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1. INTRODUCTION

In this paper the problem of identifying a linear dynamic system
from noisy input–output measurements is addressed. System
representations where both inputs and outputs are affected by
additive errors are called errors–in–variables (EIV) models and
play an important role in several engineering applications. The
identification of EIV models has been deeply investigated in the
literature and many solutions have been proposed with different
approaches, see (Söderström, 2007, 2012) and the references
therein.

In many EIV contexts the additive noises are assumed as white.
In these cases, if the assumptions of Gaussianity are fulfilled, it
is feasible to use a maximum likelihood (ML) approach.

ML estimation methods are commonly used in dynamic system
identification, and several approaches have been developed in
time and frequency domain. In a recent paper (Agüero et al.,
2010) the relation between time and frequency domain versions
of ML estimation methods has been investigated. It has been
shown that the results of the estimation problem do not depend
on the domain chosen to describe the available data (i.e. time or
frequency). Instead, it is the choice of the likelihood function,
i.e., which parameters are to be estimated and what data is
assumed available, that leads to different solutions.

In this work the EIV ML problem is addressed by using fre-
quency domain techniques, when the noise-free input is an arbi-
trary sequence and the noise variance ratio is known. The latter
is a standard assumption, e.g. for all TLS–based estimators in
EIV problems (Van Huffel and Lemmerling, 2002).

The proposed method can be considered as a frequency domain
version of the ML solution described in (Diversi et al., 2007).
The two methods seem to be equivalent, as it appears from the
numerical examples, in accordance with the assertion given in
(Agüero et al., 2010). The determination of the finite Cramér
Rao lower bound is not developed here; however the result
does not differ from the one already presented in (Diversi et
al., 2007).

The organization of the paper is as follows. Section 2 defines
the EIV identification problem in frequency domain. Section
3 describes the features of the identification procedure in case
of noise–free data and Section 4 presents the ML solution of
the original EIV identification problem. Section 5 describes the
Koopmans-Levin solution for frequency data. In Section 6 the
effectiveness of the proposed algorithm is verified by means of
Monte Carlo simulations. Finally some concluding remarks are
reported in Section 7.

2. STATEMENT OF THE PROBLEM

Consider the linear time–invariant SISO system described in
Figure 1. The noise–free input and output û(t), ŷ(t) are linked
by the linear difference equation

A(z−1) ŷ(t) = B(z−1) û(t), (1)

where A(z−1) and B(z−1) are polynomials in the backward
shift operator z−1

A(z−1) = 1 + α1 z−1 + · · · + αn z−n (2)

B(z−1) = β0 + β1 z−1 + · · · + βn z−n. (3)

In the EIV environment the input and output measurements are
assumed as corrupted by additive noise so that the available
observations are

u(t) = û(t) + ũ(t) (4)
y(t) = ŷ(t) + ỹ(t). (5)

The following assumptions are made.

A1. The system (1) is asymptotically stable.
A2. A(z−1) and B(z−1) do not share any common factor.
A3. The order n of the system is assumed as a priori known.
A4. The noise–free input û(t) is a quasi–stationary bounded

deterministic signal (Ljung, 1999) and is persistently ex-
citing of sufficiently high order.

A5. ũ(t) and ỹ(t) are zero–mean, mutually uncorrelated Gaus-
sian white processes with variances λu and λy .

A6. The noise variances λu and λy are unknown but their ratio
ρ = λy/λu is assumed as known, with 0 < ρ < ∞.
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Fig. 1. Errors–in–variables model

Let {u(t)}N−1
t=0 and {y(t)}N−1

t=0 be a set of input and output
observations at N equidistant time instants. The corresponding
Discrete Fourier Transforms (DFTs) are defined as

U(ωk) =
1√
N

N−1
∑

t=0

u(t) e−jωkt (6)

Y (ωk) =
1√
N

N−1
∑

t=0

y(t) e−jωkt , (7)

where ωk = 2πk/N and k = 0, . . . , N−1. The system transfer
function is represented as

G(e−jωk) =
B(e−jωk )

A(e−jωk )
. (8)

The DFTs defined in (6) and (7) can be expressed in matrix
form by introducing the N × N Fourier matrix FN (Agüero et
al., 2010) whose entries are defined as follows

FN = [fik] (9)

fik =
1√
N

e−j 2π

N
(i−1)(k−1) i, k = 1, . . . , N . (10)

In can be proved that matrix FN is unitary, i.e. FNFH
N = I ,

where (·)H denotes the transpose and conjugate operation.

Defining the following vectors in time and frequency domain

vu = [u(0) . . . u(N − 1)]T (11)

vy = [y(0) . . . y(N − 1)]T (12)

VU = [U(ω0) . . . U(ωN−1)]
T (13)

VY = [Y (ω0) . . . Y (ωN−1)]
T (14)

the relations (6) and (7) can be represented by the linear
transformations

VU = FN vu (15)
VY = FN vy . (16)

In frequency domain, the problem under investigation can be
stated as follows.

Problem 1. Let U(ωk), Y (ωk) be a set of noisy measurements
generated by an EIV system of type (1)–(5), under Assumptions
A1–A6, where ωk = 2πk/N and k = 0, . . . , N − 1. Estimate
the system parameters αi (i = 1, . . . , n), βi (i = 0, . . . , n) and
the noise variances λu, λy .

In the following we focus on the case when N is much larger
then n, as we are interested in consistency and asymptotic
properties in general.

3. THE NOISE–FREE CASE

This section develops a model analysis in absence of noise
and describes the basic ideas of a two-step iterative algorithm,
where every step relies on a least squares formulation.

With reference to the noise–free signals û(t) and ŷ(t), defini-
tions similar to (11)–(14) and (15)–(16) hold, i.e.

v̂u = [û(0) . . . û(N − 1)]T (17)

v̂y = [ŷ(0) . . . ŷ(N − 1)]T (18)

V̂U = [Û(ω0) . . . Û(ωN−1)]
T (19)

V̂Y = [Ŷ (ω0) . . . Ŷ (ωN−1)]
T , (20)

where
V̂U = FN v̂u (21)

V̂Y = FN v̂y . (22)
For the subsequent analysis it is convenient to introduce also
the auxiliary process

η(t) =
1

A(z−1)
û(t) , (23)

which allows to represent the system (1) with the following
relations

û(t) = A(z−1) η(t) (24)

ŷ(t) = B(z−1) η(t) , (25)

assuming that the n initial conditions {η(t)}−1
t=−n are known.

Defining the vector

η = [η(−n), . . . , η(−1), η(0), . . . , η(N − 1)]T (26)
the relations (24) and (25) can be written in matrix form as

v̂u = µα η (27)
v̂y = µβ η , (28)

where µα and µβ are the N × (N + n) Toeplitz matrices

µα =









αn . . . α1 1 0 . . . 0
0 αn . . . α1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 αn . . . α1 1









(29)

µβ =









βn . . . β1 β0 0 . . . 0
0 βn . . . β1 β0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 βn . . . β1 β0









. (30)

The DFT of the vector η in (26) results in
E = [E(ω−n) . . . E(ω−1)E(ω0) . . . E(ωN−1)]

T (31)
by means of the linear transformation

E = FN+n η (32)
and vice versa

η = F−1
N+n E , (33)

where the (N + n) × (N + n) Fourier matrix FN+n is con-
structed by following the rules given in (9)–(10).

Remark 1. Note that, since the dimension of vector η is different
from that of v̂u and v̂y , for the same value of k, the generic
frequency ωk = 2πk/(N + n) in (31) does not coincide with
ωk = 2πk/N in (19) and (20).

Thanks to (21) (22) and (33), the relations (27)–(28) can be
written in the frequency domain as follows

V̂U = Mα E (34)

V̂Y = Mβ E , (35)
where

Mα = FNµαF−1
N+n (36)

Mβ = FNµβF−1
N+n . (37)
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By introducing the 2N–dimensional vector

V̂ = [V̂ T
Y V̂ T

U ]T (38)

and the 2N × (N + n) matrix

M =

[

Mβ

Mα

]

, (39)

the relations (34)–(35) can be rewritten as

V̂ = M E . (40)

Thanks to Assumption A2, the matrix M has full rank, so that
the vector E can be univocally determined by the pseudoinverse
relation

E = M † V̂ = (MH M)−1 MH V̂ . (41)

Let us consider now the dynamic systems described by equa-
tions (24) and (25). As input of these systems, it is possible to
apply the sequence {η(t)}N−1

t=0 of length N , whose DFT is

E0(ωk) =
1√
N

N−1
∑

t=0

η(t) e−jωkt , (42)

with ωk = 2πk/N and k = 0, . . . , N − 1.

By introducing the vector

η0 = [η(0) . . . η(N − 1)]T (43)

and the corresponding DFT

E0 = [E0(ω0) . . . E0(ωN−1)]
T , (44)

relation (42) can be expressed also in matrix form

E0 = FN η0 . (45)

Remark 2. Note that the dimension of vector η0 is equal to N
and coincides with that of v̂u and v̂y . Therefore the observation
stated in Remark 1 holds also for vector E0: for a fixed value of
k the generic frequency ωk = 2πk/N in (44) is equal to that of
(19) and (20), but does not coincide with ωk = 2πk/(N + n)
in (31).

From knowledge of the vector E (31) it is possible to compute
E0 (44). In fact, denoting with IN the unit matrix of dimension
N , it is possible to define matrix

J = [0N×n | IN ] , (46)

so that it results
η0 = J η . (47)

Thanks to (33) and (45), we obtain

E0 = ME E , (48)

where
ME = FN J F−1

N+n . (49)

Remark 3. All the previous considerations can be summed up
as follows. Assuming the system parameters αi (i = 1, . . . , n),
βi (i = 0, . . . , n) as known, from the input–output frequency
sequences V̂U and V̂Y it is possible to compute the vector E
by means of equation (41). Then, vector E0 can be obtained
through (48).

It is a well–known fact (Pintelon et al., 1997) that for finite
N , even in absence of noise, the ratio of the DFTs Ŷ (ωk) and
Û(ωk) (ωk = 2πk/N ) is not equal to the true transfer function

G(e−jωk ) 6= Ŷ (ωk)

Û(ωk)
. (50)

In fact, it can be proved that the DFTs Ŷ (ωk) and Û(ωk)
exactly satisfy an extended model that includes also a transient
term, i.e.

A(e−jωk ) Ŷ (ωk) = B(e−jωk ) Û(ωk) + T (e−jωk) , (51)
where T (z−1) is a polynomial of order n − 1

T (z−1) = τ0 + τ1 z−1 + · · · + τn−1 z−n+1 (52)
that takes into account the effects of the initial and final condi-
tions of the experiment.

These considerations can be applied to the dynamic systems
(24) and (25). In frequency domain, these systems can be
expressed by the relations

Û(ωk) = A(e−jωk)E0(ωk) + T u(e−jωk) (53)

Ŷ (ωk) = B(e−jωk)E0(ωk) + T y(e−jωk ) (54)

where T u(z−1) and T y(z−1) are polynomials of order n − 1

T u(z−1) = τu
0 + τu

1 z−1 + · · · + τu
n−1 z−n+1 (55)

T y(z−1) = τy
0 + τy

1 z−1 + · · · + τy
n−1 z−n+1 . (56)

Let us define the row vectors
Zn+1(ωk) = [e−jnωk e−j(n−1)ωk . . . e−jωk 1] (57)

Zn(ωk) = [e−j(n−1)ωk . . . e−jωk 1] , (58)
whose entries are constructed with multiple frequencies of ωk.

By introducing the parameter vectors

θα = [αn . . . α11 ]T (59)

θβ = [βn . . . β1β0]
T (60)

θu = [τu
n−1 . . . τu

0 ]T (61)

θy = [τy
n−1 . . . τy

0 ]T , (62)
equations (53)–(54) can be written, at every frequency ωk (k =
0, . . . , N − 1), as follows

Û(ωk) = Zn+1(ωk) θα E0(ωk) + Zn(ωk) θu (63)

Ŷ (ωk) = Zn+1(ωk) θβ E0(ωk) + Zn(ωk) θy . (64)
Equivalently, it results in

Û(ωk) = M(ωk) θU (65)

Ŷ (ωk) = M(ωk) θY , (66)
where

M(ωk) = [E0(ωk)Zn+1(ωk) |Zn(ωk)] (67)
and

θU = [θT
α θT

u ]T (68)

θY = [θT
β θT

y ]T . (69)

Finally, defining the N × (2n + 1) matrix

Ω =







M(ω0)
...

M(ωN−1)






(70)

and recalling definitions (19)–(20), equations (53)–(54) can be
written in the following matrix forms

V̂U = Ω θU (71)

V̂Y = Ω θY . (72)
If N > (2n + 1) the matrix Ω has full column rank and
the vectors θU and θY can be univocally determined by the
pseudoinverse relations

θU = Ω† V̂U = (ΩH Ω)−1 ΩH V̂U (73)

θY = Ω† V̂Y = (ΩH Ω)−1 ΩH V̂Y . (74)
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Remark 4. The observations given in Remark 3 can now be
completed as follows. Vice versa, from knowledge of vector
E0, it is possible to construct the row vector M(ωk) (67) and
the matrix Ω (70). Finally, the system parameters θα and θβ can
be recovered, together with the auxiliary vectors θu and θy , by
using equations (73)–(74).

4. MAXIMUM LIKELIHOOD IDENTIFICATION

Defining the noise vectors

ṽu = [ũ(0) . . . ũ(N − 1)]T (75)

ṽy = [ỹ(0) . . . ỹ(N − 1)]T (76)

ṽ = [ṽT
y ṽT

u ]T (77)
and the corresponding DFTs

ṼU = [Ũ(ω0) . . . Ũ(ωN−1)]
T (78)

ṼY = [Ỹ (ω0) . . . Ỹ (ωN−1)]
T (79)

Ṽ = [Ṽ T
Y Ṽ T

U ]T , (80)
from equations (40) and (71)–(72), the EIV model (1)–(5) can
be written in the following compact forms

V = [V T
Y V T

U ]T = V̂ + Ṽ = M E + Ṽ (81)

V = [V T
Y V T

U ]T = V̂ + Ṽ = Γ Θ + Ṽ , (82)
where

Γ =

[

Ω 0
0 Ω

]

Θ =

[

θU

θY

]

. (83)

Thanks to Assumption A5 we have

Σ̃ = E [ṽ ṽT ] = E [Ṽ Ṽ H ] =

[

λy IN 0
0 λu IN

]

, (84)

where E[·] is the mathematical expectation. Because of A6 it
results

Σ̃ = λu

[

ρIN 0
0 IN

]

= λu W , (85)

i.e. Σ̃ is known up to a single multiplicative constant. Since
the distribution of the measurement noise is Gaussian, the
conditional probability density function of the complex–valued
vector V in (81) is

p(V |θY , θU , E, λu) = (86)
1

π2N det Σ̃
exp

{

−(V − M E)H Σ̃−1(V − M E)
}

.

The log-likelihood function is thus given by

L(θY , θU , E, λu) = const − 2N log λu

− 1

λu

(V − M E)H W−1(V − M E), (87)

or, equivalently, because of (82)

L(θY , θU , E, λu) = const − 2N log λu

− 1

λu

(V − Γ Θ)H W−1(V − Γ Θ) . (88)

Since Γ and W are block–diagonal matrices, the loss function
(88) can be rewritten as follows

L(θY , θU , E, λu) = const − 2N log λu

− 1

λu

(VU − Ω θU )H (VU − Ω θU )

− 1

λu ρ
(VY − Ω θY )H (VY − Ω θY ) . (89)

Therefore L(θY , θU , E, λu) is maximized when

E =
(

MHW−1M
)−1

MHW−1V (90)

θY = (ΩHΩ)−1ΩHVY (91)

θU = (ΩHΩ)−1ΩHVU , (92)

with

λu =
1

2N
(V − M E)H W−1(V − M E) . (93)

Remark 5. The ML estimation problem as formulated in (89)
turns out to have the same algebraic form as the EIV problem
for a static linear system where all the latent variables (corre-
sponding to E here) are estimated. For such cases it is known
that the estimated parameters are consistent, but the estimated
noise variance (corresponding to λu) is asymptotically off by
50 percent (Fuller, 1987). For this reason in the next algorithm
we modify the estimate of λu by doubling the result of (93).

We can now formulate an iterative algorithm for the maximum
likelihood estimation of θY , θU , E and λu structured as follows.

Algorithm 1.

(1) Let θ0
α and θ0

β an initial estimate of the system parameters
(59) (60). Define

Θ0 = [θ0T

α θ0T

β ]T (94)

and set Θk = Θ0.
(2) Construct, with the entries of Θk, the matrix Mk as in (39)

and compute (41)

Ek =
(

MkH
W−1Mk

)−1

MkH
W−1V ; (95)

then compute the vector Ek
0 by means of (48) and con-

struct the matrix Ωk (70).
(3) Compute

θk+1
U = (ΩkH

Ωk)−1ΩkH
VU (96)

θk+1
Y = (ΩkH

Ωk)−1ΩkH
VY (97)

and extract vectors θk+1
α , θk+1

β from (68) and (69). Set

Θk+1 = [θ(k+1)T

α θ
(k+1)T

β ]T . (98)

(4) Test if
‖Θk+1 − Θk‖

‖Θk‖ < ε (99)

where ε is an assigned convergence threshold.
Set Θk = Θk+1 and repeat steps 2 and 3 until the
condition (99) is fulfilled.

(5) Let E∗, Θ∗ be the final values of Ek, Θk. Compute the
estimate of the noise variances

λ∗
u =

1

N
(V − M∗ E∗)H W−1(V − M∗ E∗)

λ∗
y = ρ λ∗

u , (100)

where M∗ (39) can be constructed with the entries of Θ∗

according to (29)–(30) and (36)–(37).

By inserting (93) into (87), it can be shown that Algorithm
1 yields an iterative solution of the following weighted least
squares problem

min
Θ,E

J(Θ, E) , (101)

where
J(Θ, E) = ‖V − M E‖2

W−1 = ‖V − Γ Θ‖2
W−1 . (102)
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Note that steps (2) and (3) solve univocally the quadratic
minimization problems

min
E

J(Θk, E) (103)

and
min
Θ

J(Θ, Ek) , (104)

respectively, so that

J(Θk, Ek) ≤ J(Θk, Ek−1) ≤ J(Θk−1, Ek−1) . (105)

Since J(Θ, E) ≥ 0 and every step decreases the value of
J(Θ, E), the convergence of Algorithm 1 to a (local) minimum
is guaranteed.

Remark 6. Algorithm 1 is based on an alternating projection
procedure, see for example (Grigoriadis and Skelton, 1996). Its
structure is completely similar to the one proposed in (Diversi
et al., 2007). Thus, for a deeper discussion about an efficient
implementation of the algorithm the reader can consult that
paper and the references therein reported.

5. THE KOOPMANS–LEVIN SOLUTION

The initial estimate Θ0 in step 1 can significantly affect the
convergence of the algorithm to the global minimum point, with
a modest number of iterations. A suitable starting point can be
obtained by means of the following frequency domain solution,
analogue to the time domain Koopmans–Levin solution (Fer-
nando and Nicholson, 1985).

With reference to system (51)

A(e−jωk) Ŷ (ωk) = B(e−jωk) Û(ωk) + T (e−jωk) , (106)

where

A(z−1) = 1 + α1 z−1 + · · · + αn z−n (107)

B(z−1) = β0 + β1 z−1 + · · · + βn z−n (108)

T (z−1) = τ0 + τ1 z−1 + · · · + τn−1 z−n+1 , (109)

construct with the row vectors (57) and (58) the following
matrices of dimension N × (n + 1) and N × n, respectively

Π =







Zn+1(ω0)
...

Zn+1(ωN−1)






Ψ =







Zn(ω0)
...

Zn(ωN−1)






. (110)

With the noise–free input–output DFTs (19) and (20) construct
the following N × N diagonal matrices

V̂ diag
U =











Û(ω0) 0 . . . 0

0 Û(ω1) . . . 0
...

. . .
...

0 . . . 0 Û(ωN−1)











(111)

V̂ diag
Y =











Ŷ (ω0) 0 . . . 0

0 Ŷ (ω1) . . . 0
...

. . .
...

0 . . . 0 Ŷ (ωN−1)











. (112)

Compute the matrices

Φ̂B = V̂ diag
U Π Φ̂A = V̂ diag

Y Π Φ̂T = Ψ . (113)

Defined with p = 3n + 2 the whole number of the parameters,
construct the N × p matrix

Φ̂ = [Φ̂A | Φ̂B | Φ̂T ] . (114)

It then holds
Σ̂p ΘKL = 0 , (115)

where Σ̂p is the p × p matrix

Σ̂p =
1

N
(Φ̂HΦ̂) (116)

and ΘKL is the p–dimensional parameter vector

ΘKL = [θT
α − θT

β − θT
τ ]T , (117)

with θα, θβ defined in (59), (60) and

θτ = [τn−1 . . . τ0]
T . (118)

Similar considerations hold for the noisy input–output DFTs
(13) and (14). Construct the N × N diagonal matrices

V diag
U =









U(ω0) 0 . . . 0
0 U(ω1) . . . 0
...

. . .
...

0 . . . 0 U(ωN−1)









(119)

V diag
Y =









Y (ω0) 0 . . . 0
0 Y (ω1) . . . 0
...

. . .
...

0 . . . 0 Y (ωN−1)









, (120)

compute the matrices

ΦB = V diag
U Π ΦA = V diag

Y Π ΦT = Ψ (121)

and construct the N × p matrix

Φ = [ΦA |ΦB | ΦT ] . (122)

Because of Assumptions A5 and A6 we obtain the following
p × p positive definite matrix

Σp =
1

N
(ΦHΦ) = Σ̂p + Σ̃p , (123)

where

Σ̃p =

[

λy In+1 0 0
0 λu In+1 0
0 0 0n

]

(124)

= λu

[

ρIn+1 0 0
0 In+1 0
0 0 0n

]

= λu Λ . (125)

It is a well-known result (Guidorzi et al., 2008) that the param-
eter vector ΘKL, defined in (117), can be obtained as the kernel
of

(

Σp − λu Λ
)

ΘKL = 0 , (126)

with
1

λu

= max eig
(

Σ−1
p Λ

)

. (127)

6. NUMERICAL RESULTS

As a first case, the proposed algorithm has been tested on
sequences generated by a second–order model of type (1),
already proposed in (Diversi et al., 2007)

A(z−1) = 1 − 0.5 z−1 + 0.3 z−2 (128)

B(z−1) = 2 − 1.2 z−1 − 0.6 z−2 . (129)

The input is a pseudo random binary sequence with unit vari-
ance and length N = 250. A Monte Carlo simulation of 100 in-
dependent runs has been performed by adding to the noise–free
sequences û(·), ŷ(·) different Gaussian white noise realizations
with variances λu = 0.1, λy = 0.6, corresponding to a signal
to noise ratio (SNR) of about 10 dB on both input and output.
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Table 1. True and estimated parameters of q(z−1)
obtained by means of FD, TD Algorithms and FD,

TD Koopmans–Levin methods

α1 α2

true −0.5 0.3

FD Alg. −0.5006 ± 0.0601 0.3029 ± 0.0530

TD Alg. −0.5006 ± 0.0595 0.3029 ± 0.0527

FD − KL −0.5055 ± 0.0688 0.3109 ± 0.0706

TD − KL −0.5055 ± 0.0688 0.3109 ± 0.0707

Table 2. True and estimated parameters of p(z−1)
obtained by means of FD, TD Algorithms and FD,

TD Koopmans–Levin methods

β0 β1 β2

true 2 −1.2 −0.6

FD Alg. 2.0004 ± 0.0232 −1.2070 ± 0.1421 −0.5897 ± 0.1310

TD Alg. 2.0005 ± 0.0221 −1.2069 ± 0.1406 −0.5899 ± 0.1296

FD − KL 2.0064 ± 0.0413 −1.2179 ± 0.1632 −0.5711 ± 0.1763

TD − KL 2.0065 ± 0.0416 −1.2178 ± 0.1633 −0.5710 ± 0.1765

Table 3. True and estimated values of λu, λy ob-
tained by means of FD, TD Algorithms and FD,

TD Koopmans–Levin methods

λu λy

true 0.1 0.6

FD Alg. 0.0975 ± 0.0040 0.5853 ± 0.0242

TD Alg. 0.0975 ± 0.0040 0.5852 ± 0.0242

FD − KL 0.0967 ± 0.0060 0.5803 ± 0.0359

TD − KL 0.0979 ± 0.0061 0.5873 ± 0.0363

The ML estimates of the parameters and variances have been
obtained by using ε = 10−3 in step 6 of the Frequency Domain
(FD) Algorithm proposed in Section 4.

Tables 1 and 2 report the empirical means of the parameter
estimates together with the corresponding standard deviations,
obtained with the FD methods and with the Time Domain (TD)
Algorithm described in (Diversi et al., 2007). The estimates ob-
tained by the corresponding Koopmans–Levin (KL) solutions
are also reported.

Table 3 reports the empirical means of the noise variance esti-
mates and the corresponding standard deviations, obtained with
the FD and the TD Algorithms, together with the corresponding
Koopmans–Levin solutions.

These tables seem to well illustrate the fact that the TD and FD
methods coincide. In fact both algorithms lead to equal results,
not only for the estimates but also for the standard deviations.

In order to verify the improvement of the accuracy in the esti-
mates for increasing values of data, a Monte Carlo simulation of
100 independent runs has been also performed with N = 125,
N = 250 and N = 500. The results confirm the expectations,
as shown in Tables 4–5, with reference to the system parame-
ters. Similar results hold for the noise variances.

Table 4. True and estimated parameters of q(z−1)
obtained by means of FD Algorithm for different

data length N

α1 α2

true −0.5 0.3

N = 125 −0.5009 ± 0.0824 0.2997 ± 0.0736

N = 250 −0.5006 ± 0.0601 0.3029 ± 0.0530

N = 500 −0.4991 ± 0.0445 0.3018 ± 0.0343

Table 5. True and estimated parameters of p(z−1)
obtained by means of FD Algorithm for different

data length N

β0 β1 β2

true 2 −1.2 −0.6

N = 125 1.9967 ± 0.0353 −1.1950 ± 0.1900 −0.6063 ± 0.1955

N = 250 2.0004 ± 0.0232 −1.2070 ± 0.1421 −0.5897 ± 0.1310

N = 500 2.0000 ± 0.0165 −1.2002 ± 0.1059 −0.5903 ± 0.0985

7. CONCLUSIONS

In this paper a new frequency domain ML method has been pro-
posed for the identification of EIV models with additive white
noises. The method applies for general inputs, but requires the a
priori knowledge of the noise variance ratio. The effectiveness
of the proposed algorithm has been verified by means of Monte
Carlo simulations.

REFERENCES

Agüero, J.C., Yuz, J.I., Goodwin, G.C. and Delgado, R.A.
(2010). On the equivalence of time and frequency domain
maximum likelihood estimation. Automatica, 46, 260–270.

Diversi, R., Guidorzi, R., and Soverini, U. (2007). Maximum
likelihood identification of noisy input–output models. Auto-
matica, 43(3), 464–472.

Fernando, K. V., Nicholson, H. (1985). Identification of linear
systems with input and output noise: the Koopmans–Levin
method. IEE Proceedings, Part D, 132, 30–36.

Fuller, W. A.(1987). Measurement Error Models. New York,
NY, USA: Wiley.

Grigoriadis, K.M., Skelton, R. (1996). Low–order control de-
sign for LMI problems using Alternating Projection Meth-
ods. Automatica, 32(8), 1117–1125.

Guidorzi, R., Diversi, R. and Soverini, U. (2008). The Frisch
Scheme in algebraic and dynamic identification problems.
Kybernetika, 44(5), 585–616.

Ljung, L. (1999). System identification–Theory for the user.
(2nd ed.), Upper Saddle River, NJ, USA: Prentice–Hall.

Pintelon, R., Schoukens, J. and Vandersteen G. (1997). Fre-
quency domain system identification using arbitrary signals.
IEEE Transactions on Automatic Control, 42, 1717–1720.
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