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Abstract: Control of a flexible joint of an industrial manipulator using H∞ design methods is
presented. The considered design methods are i) mixed-H∞ design, and ii) H∞ loop shaping
design. Two different controller configurations are examined: one uses only the actuator position,
while the other uses the actuator position and the acceleration of the end-effector. The four
resulting controllers are compared to a standard pid controller where only the actuator position
is measured. The choices of the weighting functions are discussed in details. For the loop shaping
design method, the acceleration measurement is required to improve the performance compared
to the pid controller. For the mixed-H∞ method it is enough to have only the actuator position
to get an improved performance. Model order reduction of the controllers is briefly discussed,
which is important for implementation of the controllers in the robot control system.
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1. INTRODUCTION

The requirements for controllers in modern industrial ma-
nipulators are that they should provide high performance,
at the same time, robustness to model uncertainty. In
the typical standard control configuration the actuator
positions are the only measurements used in the higher
level control loop. At a lower level, in the drive system, the
currents and voltages in the motor are measured to provide
torque control for the motors. In this contribution different
H∞-controller design schemes are compared when using
two different sensor configurations. First, the standard
case where only the position of the actuator rotation is
used, and second a configuration where, in addition, the
acceleration of the tool tip is measured. Two different H∞
methods are investigated: i) loop shaping [McFarlane and
Glover, 1992], and ii) multi-H∞ design [mixedHinfsyn,
2013, Zavari et al., 2012].

Motivated by the conclusions from Sage et al. [1999]
regarding the area of robust control applied to industrial
manipulators, this contribution includes:

• results presented using realistic models,
• a comparison with a standard pid control structure,
• model reduction of the controllers to get a result that

more easily can be implemented in practice.

The model used in this contribution represents one joint
of a typical modern industrial robot [Moberg et al., 2009].
It is a physical model consisting of four masses, which
should be compared to the typical two-mass model used
in many previous contributions, see Sage et al. [1999]

? This work was supported by the Vinnova Excellence Center LINK-
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Technology, ELLIIT.

and the references therein. The joint model represents
the first joint of a serial 6-dof industrial manipulator,
where the remaining five axes have been configured to
minimise the couplings to the first axis. To handle changes
in the configuration of the remaining axes, gain scheduling
techniques can be used based on the results in this paper.

An important part of the design is the choice of the
weighting functions, which is an essential task to get
a satisfactory performance. The work of choosing the
weights is difficult, tedious and time consuming. This can
be be the reasons for why H∞ methods are not used
that often in practice even though the performance and
robustness can be increased. In particular, the use of two
measurements for control of one variable requires special
treatment. The development of the weighting functions for
the four controllers are discussed in details, and provides
a significant part of the contributions in the paper.

Controller synthesis usingH∞ methods has been proposed
in Song et al. [1992], Stout and Sawan [1992], where the
complete non-linear robot model first is linearised using
exact linearisation, second an H∞ controller is designed
using the linearised model. The remaining non-linearities
due to model errors are seen as uncertainties and/or
disturbances. In both papers, the model is rigid and the
H∞ controller, using only joint positions, is designed using
the mixed-sensitivity method. In Sage et al. [1997] H∞
loop shaping with measurements of the actuator positions
is applied to a robot. The authors use a flexible joint
model which has been linearised. The linearised model
makes it possible to use decentralised control, hence H∞
loop shaping is applied to n siso-systems instead of the
complete mimo-system.
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Fig. 1. System description for general H∞ synthesis (a)
and loop shaping (b).

Explicit use of acceleration measurements for control in
robotic applications has been reported in, for example,
de Jager [1993], Dumetz et al. [2006], Kosuge et al.
[1989], Readman and Bélanger [1991] and Xu and Han
[2000]. In Dumetz et al. [2006], a control law using motor
position and acceleration of the load in the feedback loop
is proposed for a Cartesian robot 1 . The robot is assumed
to be flexible and modelled as a two-mass system, where
the masses are connected by a linear spring-damper pair.
Another control law of a Cartesian robot using acceleration
measurements is presented in de Jager [1993]. The model
is a rigid joint model and the evaluation is made both in
simulation and experiments.

In Kosuge et al. [1989] a 2-degree-of-freedom (dof) ma-
nipulator is controlled using acceleration measurements
of the end-effector. The model is assumed to be rigid
and it is exactly linearised. The joint angular accelera-
tion used in the non-linear feedback loop is calculated
using the inverse kinematic acceleration model and the
measured acceleration. The use of direct measurements of
the angular acceleration in the feedback loop is presented
in Readman and Bélanger [1991] for both rigid and flexible
joint models. A more recent work is presented in Xu and
Han [2000], where a 3-dof manipulator is controlled using
only measurements of the end-effector acceleration.

The theory for synthesis of H∞ controllers is presented
in Section 2. The model describing the robot joint is
explained in Section 3. In Section 4, the requirements
of the system as well as the design of four controllers
are described, and in Section 5 the simulation results
are shown. Finally, Section 6 discuss low order controller
synthesis and Section 7 concludes the work.

2. CONTROLLER DESIGN METHODS

In this section, a brief introduction to mixed-H∞ de-
sign [mixedHinfsyn, 2013, Zavari et al., 2012] and H∞
loop shaping [McFarlane and Glover, 1992] will be pre-
sented.

2.1 Mixed-H∞ Controller Design

A common design method is to construct the system P (s)
in (

z
y

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)(
w
u

)
= P (s)

(
w
u

)
(1)

by augmenting the original system y = G(s)u with the
weights Wu(s), WS(s), and WT (s), such that the system
z = Fl(P,K)w, depicted in Figure 1(a), can be written as

1 For a Cartesian robot the joint acceleration is measured directly
by an accelerometer, while for a serial type robot there is a non-linear
mapping depending on the states.

Fl(P,K) =

(
Wu(s)Gwu(s)
−WT (s)T (s)
WS(s)S(s)

)
, (2)

where S(s) = (I+G(s)K(s))−1 is the sensitivity function,
T (s) = I−S(s) is the complementary sensitivity function,
and Gwu(s) = −K(s)(I + G(s)K(s))−1 is the transfer
function from w to u. The H∞-controller is then obtained
by minimising the H∞-norm of the system Fl(P,K), i.e.,
minimise γ such that ‖Fl(P,K)‖∞ < γ. Using (2) gives

|Wu(iω)Gwu(iω)| < γ, ∀ω, (3a)

|WT (iω)T (iω)| < γ, ∀ω, (3b)

|WS(iω)S(iω)| < γ, ∀ω. (3c)

The transfer functions Gwu(s), S(s), and T (s) can now be
shaped to satisfy the requirements by choosing the weights
Wu(s), WS(s), and WT (s). The aim is to get a value of γ
close to 1, which in general is a hard to achieve and it
requires insight in the deign method as well as the system
dynamics. For more details about the design method, see
e.g. Skogestad and Postletwaite [2005], Zhou et al. [1996].

The mixed-H∞ controller design [mixedHinfsyn, 2013,
Zavari et al., 2012] is a modification of the standard H∞
design method. Instead of choosing the weights in (2)
such that the norm of all weighted transfer functions
satisfies (3), the modified method divides the problem into
design constraints and design objectives. The controller
can now be found as the solution to

Minimise
K(s)

γ (4a)

subject to ‖WP (s)S(s)‖∞ < γ (4b)

‖MS(s)S(s)‖∞ < 1 (4c)

‖Wu(s)Gwu(s)‖∞ < 1 (4d)

‖WT (s)T (s)‖∞ < 1 (4e)

where γ not necessarily has to be close to 1. Here, the
weight WS(s) has been replaced by the weights MS(s)
and WP (s). The method can be generalised to other
control structures and in its general form it is formulated
as a multi-objective optimisation problem. More details
about the general form and how to solve the optimisation
problem are presented in mixedHinfsyn [2013], Zavari
et al. [2012].

2.2 Loop Shaping using H∞ Synthesis

For loop shaping [McFarlane and Glover, 1992], the system
G(s) is pre- and post-multiplied with weights W1(s) and
W2(s), see Figure 1(b), such that the shaped system
Gs(s) = W2(s)G(s)W1(s) has the desired properties.
The controller Ks(s) is then obtained using the method
described in Glover and McFarlane [1989] applied on the
system Gs(s), giving the controller Ks(s). Finally, the
controller K(s) is given by

K(s) = W1(s)Ks(s)W2(s). (5)

Note that the structure in Figure 1(b) for loop shaping
can be rewritten as a standard H∞ problem according to
Figure 1(a), see Zhou et al. [1996] for details. It will be
used in Section 6 for synthesis of low order controllers.

The Matlab function ncfsyn, included in the Robust
Control Toolbox, is used in this paper for synthesis of H∞
controllers using loop shaping.
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Fig. 2. A four-mass flexible joint model, where Jm is the
motor inertia and Ja1, Ja2, and Ja3 are the distributed
arm inertias.

3. FLEXIBLE JOINT MODEL

The model considered in this paper is a four-mass bench-
mark model of a single flexible joint, see Figure 2, pre-
sented in Moberg et al. [2009]. The model corresponds to
joint 1 of a serial 6-dof industrial manipulator, where the
five remaining axes are configured such that the couplings
to joint 1 is minimised, see Moberg et al. [2009] for more
details about the operating point where the model has
been linearised.

Input to the system is the motor torque u, the motor
disturbance wm and the end-effector disturbance wP . The
four masses are connected by spring-damper pairs, where
the first mass corresponds to the motor. The other masses
represents distributed masses placed along the arm. The
first spring-damper pair is modelled by a linear damper
and non-linear spring, whereas the other spring-damper
pairs are modelled as linear springs and dampers. The
non-linear spring is characterised by a low stiffness for
low deflections and a high stiffness for high deflections.
This behaviour is typical for compact gear boxes, such as
harmonic drive [Ruderman and Bertram, 2012]. For design
of the H∞ controllers, the non-linear model is linearised in
one operating point in the high stiffness region, motivated
by that a constant torque, e.g. gravity, is acting on the
joint. Moreover, the friction torques are assumed to be
linear and the input torque u is limited to ±20 Nm. The
output of the system is the motor position qm and the
end-effector acceleration P̈, where

P =
l1qa1 + l2qa2 + l3qa3

η
. (6)

In (6), η is the gear ratio and l1, l2, and l3 are the respective
link lengths.

Using Lagrange’s equation, the linearised flexible joint
model can be described by a set of four odes, which can
be reformulated as a linear state space model according to

ẋ = Ax+Bu+Bww, (7a)

y = Cx+Du+Dww. (7b)

where the state vector and disturbance vector are given by

x = (qm qa1 qa2 qa3 q̇m q̇a1 q̇a2 q̇a3)
T
, (8a)

w = (wm wP)
T
. (8b)

The linear state space model is used for design of the
H∞ controllers. Note that the matrices C, D, and Dw are
different depending on which sensor configuration that is
used, whereas the matrices A, B, and Bw stay the same.

4. DESIGN OF CONTROLLERS

In this section, four controllers based on the methods in
Sections 2.1 and 2.2 are considered, using only the motor

angle qm or both qm and the acceleration of the end-
effector P̈. The controllers are

(1) Hls∞(qm): Loop shaping controller using qm.

(2) Hls∞(qm, P̈): Loop shaping controller using qm and P̈.
(3) Hm∞(qm): Mixed-H∞ controller using qm.

(4) Hm∞(qm, P̈): Mixed-H∞ controller using qm and P̈.

The four controllers are compared to a pid controller
where only qm is used. The pid controller is tuned to
give the same performance as the best controller presented
in Moberg et al. [2009].

To get high enough gain for low frequencies, without hav-
ing the pole exactly in 0, the break-point of the magnitude
function has to be very small, around 10−5 rad/s. From
Figure 3 it can be seen that the main dynamics of the
system is present in the frequency interval 30-110 rad/s.
The large frequency span from 10−5 rad/s to 110 rad/s
makes it numerically difficult to solve for the controller us-
ing the standard iterative methods described in Skogestad
and Postletwaite [2005], Zhou et al. [1996]. The mixed-
H∞ method does not suffer from this, since the design
objectives (choice of WP ) for low frequencies is separated
from the design constraints (choice of MS).

4.1 Requirements

The controllers using H∞ methods are designed to give
better performance than the pid controller. In practice
it means that the H∞ controllers should attenuate the
disturbances at least as much as the pid controller and
the cut-off frequency should be approximately the same.

In Figure 3, the singular values of the systems from w to

y = qm and w to y =
(
qm P̈

)T
show that an integrator

is present. It means that in order to attenuate piecewise
constant disturbances, it is required to have at least two
integrators in the open loop GK. Since G already has one
integrator, the other integrators have to be included in the
controller K. For controllers 2 and 4, an integrator will
be present if W1 or W2 include an integrator, recall (5).
The requirements for controllers 1 and 3 become that
|S(iω)| → 0 for ω → 0. Note that it is not possible to
stabilise the plant P (s) with marginally stable weights.
Instead the pole has to be moved into the left half plan a
small distance.

4.2 Choice of Weights

4.2.1. Hls∞(qm): Using only qm as a measurement
gives a siso-system, hence W1 and W2 are scalar transfer
functions. For a linear siso-system it is possible to use
one of W1 and W2 since the transfer functions commute
with the system G(s). Therefore, W1(s) = 1 and W2(s) is
chosen such that the desired loop shape is obtained. First
of all, it is necessary to have an integrator as discussed
above. Having a pure integrator will lead to that the phase
margin will be decreased, a zero in s = −10 is therefore
added in order not to change the loop gain for frequencies
above 10 rad/s. Next, the gain is increased to get the
desired cut-off frequency. The result using the weight is
that the loop shape have peaks above 30 rad/s. To reduce
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Fig. 3. Singular values for the system from u to y (top) and

w to y (bottom), for y = qm (blue) and y = (qm P̈)T

(red).

the magnitude of the peaks a modified elliptic filter 2

H(s) =
0.5227s2 + 3.266s+ 1406

s2 + 5.808s+ 2324
(9)

is introduced in W2. The weights are finally given as

W1(s) = 1, W2(s) = 100
s+ 10

s
H(s). (10)

Using ncfsyn a controller of order 13 is obtained.

4.2.2. Hls∞(qm, P̈): Adding an extra measurement
signal in terms of the acceleration of the end-effector gives
a system with one input and two outputs. For stability
reasons, it is not possible to have an integrator in both
control channels. Therefore, the integrator is placed in the
channel for qm since the accelerometer measurement has
low frequency noise, such as drift. For the same reason as
for the other controller, a zero in s = −3 is introduced.
The transfer function from input torque to acceleration of
the end-effector has a high gain in the frequency range of
interest. To decrease the gain such that it is comparable
with the motor angle measurement, a low pass filter is
added in the acceleration channel. The final weights are

W1(s) = 50, W2(s) = diag

(
s+ 3

s
,

0.2

(s+ 5)2

)
, (11)

giving a controller of order 13. Introducing an elliptic
filter to attenuate the peaks in the open loop did not give
the same results as for the Hls∞(qm)-controller. Instead of
improving the loop gain, the elliptic filter made it worse.

4.2.3. Hm∞(qm): For this controller, four different
weights have to be chosen, recall (4). The weight MS

should limit the peak of S and is therefore chosen to be a
constant 3 . The peak of Gwu is also important to reduce
in order to keep the control signal bounded, especially for
high frequencies. A constant value of Wu is therefore also
chosen. In the spirit of try simplest thing first, the weight
WT is also chosen to be a constant

In order to attenuate the disturbances it is, as was men-
tioned above, necessary to have at least one integrator in

2 The filter is designed to have a magnitude of 0 dB up to 50 rad/s,
after that -10 dB, but due to ripple, the real magnitude will differ
from that.
3 More complicated weights can be used but here we try simple
things first.

the controller. Forcing S to 0 is the same as letting WP

approach ∞ when ω → 0. To get a proper inverse, a zero
is also included in the weight. Since a pure integrator is
not used, the slope of the weight has to be higher than
20 dB per decade frequency, in order to force S to be low
enough. This was accomplished by taking the weight to
the power of 3 (2 was not enough). The numerical values
of the weights are chosen as

Wu = 10−50/20, WT = 10−10/20, (12a)

MS = 10−10/20, WP =

(
s+ 100.1

s+ 0.1

)3

. (12b)

The constant weights in the form 10−α/20 can be inter-
pret as a maximum value, for the corresponding transfer
function, of α dB. The resulting controller is of order 10.

4.2.4. Hm∞(qm, P̈): Like for the controllerHls∞(qm, P̈),
designing the weights for the mixed-H∞ method becomes
somewhat more involved with two measurements and one
control signal. The aim is to attenuate the disturbances
influence on the end-effector position. A variant is to find
a rough estimate of the end-effector position and then
choosing the weights from that. A straightforward estimate
of P using P̈ is

P̂ =
1

s2
P̈. (13)

Due to low frequency drift and bias in an accelerometer,
this estimate is only useful for high frequencies. A high
pass filter is therefore used according to

P̂high = c2
s2

(p+ s)2
1

s2
P̈ = c2

1

(p+ s)2
P̈ (14)

where c2 and p are constants to choose. Another straight-
forward estimate of P is to use the motor angle qm accord-
ing to P̂ = lqm where l is the length of the arm. Compared
to the estimated position using the acceleration, this new
estimate is only valid for low frequencies. Using a low pass
filter gives an estimate for low frequencies. It is important
that the two estimates do not overlap each other, hence
the low pass filter is chosen as the complementarity to the
previous used high pass filter. The low frequency estimate
is now given by

P̂low = c1

(
1− s2

(p+ s)2

)
lqm = c1

2s+ p

(p+ s)2
plqm (15)

where c1 is a design variable. The final estimate of P is
the sum of the two estimates above, hence

P̂ =

(
c1

2s+ p

(p+ s)2
pl c2

1

(p+ s)2

)
︸ ︷︷ ︸

W

(
qm
P̈

)
(16)

Using the weights

MS = M̃SW, WP = W̃PW, WT = W̃TW, (17)

where M̃S , W̃P , and W̃T can be designed in a similar way
as in Section 4.2.3, makes it possible to use more than one
output together with one input. The last weight Wu can
be chosen similar as in Section 4.2.3. The numerical values
of the weights are

Wu = 10−40/20, W =

(
30s+ 75

(s+ 5)2
0.1

(s+ 5)2

)
, (18a)

M̃S = 10−2/20, W̃P =

(
s+ 80

s+ 0.15

)3

. (18b)
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Fig. 4. Loop gain |KG| and controller gain |K| for the five
controllers.

and it turns out that WT is not needed for the perfor-
mance. Using these weights results in a controller of order
13.

4.3 Controller Characteristics

The resulting loop gain for the five controllers are shown in
Figure 4. The four controllers using H∞-methods do not
give as high peaks as the pid-controller around 100 rad/s.

It can also be seen that introducing P̈ as a measurement
eliminates the notch at 30 rad/s.

In Figure 4, the magnitude of the five controllers are
presented. The pid controller is smoother than the other
controllers. The reason is that a part of the system dynam-
ics is included in the H∞-controllers. As a result, they try
to remove the resonance peaks from the system, which
can be seen in Figure 3, hence the peaks in the amplitude
function of the H∞-controllers. The weights Wu for the
controllers Hm∞(qm) and Hm∞(qm, P̈) are different which
can be seen in Figure 4 for high frequencies. Comparing
the two controllers Hls∞(qm) and Hls∞(qm, P̈) for high fre-
quencies it can be seen that they behave similar. The pid-
controller has the highest magnitude for high frequencies,
which implies that the measurement noise will be amplified
more than for the H∞-controllers.

5. SIMULATION RESULTS

The five controllers are evaluated using a simulation
model. The simulation model consists of the flexible joint
model described in Section 3, a measurement system, and a
controller. The robot joint model is implemented in contin-
uous time whereas the controllers operate in discrete time.
The continuous-time controllers developed in Section 4,
are therefore discretized using Tustin’s formula. The mea-
surements are affected by a time delay of one sample as
well as zero mean normal distributed measurement noise.
The sample time is Ts = 0.5 ms.

The system is excited by a disturbance signal w containing
steps and chirp signals on both the motor and end-
effector. The performance is evaluated using a performance
index, which is a weighted sum of peak-to-peak errors and
settling times in the simulated end-effector position and
the maximum torque and the torque noise in the simulated
motor torque. The reader is referred to Moberg et al. [2009]
for complete details about the disturbance signals and the
performance index.

Figure 5 shows how the motor torque differs between
the five controllers. In the upper diagram it can be see
that Hls∞(qm) gives higher torques than the pid and the
Hm∞(qm) controllers. The pid gives higher torque noise
during steady state due to the gain of the controller for
high frequencies, recall Figure 4. In the lower diagram
in Figure 5 it is shown that the controllers Hls∞(qm, P̈)

andHm∞(qm, P̈) give similar torque signals, and lower com-
pared to the pid controller. A low torque signal is preferred
to reduce the energy consumption and to decrease the wear
in the motor and gear.

The end-effector position is presented in Figure 6. In the
top graph it is seen that Hls∞(qm) gives, compared to the
pid, higher oscillations during the time intervals 10-15 s
and 37-42 s, which corresponds to a chirp disturbance at
the end-effector. For step disturbances and chirp distur-
bances on the motor (time intervals 16-21 s and 43-58 s)
Hls∞(qm) and the pid are more similar. The controller
Hm∞(qm) is better than the other two controllers in the

simulation. The bottom graph shows that Hm∞(qm, P̈)
can handle the chirp disturbances on the motor (time
intervals 16-21 s and 43-58 s) and step disturbances very
good. For a chirp disturbance on the end-effector, the two
H∞ controllers give similar results. For step disturbances,
the controller Hls∞(qm, P̈) gives lower peaks than the pid
controller, however the settling time is longer. The steady
state error of approximately 2 mm after 25 s is a result
of a constant torque disturbance on the end-effector. The
size of the error will depend on the size of the disturbance
and the stiffness of the joint. The motor position, which is
measured, is controlled to zero for all five controllers.

The performance index for the five controllers is presented
in Table 1. It shows, as discussed above, that Hls∞(qm) and

the pid controller behave similar and that Hls∞(qm, P̈) and

Hm∞(qm) give similar behaviour. TheHm∞(qm, P̈)-controller
gives the best result.

6. LOW ORDER SYNTHESIS

For implementation of the controller in the robot control
system it is important to have a low order controller. A
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Table 1. Performance index for the five con-
trollers, where lower value is better.

pid Hls
∞(qm) Hls

∞(qm, P̈) Hm
∞(qm) Hm

∞(qm, P̈)

55.7 55.4 45.8 42.4 28.8

controller in state space form requires O(n2x) operations
to calculate the control signal, where nx is the dimension
of the state vector in the controller.

The low order controllers are here obtained using the Mat-
lab-function hinfstruct, which is included in Robust
Control Toolbox and it is based on techniques from Ap-
karian and Noll [2006].

To find controllers with low orders using hinfstruct
requires a model description, including the weights, in
the form of (1). This structure is already used for the

controllers Hm∞(qm) and Hm∞(qm, P̈), hence it is straight-
forward to synthesis low order controllers using the weights
presented in Sections 4.2.3 and 4.2.4. For the loop shap-
ing design method, the structure in Figure 1(b) can be
rewritten in the form of (1) including the weights W1(s)
and W2(s), explained in e.g. Zhou et al. [1996]. Using
the rewritten structure, the low order controllers based
on Hls∞(qm) and Hls∞(qm, P̈) can be obtained using the
weights from Sections 4.2.1 and 4.2.2.
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Fig. 6. Simulated end-effector position for the five con-
trollers. The top graph shows the controllers using
only qm. The bottom graph shows the pid and the
controllers using qm and P̈.

Table 2 shows the lowest order for the respective con-
trollers, that can be achieved without changing the closed-
loop performance too much. The table also shows the per-
formance index obtained when the controllers are used in
the simulation environment. The orders can be reduced by
a factor of two to three but the performance of the reduced
order controllers is worse than the full order controllers.
Since the controller based on loop shaping with only qm as
measurement has the same performance for the full order
controller as the pid controller, the low order controller
gives a worse performance than the pid controller. The
other full order controllers are much better than the pid
controller and afford to get a reduced performance for the
low order controllers without getting worse than the pid
controller.

Finally, note that the controllers only represents local min-
ima solutions, hence rerunning hinfstruct with other ini-
tial values can give a better, or worse, controller. To handle
this, several initial values have been used in hinfstruct.

7. CONCLUSIONS AND FUTURE WORK

Four different H∞ controllers for a flexible joint of an
industrial manipulator are designed using mixed-H∞ con-
troller design and the loop shaping method. The model,
on which the controllers are based, is a four-mass model.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

215



Table 2. Lowest order of the controllers ob-
tained using hinfstruct, with the order be-
fore reduction in brackets. The corresponding
performance index from simulations is also

shown.

Hls
∞(qm) Hls

∞(qm, P̈) Hm
∞(qm) Hm

∞(qm, P̈)

Order 5 (13) 4 (13) 5 (10) 7 (13)
Perf. ind. 60.8 49.4 48.3 40.8

As input, the controllers use either the motor angle only
or both the motor angle and the acceleration of the end-
effector. Tuning of the controllers requires understanding
of both the synthesis method and how the system behaves.
For example, the measurements for the mixed-H∞ con-
troller are first pre-filtered to give an estimate of the tool
position. The weighting functions for the resulting siso
system, from input torque to the estimated tool position,
are then chosen similar to the case where only the motor
position is used.

The controllers are compared to a pid controller and it is
shown that if only the motor angle is measured it is much
better to use the mixed-H∞ design method compared to
loop shaping. If instead the end-effector acceleration is
added then the performance is improved significantly for
both methods. The steady state error for the end-effector
position is unaffected since the accelerometer does not
provide low frequency measurements. Using a low order
controller synthesis method, it is possible to reduce the
order of the controllers by a factor of two to three but
at the same time a decrease in the performance index of
10–30 % can be observed.

Investigation of robustness for stability with respect to
model errors is one of several future directions of research.
The mixed-H∞ method has an advantage compared to the
loop shaping method since a model of the error is possible
to incorporate in the augmented plant P (s).

Another continuation is to investigate the improvement
for other types of sensors. One possibility is to have an
encoder measuring the position directly after the gearbox,
i.e., qa1. This will improve the stiffness of the system,
although it will not eliminate the stationary error for the
end-effector position. The ultimate solution is to measure
the end-effector position, but for practical reasons this is in
general not possible, instead the end-effector position can
be estimated, as described in Axelsson [2012], Axelsson
et al. [2012], Chen and Tomizuka [2013], and used in the
feedback loop.

Extending the system to several joints giving a non-linear
model, which has to be linearised in several points, is also
a future problem to investigate. A controller, using the
results from this paper, is designed in each point and for
example gain scheduling can be used when the robot moves
between different points.
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