plus-linear systems.
Control Engineering Practice, 14(10):1199–1211, October 2006.

[15] R. J. H. A. van Zijverden and R. R. Negenborn. Survey of approaches
for integrated control of intermodal container terminals. In Pro-
ceedings of the 2012 IEEE International Conference on Networking,
Sensing and Control, pages 67–72, Beijing, China, April 2012.

[16] I. F. A. Vis and R. De Koster. Transshipment of containers at a
container terminal: an overview. European Journal of Operational
Research, 147:1–16, 2003.

[17] J. Xin, R. R. Negenborn, and G. Lodewijks. Energy-aware control for
automated container terminals using integrated flow shop scheduling
and optimal control. Transportation Research Part C, 2014.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5096


