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Abstract: This paper proposes a randomized incremental algorithm to distributedly compute the
least square (LS) estimate of linear systems over sensor networks. By integrating its measurement
information, a sensor is randomly activated at every time to incrementally update a diffusion vector,
which is also used to recursively estimate the unknown parameters of the system via a temporal average
algorithm. Then, the updated diffusion vector is passed to the next activated sensor. The activating
process is modeled as an identically and independently distributed process. It is shown that the estimate
in each sensor asymptotically converges both in mean and almost surely to the standard LS estimate of
the system parameters, which is based on all the sensor information. Simulation is finally included to
validate the theoretical results.
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1. INTRODUCTION

Recently, research on distributed algorithms over sensor net-
works has received considerable attention. One of the striking
advantages of distributed algorithm lies in locally processing
sensor information. Since centralized algorithm utilizes all the
sensor information in the fusion center, it is natural to con-
clude that distributed algorithm might not be as good as its
centralized counterpart. This holds only if there is no real-
time limitation on the communication network, computational
capability and etc, which is unreasonable in the resource limited
networks. Actually, it is preferable to adopt distributed algo-
rithm for information processing in the sensor network. This
work is concerned with the design of a randomized incremental
algorithm to distributedly estimate the unknown parameters of
linear systems under the least square estimation error criterion.

Incremental algorithms for distributed optimization have been
widely used to minimize a sum of convex functions, and each
component function is known only to a particular node of
a distributed network [Bertsekas 2010, Nedic and Bertsekas
2001, Johansson et al. 2009]. The key feature of this opti-
mization framework is that each sensor cooperatively estimates
a minimizer by using only local information, and is particu-
larly helpful in solving optimization over a large-scale network.
Roughly speaking, there are two types of incremental methods
for optimization and learning. One is the cyclic incremental
subgradient algorithm, where the sensors form a ring structure
and sequentially pass the iterate along the ring in clockwise di-
rection. The second one is a noncyclic version using the Markov
randomized incremental subgradient method. To achieve the
convergence of the incremental iterate to the minimizer, both
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algorithms have to suitably adjust their step sizes. While under
a constant step size, the iterate of the cyclic case converges to a
“limit cycle” due to the existence of oscillations of the iterates
[Bertsekas 2010].

To overcome this limitation, we note that the oscillations can
be averaged out, and propose a temporal average algorithm
to “maximally” aggregate the information of the historical
iterates. In particular, we elaborate this idea in the context of
lease square (LS) estimate, where the component function is in
a quadratic form, and the aim is to cooperatively estimate the
unknown parameters under the LS estimation error criterion.

At every time, a sensor is randomly activated and incrementally
update an iterate, which is also named as diffusion vector in
this paper. To obtain the LS estimate, each sensor recursively
implement an average algorithm to compute the average of all
the historical diffusion vectors that have visited this sensor. The
activating process of the sensors is modeled as an identically
and independently distributed (i.i.d.) process, and the updated
diffusion vector is passed to the next activated sensor. Since
the diffusion vectors form a randomly switching system, we
establish the convergence results from the system point of view,
which is substantially different from the approach in Bertsekas
[2010], Nedic and Bertsekas [2001], Johansson et al. [2009],
and prove the ergodicity of the diffusion vectors, which clearly
validates the soundness of the temporal average algorithm by
recalling the Birkhoffs Ergodic Theorem [Ash and Doléans-
Dade 2000].

The another contribution of this work is on the convergence
analysis of the above algorithm. In fact, we show that the esti-
mate of each sensor asymptotically converges both in mean and
almost surely to the standard LS estimate, which is computed
by using all the sensor information in a centralized approach.
It should be noted that there exist other distributed algorithms
to compute the LS estimate using only local information. For
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instance, two parallel consensus-based algorithms [Olfati-Saber
and Murray 2004] have been designed to distributedly obtain
the LS estimate in Xiao et al. [2005]. However, this method
requires to transmit a higher dimension data, and compute the
inverse of a square matrix, whose order is of the same as the
number of unknown parameters to be estimated. The similar
idea has also been pursued in Sayed et al. [2013]. From this
perspective, our algorithm is easier to implement and may re-
quire less communication load per transmission.

The rest of the paper is organized as follows. The problem under
consideration is formally described in Section 2. In Section 3,
we explicitly describe our novel distributed algorithms. The
convergence analysis is conducted in Section 4. Simulation
results are included in Section 5. We draw some concluding
remarks in Section 6.

2. PROBLEM FORMULATION

Consider an estimation framework by using N distributed sen-
sors over a network to cooperatively estimate an unknown pa-
rameter vector θ. Each sensor takes a noisy measurement as
follows

yi = Hiθ + vi, i ∈ V := {1, . . . , N}, (1)
where Hi ∈ Rm×n is the observation matrix, and vi ∈ Rm
is either deterministic or stochastic measurement noise. In a
centralized approach, all sensor measurements and observation
matrices are transmitted to a remote fusion center via a commu-
nication network. The fusion center finally produces an optimal
estimate of θ in an appropriate sense.

In this work, we are interested in a distributed approach to
compute the least square (LS) estimate of θ, which is obtained
via solving the following optimization

θ̂∗ ∈ arg min
θ∈Rn

1

2

N∑
i=1

‖yi −Hiθ‖2.

By using some standard results on LS techniques [Kailath et al.
2000], it is obvious that if

∑N
k=1H

T
k Hk is positive definite, the

LS estimator is exactly expressed as

θ̂∗ =
( N∑
i=1

HT
i Hi

)−1( N∑
i=1

HT
i yi
)

=
( 1
N

N∑
i=1

HT
i Hi

)−1( 1
N

N∑
i=1

HT
i yi
)
. (2)

To obtain the LS estimator, each sensor is required to send its
measurement yi and observation matrix Hi to the fusion center
via a shared network. Clearly, the total dimension of transmitted
message of each sensor is n + n × m = (1 + m)n. This
may require a high communication capacity of the sensor and
increases the energy consumption. It also needs to compute the
inverse of a square matrix of order n. This centralized scheme
highly relies on the fusion center, and is not very reliable. In
practice, it is preferable to locally compute the LS estimate at
each sensor of the network.

For this purpose, consensus-based estimating algorithms have
recently been proposed in the literature, see Xiao et al. [2005]
for an example. Observe from (2) that the necessary quantities
to compute the LS estimate can be given by two averages

H :=
1

N

N∑
i=1

HT
i Hi, and Y :=

1

N

N∑
i=1

HT
i yi.

Thus, it is sufficient to design a distributed algorithm for each
sensor to locally compute H and Y of the LS estimate. In
view of the well established consensus algorithm, a natural idea
is to simultaneously implement the following two consensus
algorithms at each sensor

Hi(t+ 1) =
∑
j∈Ni

aijHj(t),Hi(0) = HT
i Hi,

Yi(t+ 1) =
∑
j∈Ni

aijYj(t),Yi(0) = HT
i yi,

θ̂i(t) = (Hi(t))+Yi(t),
where the superscript M+ denotes the Moore-Penrose pseu-
doinverse [Horn and Johnson 1985] of matrixM , and aij > 0 if
and only if sensor j can send information to sensor i, otherwise
aij = 0.

If the communication topology formed by the sensors is con-
nected and undirected, it follows from Olfati-Saber and Murray
[2004] that limt→∞Hi(t) = H and limt→∞ Yi(t) = Y . Then,
each sensor can easily obtain the LS estimate, e.g.,

lim
t→∞

θ̂i(t) = ( lim
t→∞

Hi(t))+( lim
t→∞

Yi(t)) = θ̂∗.

Again, this algorithm requires to exchange the messages of
Hi(t) and Yi(t) at each transmission, which has a dimension
of (1 + m) · n, and compute the inverse (or Moore-Penrose
pseudoinverse if necessary) ofHi(t).
The objective of this paper is to design a novel diffusion-
based algorithm over the network to distributedly compute the
LS estimate, which is easier to implement and requires less
communication load at each transmission than that of the above
algorithms, and rigorously establish its asymptotic convergence
property.

3. RANDOMIZED INCREMENTAL LS

Motivated by the limitation of the consensus-based algorithm,
a novel diffusion-based algorithm over networks is now pro-
posed. At time t, a sensor, indexed as s(t) ∈ V , is activated and
it receives a diffusion vector θ̂0(t) (cf. (3)) from the previously
activated sensor. Sensor s(t) incorporates its measurement in-
formation to incrementally update θ̂0(t) by the following fusion
algorithm

θ̂0(0) = 0,

θ̂0(t+ 1) = θ̂0(t) + α ·HT
s(t)(ys(t) −Hs(t)θ̂0(t)), (3)

where α > 0 is the adjustable step size, and is to be designed
in the sequel.

Next, the updated θ̂0(t + 1) is passed from sensor s(t) to next
sensor s(t+1). At time t+1, sensor s(t+1) updates θ̂0(t+1)
in a similar way by using its own measurement information. By
repeating this fashion, it is obvious that θ̂0(t) will be circulated
across the networks and visits a sensor at each time.

Note that under a constant step size α > 0, it is usually
impossible to achieve the convergence of θ̂0(t) for any diffusion
process s(t). Otherwise, let limt→∞ θ̂0(t) = θ̂0(∞). Taking
limits on both sides of (3), it follows thatHT

i yi = HT
i Hiθ̂0(∞)

for all i ∈ V , which usually does not hold.
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As an initial attempt, we make the following assumption on the
diffusion process in this paper.
Assumption 1. The activating process s(t) is assumed to be an
identically and independently distributed (i.i.d.) process.

Under the above case, the diffusion vector asymptotically con-
verges in mean to the LS estimate.
Lemma 2. Select a positive α < 1/λmax(H), where λmax(H)
is a maximum eigenvalue ofH in magnitude. Then, it holds that

lim
t→∞

E[θ̂0(t)] = (αH)−1(αY) = θ̂∗.

Proof. By taking expectation on both sides of (3), it follows
that

E[θ̂0(t+ 1)] = (I − αH)E[θ̂0(t)] + αY (4)

=

t+1∑
i=0

(I − αH)i(αY).

Note that λmax(I − αH) < 1, the rest of the proof is straight-
forward.

By Lemma 2, it is sufficient to design an estimate at each sensor
to compute the ensemble average E[θ̂0(t)], which asymptoti-
cally converges to the LS estimate. To this end, each sensor
constructs an estimate of θ by taking an average of all the
diffusion vectors that have visited the sensor, i.e., sensor i forms
an estimate θ̂i(t) of θ by computing the following average,

θ̂i(t) =
1

|{j ≤ t|s(j) = i}|
∑

k∈{j≤t|s(j)=i}

θ̂0(k) (5)

where |A| returns the cardinality of set A.

Under Assumption 1, θ̂0(t) is an ergodic process. By the
Birkhoffs Ergodic Theorem [Ash and Doléans-Dade 2000], the
temporal average of θ̂0(t) will converge almost surely to its
ensemble average. This forms the key basis of the convergence
analysis in the next section. It is worthy emphasizing that the
estimate in (5) only takes a temporal average of a subset of
{θ̂0(t), t ≥ 0}, and the Birkhoffs Ergodic Theorem can not be
directly used.

Moreover, the average algorithm (5) lacks a recursive form. To
facilitate the implementation, we rewrite the average algorithm
in a recursive form. Particularly, suppose that s(t) = i, sensor i
updates its estimate of the unknown as follows

mi(t+ 1) =mi(t) + 1,

θ̂i(t+ 1) =
mi(t)

mi(t+ 1)
θ̂i(t) +

1

mi(t+ 1)
θ̂0(t), (6)

and for other sensors, they evolve in an open loop by letting

mj(t+ 1) =mj(t),

θ̂j(t+ 1) = θ̂j(t),∀j 6= i, (7)

where all of the above quantities are initialized as zero or zero
vector, i.e., mi(0) = 0 and θ̂i(0) = 0 for all i ∈ V .
Remark 3. (a) In comparison, the proposed algorithm only

requires the activated sensor to diffuse an n-dimension
message of θ̂0(t) across the network. It does not require
to compute the inverse of any matrix.

(b) The purpose of taking a temporal average in (5) is to max-
imally aggregate all sensors information on the unknown
via the diffusion vectors.

(c) In (3), we consider the randomization on the sensor node.
In Ravazzi et al. [2013], the method of using randomiza-
tion on the network link is proposed.

4. CONVERGENCE ANALYSIS

In this section, we prove that the estimate θ̂i(t) of each sensor
will converge both in mean and almost surely to the LS estimate
θ̂∗ as the time t goes to infinity under Assumption 1, which
shows the effectiveness of the proposed algorithm for each
sensor. The convergence result is formally stated below.

Theorem 4. Suppose that
∑N
i=1H

T
i Hi is positive definite. Un-

der Assumption 1, there exists a sufficiently small positive α∗
such that for any positive α < α∗ and i ∈ V in (6), it holds that

(a) limt→∞ θ̂i(t) = θ̂∗ almost surely.
(b) limt→∞ E[θ̂i(t)] = θ̂∗ where E[·] is taken with respect to

the process {s(t)}.
Remark 5. In the cyclic incremental algorithm [Nedic and
Bertsekas 2001], i.e. s(t) = t − bt/mc + 1 in (3) where b·c
is the standard floor function, it was proved that for sufficiently
small α > 0, there is a limiting point θi depending on α such
that limt→∞ θ̂0(tm+ i) = θi and limα→0 θi = θ for all i ∈ V .
Since θi 6= θj whenever i 6= j, the estimate of every sensor
usually does not converge to a same value but a limit cycle.

One may attempt to cancel out the oscillations of θ̂0(t) by
designing a temporal average algorithm as this paper. However,
this usually can not guarantee the convergence to the exact LS
estimate θ̂∗ under a constant α. To the best of our knowledge,
the convergence to the LS estimate under a constant α has not
been established [Bertsekas 2010, Nedic and Bertsekas 2001,
Johansson et al. 2009].
Example 6. We use a simple example to illustrate the advan-
tages of the randomization over the cyclic incremental algo-
rithm.Let N = 2 and H1 = H2 = 1 in (1). Then, the cyclic
incremental algorithm is given by

θ0(t+ 1) = θ0(t) + α(y(t)− θ0(t)), (8)
where y(t) = y1 if t is even, and otherwise y(t) = y2. If
0 < α < 1, one can readily show that

lim
t→∞

θ0(2t) =
(α− α2)y1 + αy2

1− (1− α)2
6= y1 + y2

2
,

lim
t→∞

θ0(2t+ 1) =
(α− α2)y2 + αy1

1− (1− α)2
6= y1 + y2

2
,

which means that neither θ0(2t) nor θ0(2t+ 1) converge to the
LS estimate. If y1 6= y2, then it is clear that limt→∞ θ0(2t) 6=
limt→∞ θ0(2t+ 1). Thus, θ0(t) converges to a limit cycle.

However, if H1 6= H2 and 0 < α < max{1/H2
1 , 1/H

2
2}, it

follows that

lim
t→∞

1

t

t∑
i=1

θ̂0(i) =
(2− αH2

2 )H1y1 + (2− αH2
1 )H2y2

2(H2
1 +H2

2 − αH2
1H

2
2 )

.

(9)
This implies that the temporal average of iterates of the cyclic
incremental algorithm does not converges to the LS estimate
except that H2

1 = H2
2 .
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The proof of Theorem 4 depends on the following lemmas.
Lemma 7. (Diaconis and Freedman [1999]) Consider the Markov
chain x(t) generated by the following iterations

x(t+ 1) = A(t+ 1)x(t) +B(t+ 1), (10)
with (A(t), B(t)) being an i.i.d. sequence with appropriate
dimensions. Suppose that

E[log+ ‖A(t)‖] <∞ and E[log+ ‖B(t)‖] <∞,
where log+(x) = max{log(x), 0} for any x > 0. The infinite
random sum

B(1) +

∞∑
t=1

(A(1) · · ·A(t))B(t+ 1) (11)

converges almost surely to a finite limit if and only if

inf
t>0

1

t
E[log ‖A(1) · · ·A(t)‖] < 0.

Moreover, the distribution of (11) is the unique invariant distri-
bution of the Markov chain x(t).
Lemma 8. (Furstenberg et al. [1960]) Suppose that

E[log+ ‖A(1)‖] <∞,
it almost surely holds

lim
t→∞

1

t
E[log ‖A(1) . . . A(t)‖] = lim

t→∞

1

t
log ‖A(1) . . . A(t)‖

where A(t) is a stationary and ergodic sequence.
Lemma 9. Suppose that A(t) is a stationary and ergodic se-
quence, and E[‖A(1)‖] < ∞. For any ε > 0, the following
limit exists

λ(ε) := lim
t→∞

1

t
log ‖(I − εA(t)) . . . (I − εA(1))‖. (12)

Let µ(·) be a matrix measure defined as

µ(A) = lim
ε→0+

‖I + εA‖ − 1

ε
.

Then, it holds that

lim sup
ε→0+

λ(ε)

ε
≤ µ(−E[A(1)]).

Proof of Theorem 4:
(a) Select a positive α < 1/λmax(H), and let A(t + 1) = I −
α · HT

s(t)Hs(t) and B(t + 1) = α · HT
s(t)ys(t). It follows from

(3) that

θ̂0(t+ 1) = A(t+ 1)θ̂0(t) +B(t+ 1), θ̂0(0) = 0. (13)
Since s(t) is an i.i.d. process and uniformly distributed, the
sequence of HT

s(t)Hs(t) is also an i.i.d. process, and

E[HT
s(t)Hs(t)] =

1

N

N∑
i=1

HT
i Hi <∞.

By Lemma 9, the following Lyapunov exponent is well defined

λ(α) := lim
t→∞

1

t
log ‖A(1) . . . A(t)‖, (14)

and

lim sup
α→0+

λ(α)

α
≤ µ(−E[HT

s(t)Hs(t)]) = µ(−H)

=−λmin(H), (15)
where λmin(H) is a minimum eigenvalue ofH in magnitude.

Since
∑N
i=1H

T
i Hi is positive definite, it is obvious that

λmin(H) > 0. Jointly with (15), there exists a positive α0 such

that λ(α) ≤ −αλmin(H) < 0 for all α < α0. In what follows,
α is selected to be a positive number that is strictly less than
α1 = min{α0, 1/λmax(H)}. Note that E[log+ ‖A(1)‖] < ∞,
it follows from Lemma 8 that

inf
t>0

1

t
E[log ‖A(1) . . . A(t)‖] ≤ lim

t→∞

1

t
E[log ‖A(1) . . . A(t)‖]

= lim
t→∞

1

t
log ‖A(1) . . . A(t)‖ = λ(α) < 0 almost surely.

Since E[log+ ‖B(1)‖] < ∞, it follows from Lemma 7 that
θ̂0(t) converges almost surely to (11). Together with (11), it
implies that

E[B(1) +

∞∑
t=1

(A(1) · · ·A(t))B(t+ 1)]

=

∞∑
t=0

(I − αH)t(αY) = θ̂∗. (16)

Define an indicator function

ξi(t) =

{
1, if s(t) = i.
0, otherwise. (17)

Then, mi(t) =
∑t
k=1 ξi(t). By the Strong Law of Large

Numbers [Ash and Doléans-Dade 2000], it follows that

lim
t→∞

mi(t)

t
= P{ξi(t) = 1} = 1

|V|
(18)

with probability one. For mi(t) > 0, it follows from (6) that

θ̂i(t) =
1

mi(t)

t∑
j=1

ξi(j)θ̂0(j). (19)

Consider the following auxiliary process[
ξi(t+ 1)
z(t+ 1)

]
=

[
0 0
0 A(t+ 1)

] [
ξi(t)
z(t)

]
+

[
1{s(t+1)=i}
B(t+ 1).

]
(20)

Here z(0), which is independent of θ̂0(0), is initialized as a
random variable with the same distribution as that of (11), and
1{s(t+1)=i} is an indicator function, which is one if s(t+1) = i
and zero, otherwise. Since s(t) is an i.i.d. process and θ0(t)
converges almost surely to (11), it is not difficult to verify that
[ξi(t), z(t)

T ]T is a stationary and ergodic process [Ash and
Doléans-Dade 2000].

By the Birkhoff’s Ergodic theorem [Ash and Doléans-Dade
2000], it follows that

lim
t→∞

1

t

t∑
j=1

ξi(j)z(j) =E[ξi(1)z(1)]

=E[ξi(1)]E[z(1)]
= θ̂∗/|V|, (21)

where the second equality is due to that s(t) is independent of
z(t) for all t ≥ 0, and the last equality follows from (16).

Next, we shall prove that

lim
t→∞

1

t

t∑
j=1

ξi(j)‖z(j)− θ̂0(j)‖ = 0 almost surely. (22)

Given a positive ε < |λ(α)| and let β := ε + λ(α) < 0, it
follows from (14) that there exists a sufficiently large t0 such
that for any t > t0. Then, we obtain that

‖A(t) . . . A(1)‖ ≤ exp(βt). (23)
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Since z(0) has the same distribution as that of (11), it follows
that

E[‖z(0)‖] = E[‖B(1) +

∞∑
t=1

(A(1) · · ·A(t))B(t+ 1)‖].

Let M0 := maxi∈V ‖HT
i yi‖, then for all t > t0, we obtain

E[‖z(0)‖] ≤ M0(

∞∑
j=1

E[‖A(1) . . . A(j)‖] + 1)

≤ M0(

t0∑
j=1

E[‖A(1) . . . A(j)‖] + exp(β)

1− exp(β)

:=M1 <∞,
where the second inequality follows from (23).

For any t > t0 and given a positive η, it follows from
Chebyshevs inequality [Ash and Doléans-Dade 2000] that

P{‖θ̂0(t)− z(t)‖ ≥ ηt} ≤
E[‖θ̂0(t)− z(t)‖]

ηt

≤ E[‖z(0)‖]
ηt

E[‖A(t) . . . A(1)‖] ≤ M1 exp(βt)

ηt
.

Select any η > exp(β) and η < 1, one can easily prove that
∞∑
t=1

P{‖θ̂0(t)− z(t)‖ ≥ ηt} <∞.

Together with Borel-Cantelli Lemma [Ash and Doléans-Dade
2000], it holds with probability one that for sufficiently large
t, then ‖θ0(t) − z(t)‖ < ηt. This obviously implies that
limt→∞ ‖θ0(t)− z(t)‖ = 0 almost surely. It is clear from (18)
that mi(t) tends to infinity with probability one as t goes to
infinity. Together with Toeplitz Lemma [Ash and Doléans-Dade
2000], it follows that

lim
t→∞

1

mi(t)

t∑
j=1

ξi(j)‖z(j)− θ̂0(j)‖ = 0 almost surely.

Then, (22) follows easily, which together with (21) implies that

lim
t→∞

1

t

t∑
j=1

ξi(j)θ̂0(t) = θ̂∗/|V| almost surely.

Jointly with (18) and (19), it follows that limt→∞ θ̂i(t) = θ̂∗

almost surely.

(b) It is sufficient to prove the uniform integrability of θ̂i(t)
since together with part (a), it follows from Theorem 6.5.2 in
Ash and Doléans-Dade [2000] that

lim
t→∞

E[θ̂i(t)] = E[ lim
t→∞

θ̂i(t)] = θ̂∗. (24)

In view of (19), we obtain that for mi(t) > 0 1 , then

θ̂i(t) =

t∑
j=1

(
ξi(j)

mi(t)

)
θ̂0(j). (25)

For 1 < p < ∞, the p-th moment of a random vector x is
defined by ‖x‖p = (E[‖x‖p)1/p. It is known that ‖·‖p is a norm.
Select any p ∈ (1, 2), it follows from the triangle inequality that
1 Note that θ̂i(t) = 0 if mi(t) = 0.

‖θ̂i(t)‖p ≤
t∑

j=1

‖
(
ξi(j)

mi(t)

)
θ̂0(j)‖p. (26)

Let q = 2/p > 1 and q′ = 2/(2− p). By the Holder inequality
[Ash and Doléans-Dade 2000], we obtain that

‖
(
ξi(j)

mi(t)

)
θ̂0(j)‖p ≤ ‖

ξi(j)

mi(t)
‖pq′ · ‖θ̂0(j)‖pq

≤ sup
t≥1
‖θ̂0(t)‖2 · ‖

ξi(j)

mi(t)
‖pq′ .

Since ξi(t) is i.i.d., then mi(t) =
∑t
j=1 ξi(j) has a binomial

distribution, e.g., mi(t) ∼ B(t, 1/|V|). One can verify that

sup
t≥1
‖ t

mi(t)
‖pq′ <∞. (27)

Next, we show that supt≥1 ‖θ̂0(t)‖2 < ∞. To this purpose,
define a Lyapunov functional candidate

V (t) = E[‖θ̂0(t)‖2].

By (13), we obtain that

E[V (t+ 1)|θ̂0(t)] = θ̂0(t)
TE[A(t+ 1)]θ̂0(t) (28)

+ 2θ̂0(t)
TE[A(t+ 1)B(t+ 1)] + E[‖B(t+ 1)‖2].

In addition, it is easy to compute that
E[A(t+ 1)2] = I − 2αH+ α2E[(HT

s(t)Hs(t))
2]. (29)

For sufficiently small , the right hand side of the above equality
will be dominated by the second term. Since H is positive
definite, there exists a positive α∗ < α1 such that for any
α < α∗, it holds that

ρ := λmax(E[A(t+ 1)2]) < 1. (30)

By Lemma 2, it is clear that

sup
t≥1
‖E[θ̂0(t)]‖ <∞.

Since s(t) is i.i.d., there exists a positive constant c such that
for all t ≥ 1,

2 · E[θ̂0(t)T ]E[A(t+ 1)B(t+ 1)] + E[‖B(t+ 1)‖2] < c.

In light of (28), it yields that
V (t+ 1) ≤ ρV (t) + c, (31)

which implies that E[‖θ̂0(t)‖2] ≤ c/(1− ρ) <∞.
Together with (26) and (27), it follows that

sup
t≥1

E[‖θ̂i(t)‖p] <∞. (32)

Since p > 1, it follows from Lemma 6.5.6 [Ash and Doléans-
Dade 2000] that θ̂i(t) is uniformly integrable.

5. SIMULATION

Consider a linear system as follows
yi = Hiθ + vi, i ∈ {1, . . . , 20}, (33)

where the true parameter vector θ = [1, 2, 1.5]T and vi is a
white Gaussian noise with zero mean and unit variance. The
observation matrix Hi is randomly generated from a Gaussian
vector, i.e. Hi ∼ N (0, I3). The step size is set as α = 0.02.
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E[A(t+ 1)2] = I − 2αH+ α2E[(HT
s(t)Hs(t))

2]. (29)

For sufficiently small α, the right hand side of the above
equality will be dominated by the second term. Since H is
positive definite, there exists a positive α∗ < α1 such that
for any α < α∗, it holds that

ρ , λmax(E[A(t+ 1)2]) < 1. (30)

By Lemma 1, it is clear that

sup
t≥1
‖E[θ̂0(t)]‖ <∞.

Since s(t) is i.i.d., there exists a positive constant C such
that for all t ≥ 1,

2E[θ̂0(t)]TE[A(t+ 1)B(t+ 1)] + E[‖B(t+ 1)‖2] < C.

In light of (28), it yields that

V (t+ 1) ≤ ρ · V (t) + C, (31)

which implies that E[‖θ̂0(t)‖2] < C/(1− ρ) <∞.
Together with (26) and (27), it follows that

sup
t≥1

E[‖θ̂i(t)‖p] <∞. (32)

Since p > 1, it follows from Lemma 6.5.6 Ash and Doléans-

Dade [2000] that θ̂i(t) is uniformly integrable.

5. SIMULATION

Consider a linear system as follows

yi = Hiθ + vi, i ∈ {1, . . . , 20}, (33)

where the true parameter vector θ = [1, 2, 1.5]T and vi is
a white Gaussian noise with zero mean and unit variance.
The observation matrix Hi is randomly generated from a
Gaussian vector, i.e. Hi ∼ N (0, I3). The step size is set as
α = 0.02. To check with the convergence of the estimate at
each sensor to the LS estimate, define its transient “error”
by

erri(t) = θ̂i(t)− θ̂∗.
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Fig. 1. The transient error of the estimate in a sensor node.

By Theorem 3, it is expected that erri(t) will asymp-
totically converge both in mean and almost surely to a
zero vector. We randomly choose a sensor node with an
equal probability to illustrate it, and in this simulation,
the second sensor node is selected. The behavior of err2(t)
is shown in Fig. 1. It is clear that both theoretical and sim-
ulation results are consistent and verify the convergence
property of the estimate algorithm. It should be noted

that the transient error of all the other sensors will exhibit
the similar behavior.

In addition, we also examine the ergodicity of the diffusion

vector θ̂0(t), and define the diffusion error

err0(t) = θ̂0(t)− θ̂∗.

As remarked, the use of the temporal average algorithm is
motivated by the ergodicity of the diffusion vector. Thus,
it is expected that err0(t) is an ergodic process with its
mean asymptotically converging to zero. This is supported
by the simulation result shown in Fig. 2. This validates the
soundness of the estimating algorithm.
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Fig. 2. The ergodicity of the diffusion vector.

6. CONCLUSION

Motivated by the ergodicity of randomized incremental al-
gorithms, we have proposed a temporal average algorithm
to distributedly compute the lease square (LS) estimate
of linear systems. It was rigorously proved that the dis-
tributed estimate asymptotically converges both in mean
and almost surely to the LS estimate.

In the future work, we extend the result to the case that
the diffusion vector can only be passed to the neighboring
sensors due to the limited communication range.
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E[A(t+ 1)2] = I − 2αH+ α2E[(HT
s(t)Hs(t))

2]. (29)

For sufficiently small α, the right hand side of the above
equality will be dominated by the second term. Since H is
positive definite, there exists a positive α∗ < α1 such that
for any α < α∗, it holds that

ρ , λmax(E[A(t+ 1)2]) < 1. (30)

By Lemma 1, it is clear that

sup
t≥1
‖E[θ̂0(t)]‖ <∞.

Since s(t) is i.i.d., there exists a positive constant C such
that for all t ≥ 1,

2E[θ̂0(t)]TE[A(t+ 1)B(t+ 1)] + E[‖B(t+ 1)‖2] < C.

In light of (28), it yields that

V (t+ 1) ≤ ρ · V (t) + C, (31)

which implies that E[‖θ̂0(t)‖2] < C/(1− ρ) <∞.
Together with (26) and (27), it follows that

sup
t≥1

E[‖θ̂i(t)‖p] <∞. (32)

Since p > 1, it follows from Lemma 6.5.6 Ash and Doléans-

Dade [2000] that θ̂i(t) is uniformly integrable.

5. SIMULATION

Consider a linear system as follows

yi = Hiθ + vi, i ∈ {1, . . . , 20}, (33)

where the true parameter vector θ = [1, 2, 1.5]T and vi is
a white Gaussian noise with zero mean and unit variance.
The observation matrix Hi is randomly generated from a
Gaussian vector, i.e. Hi ∼ N (0, I3). The step size is set as
α = 0.02. To check with the convergence of the estimate at
each sensor to the LS estimate, define its transient “error”
by

erri(t) = θ̂i(t)− θ̂∗.
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By Theorem 3, it is expected that erri(t) will asymp-
totically converge both in mean and almost surely to a
zero vector. We randomly choose a sensor node with an
equal probability to illustrate it, and in this simulation,
the second sensor node is selected. The behavior of err2(t)
is shown in Fig. 1. It is clear that both theoretical and sim-
ulation results are consistent and verify the convergence
property of the estimate algorithm. It should be noted

that the transient error of all the other sensors will exhibit
the similar behavior.

In addition, we also examine the ergodicity of the diffusion

vector θ̂0(t), and define the diffusion error

err0(t) = θ̂0(t)− θ̂∗.

As remarked, the use of the temporal average algorithm is
motivated by the ergodicity of the diffusion vector. Thus,
it is expected that err0(t) is an ergodic process with its
mean asymptotically converging to zero. This is supported
by the simulation result shown in Fig. 2. This validates the
soundness of the estimating algorithm.
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6. CONCLUSION

Motivated by the ergodicity of randomized incremental al-
gorithms, we have proposed a temporal average algorithm
to distributedly compute the lease square (LS) estimate
of linear systems. It was rigorously proved that the dis-
tributed estimate asymptotically converges both in mean
and almost surely to the LS estimate.

In the future work, we extend the result to the case that
the diffusion vector can only be passed to the neighboring
sensors due to the limited communication range.
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Fig. 2. The ergodicity of the diffusion vector.

To check with the convergence of the estimate at each sensor to
the LS estimate, define its transient error by

erri = θ̂i(t)− θ̂∗.

By Theorem 4, it is expected that erri(t) will asymptotically
converge both in mean and almost surely to a zero vector. We
randomly choose a sensor node with an equal probability to
illustrate it, and in this simulation, the second sensor node is
selected. The behavior of err2(t) is shown in Fig. 1. It is clear
that both theoretical and simulation results are consistent and
verify the convergence property of the estimate algorithm. It
should be noted that the transient error of all the other sensors
will exhibit the similar behavior.

In addition, we also examine the ergodicity of the diffusion
vector θ̂0(t), and define the diffusion error

err0(t) = θ̂0(t)− θ̂∗.

As remarked, the use of the temporal average algorithm is
motivated by the ergodicity of the diffusion vector. Thus, it
is expected that err0(t) is an ergodic process with its mean
asymptotically converging to zero. This is supported by the
simulation result shown in Fig. 2, which validates the soundness
of the estimating algorithm.

6. CONCLUSION

Motivated by the ergodicity of randomized incremental al-
gorithms, we have proposed a temporal average algorithm to
distributedly compute the lease square (LS) estimate of linear
systems. It was rigorously proved that the dis- tributed estimate
asymptotically converges both in mean and almost surely to the
LS estimate. In the future work, we extend the result to the case
that the diffusion vector can only be passed to the neighboring
sensors due to the limited communication range.
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