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Abstract: A variety of causality analysis methods have been proposed and used for complex large 
multivariate systems. In the frequency domain, partial directed coherence (PDC) is an important method. 
We expect that the frequency domain methods can provide a more detailed explanation of causal influence 
over different frequencies, but PDC provides no quantitative information to quantify the causal strength 
and the interpretation of causality over a specific frequency is still unexplained. Based on the statistical 
property of the renormalized PDC, a frequency domain causality analysis method in the hypothesis testing 
framework is employed in this paper to resolve these issues. In order to achieve a lower computational 
load, another method with a simpler definition is proposed. The interpretations of causal strength given by 
these two methods are shown to be consistent with that given by Granger causality, and the frequency 
distribution is reasonable and informative. Several simulation examples are demonstrated to illustrate the 
performance of these two methods. 
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1. INTRODUCTION 

Industrial process systems are often huge and complex, 
resulting in the requirement of a lot of sensors to measure and 
monitor the process variables. The causal relationship among 
time series of measurements is frequently unknown but 
helpful for a deeper understanding of the system structure, 
which is of great use for analysis and design of the process, 
such as fault diagnosis, modelling and alarm management 
(Miao et al., 2011; Yang and Xiao, 2012). 

Several methods of causality identification have been 
proposed and widely used in many scientific and engineering 
areas for the recent forty years (Fan et al., 2013; Duan et al., 
2013; Roebroeck et al., 2005). These methods can be 
classified into time domain methods, frequency domain 
methods, and information theory methods (Landman and 
Jounela, 2013). 

Granger adopted and formalized Wiener’s idea of causality 
(Wiener, 1956) in the context of linear vector auto regressive 
(VAR) models (Lutkepohl, 2005) and proposed a definition 
(later named “Granger causality”) in the time domain 
(Granger, 1963a). Geweke (1982) then proposed a 
conditional Granger causality for multivariate processes to 
determine whether the influence between two time series is 
direct or indirect (mediated by a third one). In addition to 
these time domain methods, several frequency domain 
methods have also been developed, including frequency 
domain Granger causality (Geweke, 1984), directed transfer 
function (DTF) (Kaminski and Blinowska, 1991), and partial 
directed coherence (PDC) (Baccala and Sameshima, 2001). 
These frequency domain methods can further provide a 

measure of causality in the frequency domain through 
plotting the causality distribution with ω  varying from 0 to 
π . Information theory methods are represented by transfer 
entropy (Schreiber, 2000). 

On the other hand, frequency domain Granger causality is 
derived from the concept of power spectral (Geweke, 1984) 

and DTF is a measure of transferred energy (Kaminski and 
Blinowska, 1991). Unlike these methods, the interpretation of 
PDC is still not clear. It has been shown that PDC only aids 
in the structural information of the process and is able to 
reflect the existence of direct causality qualitatively (Gigi and 
Tangirala, 2010; Schelter et.al., 2009). The following PDC-
related issues still need further discussions: (i) PDC provides 
no quantitative information to quantify the causal strength. 
Baccala and Sameshima (2001) stated that PDC has the 
ability to rank the relative interaction strength with respect to 
a given source signal because of normalization, but did not 
give a quantitative way to calculate the interaction strength or 
provide demonstrations. Zhang et al. (2013) discussed this 
issue through examples. (ii) Although PDC describes a 
causality distribution with ω  varying from 0 to π  in the 
frequency domain, the interpretation of causality over a 
specific frequency is challenging and still unexplained. It is 
an intuitive guess that the distribution over frequency 
represents how the strength of causal influence varies, yet 
Zhang et al. (2013) provided a counter example. 

To deal with the above issues, we will propose two frequency 
domain causality analysis methods in the hypothesis testing 
framework by employing the so-called renormalized PDC 
(Schelter et al., 2009) and another statistical test (Schelter et 
al., 2005). Both methods have statistical properties similar to 
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that of Granger causality. We show that the interpretation of 
causal strength based on the above two methods are 
consistent with that of Granger causality and transfer entropy, 
and the distribution over frequency is reasonable. 

The rest of this paper is organized as follows. Section 2 
provides a brief introduction to partial directed coherence and 
the renormalized PDC, and discusses two PDC-related issues 
through examples. In Section 3, we first interpret the Granger 
causality based causal strength measurement in the 
framework of hypothesis testing, then based on such 
interpretation, we give two frequency domain causality 
analysis methods in the same framework. Section 4 evaluates 
the performance of the two methods based on simulation 
examples, followed by concluding remarks in Section 5. 

2. BRIEF INTRODUCTION TO PDC 

We first introduce the concept of partial directed coherence 
and a few crucial but unaddressed issues related to PDC. 
Then a renormalized PDC proposed by Schelter et al. (2009) 
will be introduced. 

2.1 Definition of PDC 

Assume that there are n jointly stationary time series 
1 2( ), ( ),..., ( )nx k x k x k . 

As for partial directed coherence (PDC), a jointly stationary 
multivariate process can be described by an n-dimensional 
restraint VAR model (1) as follows, in which the model order 
and coefficients ˆ ( )( 1,..., )ija r r p=  are estimated under a 
certain criterion, such as least squares, based on these n time 
series. 
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Apply Z transform to (1), and let 1 jz e ω− −= , then the 
frequency response of process (1) can be written as  

ˆ ( ) ( ) ( )ω ω ω=A X E                           (2) 
where 

jˆ ˆ( ) ( ) r
ij ij

r
A a r e ωω −= − , jˆ ˆ( ) 1 ( ) r

ii ii
r

A a r e ωω −= −
       

 

1 2( ) [ ( ) ( ) ... ( )]nx x xω ω ω ω Τ=       X  
1 2ˆ ˆ ˆ( ) [ ( ) ( ) ... ( )]ne e eω ω ω ω Τ=       E  

The estimated PDC ˆ| ( ) |ijπ ω  is defined to reflect the 
causality from jx  (source node) to ix  (sink node) as 
(Baccala and Sameshima, 2001) 
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in which the following normalization property holds. 
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π ω
=

=             (4) 

and ˆ| ( ) |ijπ ω  is not zero when ix  is influenced by jx  
directly. 

2.2 Discussion on  PDC-related issues 

We now discuss the above issues (i) and (ii) in details 
through simulation examples. 

(i) PDC only reflects the existence of direct causality 
qualitatively but cannot measure the strength. 

Baccala and Sameshima (2001) stated that PDC has the 
ability to rank the relative interaction strength with respect to 
a given signal source because of the normalization in (3) 
without any formula to calculate the interaction strength or 
any demonstrations. 

We use the following simulation example given by Zhang et 
al. (2013) to show the aforementioned limitations of PDC, in 
which the Granger causality is used as a reference. 

Remark 1:  
The reason why Granger causality is used as the reference is 
that the interpretation of causal strength based on Granger 
causality is explicit (Barrett and Seth, 2009). The definition 
of Granger causality is the formalization of Wiener’s idea, 
which means that 

j ix xF →  reflects the improvement of the 
precision of prediction (Wiener, 1956; Barrett and Seth, 
2009).. Furthermore, Barrett and Seth (2009) noted that for 
Gaussian variables, Granger causality and transfer entropy 
are entirely equivalent, that is 

2y x y xF → →= ϒ                              (5) 

where y xF → and y x→ϒ  denote the Granger causality and 
transfer entropy from y  to x , respectively. Therefore, 
Granger causality in fact reflects an information-theoretic 
measure of causality (Barrett and Seth, 2009) and the causal 
strength from jx  to ix  based on Granger causality measures 
how much jx  contributes to improving the precision of 
prediction of ix . 

Example 1： 
Consider a second-order process as follows, where 

( )( 1,...,5)ie k i =  are Gaussian noises with the covariance 
matrix set to be identity, and 5000 data points have been 
simulated. 
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Since no formula was given by Baccala and Sameshima 
(2001) to calculate the strength based on PDC ˆ| ( ) |ijπ ω , we 

use PDC 0
( ) | ( ) | dj i ijS x x

π
π ω ω→ =    and

 PDC ( )j iS x x→ =  
2

0
( ) dij

π
π ω ω  to measure the causal strength from jx  to ix , 

which are common indices to measure power in many 
scientific areas, such as signal processing .  

We consider the causal strengths from 1x  to both 3x  and 4x , 
i.e. PDC 1 3( )S x x→ and PDC 1 4( )S x x→ , which are given in Table 1. 

It can be seen that PDC 1 3( )S x x→  is slightly less than 
PDC 1 4( )S x x→ , which shows that the interaction strength from 

1x  to 4x  is stronger than that from 1x  to 3x  according to the 
viewpoint of Baccala and Sameshima (2001), that is, PDC 
has the ability to rank the relative interaction strength with 
respect to a given signal source. 

Table 1. Causal strengths PDC 1 3( )S x x→  and PDC 1 4( )S x x→  

Definition 13S  14S  

PDC 0
( ) | ( ) | dj i ijS x x

π
π ω ω→ =    0.8537 0.8598 

2

PDC 0
( ) | ( ) | dj i ijS x x

π
π ω ω→ =   0.2699 0.3490 

For comparison, the Granger causalities 
1 3x xF →  

and 

1 4x xF →  are given in Table 2 as a reference. 

Table 2. Results of 
1 3x xF →  and 

1 4x xF →  

1 3x xF →  
1 4x xF →  Threshold

0.2099 0.1088 0.0027 

It can be seen that 
1 4 1 3x x x xF F→ →< , which shows that the 

causal strength from 1x  to 3x  is stronger than that from 1x  to 

4x . Therefore the conclusion about the interaction strength 
given by PDC contradicts that given by Granger causality. 
Since Granger causality has the ability to reflect the strength 
between different pairs of time series according to Remark 1, 
we have to conclude that PDC only reflects the existence of 
direct causality qualitatively but cannot measure the strength. 

(ii)The interpretation of the distribution of PDC in the 
frequency domain is still unexplained. 

The expression of PDC (3) is directly related to the 
frequencyω , which means that, compared to the time domain 
methods, PDC ought to further provide a detailed measure of 
causality with respect to different frequencies. It is an 
intuitive guess that the distribution over frequency represents 
how the strength of causal influence varies. The following 
example discussed by Zhang et al. (2013), however, provides 
a counter example. 

Example 2： 
Consider two first-order VAR processes as follows: 
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( ) 0.3 ( 1) 0.45 ( 1) 0.3 ( 1) ( )
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The corresponding PDC calculated based on simulation data 
are given in Fig. 1, which are sorted as matrix plots, where 

ˆ| ( ) |ijπ ω  is displayed in the i th row and the j th column. 
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(b) PDC of process (8) 

Fig. 1. Plots to show the disadvantages of PDC 

There exist some interesting differences between the results 
of the two processes. Equations (7) and (8), where the two 
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models are almost the same except the sign of the coefficient 
of 5( 1)x k − in the last equations (the equations about the 
evolution of 5( )x k ). It is obvious that whether the coefficient 
of 5( 1)x k −  is positive or negative does not affect the 
qualitative causal relationship, because it only affects the 
dynamics of 5x  itself. However, the PDC distributions in Fig. 
1 appear quite different for 5ˆ| ( 5) |i iπ ≠ : the value of 

5ˆ| ( 5) |i iπ ≠  monotonically decreases in Fig. 1(a), while in Fig. 
1(b) 5ˆ| ( 5) |i iπ ≠  increases as ω  grows. It has been 
demonstrated that the above difference is caused by 
normalization in (3) by Zhang et al. (2013). 

This example shows that the distribution of PDC cannot 
reveal the strength of causal influence with ω  varying from 0 
to π  and its implication in the frequency domain seems 
unexplained. 

2.3 Brief Introduction to Renormalized PDC 

Baccala and Sameshima (2001) asserted that PDC reflects the 
relative rather than the absolute strength of influence because 
of the normalization, making the causality given by PDC be 
influenced by the number of other signals that are influenced 
by the same source signals, that is, the causality j ix x→  may 
change if more (or less) signals are influenced by jx . To 
tackle this disadvantage, a renormalized PDC (RPDC) was 
proposed by Schelter et al. (2009), which avoids 
normalization in its definition. 

Since we will utilize a statistical property of RPDC in this 
paper, we next give a brief introduction to RPDC. 

Notation 1: 
Let ,i j∗  denote the element in the i th row and the j th 
column of matrix ∗ . 

Let Σ  and R  denote the covariance matrices of the noise 
1[ ( ),..., ( )]e( ) T

nk e k e k=  and process 1[ ( ),..., ( )]x( ) T
nk x k x k=  

respectively. Define 1H R−  and 
ˆRe( ( ))ˆ ( ) ˆIm( ( ))

X ij
ij

ij

A

A

ω
ω

ω

 
 
 
 

                          (9) 

, 1

cos( )cos( ) cos( )sin( )
( ) ( , )

sin( )cos( ) sin( )sin( )
V

p

ij jj ii
t l

t l t l
H t l

t l t l
ω ω ω ω

ω
ω ω ω ω=

 
Σ  

 
   (10) 

The index RPDC is defined as (Schelter et al. 2009) 
1ˆ ˆ ˆ ˆ( ) ( ) ' ( ) ( )X V Xij ij ij ijNλ ω ω ω ω−            (11) 

where N  is the number of data points and ˆ ( )Vij ω , in which 
Σ  and R  need to be estimated based on e( )k  and x( )k , is 
an estimate of ( )ij ωV . 

Schelter et al. (2009) provided the following important 
proposition. 

Proposition 1(Schelter et al., 2009): 

Under the null hypothesis of 2| ( ) | 0ijA ω = , for 2p ≥  and 

0 modω π≠   , the RPDC ˆ ( )ijλ ω  follows an approximate 2χ  
distribution with two degrees of freedom as N  tends to 
infinity. When 1p =  or 0 modω π=   , the RPDC 

ˆ ( )ijλ ω  

with 1ˆ ( )ij ω −V  being the generalized inverse of ˆ ( )ij ωV  is 

approximately a 2χ  distribution with one degree of freedom 
as N  tends to infinity. 

3. TWO FREQUENCY DOMAIN CAUSALITY 
ANALYSIS METHODS IN HYPOTHESIS TESTING 

FRAMEWORK 

As mentioned in Section 2.2, two PDC-related issues still 
remain unaddressed. However, Granger causality as a time 
domain method can shed some light for us to deal with these 
issues. We will firstly point out that Granger causality can be 
explained as a hypothesis test problem in essence, and the 
value of 

j ix xF →   actually corresponds to an index in the 
hypothesis test problem. Motivated by this, two frequency 
domain causality analysis methods will be proposed with the 
assistance of RPDC (Schelter et al., 2009) and another 
statistical test (Schelter et al., 2005), respectively. 

3.1 Interpretation of Granger Causality Based Causal 
Strength Measurement in the Hypothesis Testing Framework 

It has been stated that under the null hypothesis of 0
j ix xF → = , 

N times the Granger causality 
j ix xNF → is a 2χ distribution 

with p  degree of freedom as N  tends to infinity (Whittle, 
1953; Granger, 1963b), where N  is the number of data 
points and p denotes the model order.  

Therefore the procedure of using Granger causality to detect 
the existence of causality can be interpreted in the following 
framework of hypothesis test. First set a significance level 0α : 

{ }0

2
0 ,Prob

j ix x pNF αα χ→= >                 (12) 
which in fact determines the false alarm rate under the null 
hypothesis of 0

j ix xF → = . If 
0

2
,

ˆ /
j ix x pF Nαχ→ > , the null 

hypothesis should be rejected (Li, 2006). 

When Granger causality is used to measure the strength 
between each pair of time series, it has been concluded that a 
larger ˆ

j ix xF →  implies a stronger causal strength from jx  to 

ix , as explained in Remark 1. In the following, we will 
interpret its meaning in the framework of hypothesis test, 
which forms a basis for the discussion in Section 3.2. 

Each specific estimated 0ˆ
j ix xF →  corresponds to a probability 

which represents the probability that 
j ix xF → takes value in a 

small neighborhood of 0ˆ
j ix xF →  under the null hypothesis of 

0
j ix xF → = . Since the probability density decreases along with 
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j ix xF → , the larger 0ˆ
j ix xF →  is, the smaller probability that it 

happens under the null hypothesis is. Thus using Granger 
causality to measure the causal strength from jx  to ix  has its 
physical meaning in the sense of hypothesis testing. 

3.2 Proposed Method 1: Frequency Domain Causality 
Analysis Based on RPDC 

According to the discussion in Remark 1 and Section 3.1, 
Granger causality 

j ix xF → , which follows a 2χ distribution, is 
a proper tool to measure the causality in the time domain, and 
the way of applying Granger causality in causality analysis 
can be interpreted as a typical hypothesis test. 

Considering that RPDC defined in the frequency domain is 
also approximately a 2χ  distribution according to 
Proposition 1, its statistical property offers us a good way to 
deal with PDC-related issues (i) and (ii). 

In this section, similar to Granger causality based causality 
analysis, a frequency domain causality analysis method will 
be presented. We will apply RPDC as a tool to perform 
causality analysis in the frequency domain, including 
measuring the causal strength at different frequencies and 
measuring that between different pairs of time series, to solve 
the aforementioned issues of PDC. 

Remark 2: 
It is worth noting that RPDC defined in the frequency domain 
was proposed by Schelter et al. (2009) to tackle another 
disadvantage of PDC rather than issues (i) and (ii), that is, the 
causality given by PDC will be influenced by the number of 
other signals that are influenced by the same source signals. 

Similar to the idea in Section 3.1, the causal strength from jx  
to ix  at frequency ω (with ω  varying from 0 to π ) is 
defined as 

1
method1

ˆ ˆ ˆ ˆ( | ) ( ) ( ) ' ( ) ( )X V Xj i ij ij ij ijS x x Nω λ ω ω ω ω−→ =     (13)          

If method1( | )j iS x x ω→  exceeds the threshold, which is set to 
be 

0

2
2,αχ  for model order 2p ≥  or 

0

2
1,αχ  for 1p = ( 0α  is a 

given significance level that can be commonly chosen as a 
small value, such as 0.05 (Schelter et al., 2009)), it is 
concluded that there exists evident causal influence from jx  
to ix  at frequency ω . 

Definition (13) measures the existence and strength of 
causality between a given pair of time series at a certain 
frequency. Similar to the analysis of Granger causality in 
Section 3.1, a larger estimated 0

method1( | )j iS x x ω→  

corresponds to a smaller probability that ˆ ( )ijλ ω  takes value 

in a small neighborhood of 0ˆ ( )ijλ ω  under the null hypothesis 
in its hypothesis test problem, which means that if 

method1 1( | )j iS x x ω→ > method1 2( | ) thresholdj iS x x ω→ > , the 

causal strength from jx  to ix  at frequency 1ω  is stronger 
than that at frequency 2ω . Thus in this sense, the distribution 
of method1( | )j iS x x ω→  is able to describe the frequency 
distribution of causal strength. 

In addition, the causal strength from jx  to ix  based on the 
causality analysis method is defined as 

method1 0

1 ˆ( ) ( )d
2j i ijS x x

π
λ ω ω

π
→                   (14) 

If method1( )j iS x x→  exceeds the threshold, which is set to be
 

0

2
2,0

1 d
2

π

αχ ω
π   for 2p ≥  or 

0

2
1,0

1 d
2

π

αχ ω
π  for 1p = , we can 

conclude that there exists evident causal influence from jx  to 

ix . 

Definition (14), which takes the whole frequency domain into 
consideration, measures the existence and strength of the 
causality between each pair of time series. Although 

method1( )j iS x x→  does not follow a 2χ  distribution, it is still 
intuitive that if method1( )j iS x x→ > method1( )b aS x x→ , the 
causal strength from jx  to ix  is stronger than that from bx  
to ax . 

In Section 5, simulation examples will be given to show the 
effectiveness and advantages of this method. 

3.2 Proposed Method 2: Frequency Domain Causality 
Analysis Based on 2ˆ ˆ| ( ) | / ( )ij ijN A Cω ω  

The definitions in (13) and (14) are somewhat complex and 
lead to a relative high computational load. In this section, we 
will replace RPDC with a simpler statistic test given by 
Schelter et al. (2005), which also follows a 2χ  distribution, 
to achieve a lower computational load. 

We first introduce this statistical test. 

Proposition 2 (Schelter et al., 2005): 
Under the null hypothesis of 2| ( ) | 0ijA ω = , the distribution of 

2ˆ ˆ| ( ) | / ( )ij ijN A Cω ω  is approximately a 2χ  distribution with 

one degree of freedom. Here, ˆ ( )ijC ω  is the estimate of 
( )ijC ω  defined as 

, 1
( ) [ ( , )(cos( )cos( ) sin( )sin( ))]

p

ij ii jj
t l

C H t l t l t lω ω ω ω ω
=

= Σ +  

where iiΣ  and ( , )jjH t l  have the same meaning as in (10). 

Proposition 2 was used by Schelter et al. (2009) to propose a 
significance level for testing nonzero PDC at a certain 
frequency in order to solve the over fitting problems in model 
estimation. 
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In this section, by replacing the RPDC statistic test in (13) 
and (14) with 2ˆ ˆ| ( ) | / ( )ij ijN A Cω ω , we give the following  
causality analysis method which can lead to a lower 
computational load. 

The causal strength from jx  to ix  at frequency ω (with ω  
varying from 0 to π ) is defined as 

2
method2

ˆ ˆˆ( | ) ( ) | ( ) | / ( )j i ij ij ijS x x N A Cω γ ω ω ω→ =      (15) 

If method2 ( | )j iS x x ω→  exceeds the threshold, which is set to 
be 

0

2
1,αχ ( 0α  is a given significance level that can be 

commonly chosen as a small value, such as 0.05), it is 
concluded that there exists causal influence from jx  to ix  
at frequency ω . 

In addition, the causal strength from jx  to ix  based on this 
method is defined as 

method2 0

1 ˆ( ) ( )d
2j i ijS x x

π
γ ω ω

π
→               (16) 

If method2 ( )j iS x x→  exceeds the threshold, which is set to be 

0

2
1,0

1 d
2

π

αχ ω
π  , we conclude that there exists causal influence 

from jx  to ix . 

The physical meanings of this method are similar to those 
given in Section 3.2, thus being omitted here. 

Since the definitions are simper with scalar operation, the 
method has a lower computational load.  

Remark 3: 
Although ˆ ( )ijC ω  in (15) and (16), in which Σ  and R  need 
to be estimated based on e( )k  and x( )k , is an estimate of 
true ( )ijC ω , there exists the same approximation when 
estimating ( )ijV ω  in method 1 given in Section 3. It will be 
shown that the performance of this method is as good as that 
of method 1. 

4. SIMULATION STUDY 

In this section, based on several simulation examples, the two 
frequency domain causality analysis methods given in 
Section 3 are shown to have the ability to measure the 
causality in the frequency domain.  

4.1 Example 1 

Consider the second-order process (6) given in section 2.2. 
According to (6), the real causal relationship among the five 
variables is shown in Fig. 2. 

The causal strengths between each pair of time series based 
on Granger causality and the two methods, i.e. 

j ix xF → , 

method1( )j iS x x→ , and method2 ( )j iS x x→ , are calculated and 

summarized in Table 3(a), 3(b), and 3(c), respectively. The 
strength from jx  to ix  which exceeds the threshold is given 
in the i th row and the j th column (the blank implies that 
the calculated strength does not exceed the threshold, leading 
to the conclusion of no causality). 

 

Fig. 2 Causal relationship among the five variables 

Table 3 Causal strengths in process (6) 

(a) Causal strengths from jx  to ix  based on 
j ix xF →  

  0.2002   

    0.3932

0.2099    0.3056

0.1088 0.1175   0.0998

 0.1951    

(b) Causal strengths from jx  to ix  based on method1( )j iS x x→  
  24.5012   

    39.2280

27.7010    32.0942

16.2684 19.6765   15.7450
 22.9304    

(b) Causal strengths from jx  to ix  based on method2 ( )j iS x x→  

  33.0849   

    43.8977

38.8698    39.5011

22.1023 26.9955   19.9758

 32.8947    

It can be seen that the two methods proposed in this paper 
can detect the existence of causality in the process correctly. 
Unlike PDC shown in Table 1, the calculated strengths based 
on them are consistent with that given by Granger causality, 
which means that a larger 

j ix xF →  corresponds to a 

larger method1( )j iS x x→  and a larger method2 ( )j iS x x→ .  

Hence both of the two methods presented in this paper can 
deal with issue (i) mentioned in Section 2.2, because they are 
able to detect the existence of direct causality among a set of 
time series correctly, and can rank the causal strengths. 

4.2 Example 2 

Consider the two first-order VAR processes (7) and (8) given 
in Section 2.2. 
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The corresponding method1( | )j iS x x ω→  are given in Figs. 3(a) 

and 3(b) and method2 ( | )j iS x x ω→  are given in Figs. 4(a) and 
4(b), respectively. Unlike the distributions of PDC given in 
Fig. 1, the distributions of method1( | )j iS x x ω→  or 

method2 ( | )j iS x x ω→  of these two processes are roughly 
similar as expected. Especially, in Fig. 1, the PDC 
distributions appear quite different for 5ˆ| ( 5) |i iπ ≠ , that is, 

5ˆ| ( 5) |i iπ ≠  monotonically decreases in Fig. 1(a), while in Fig. 
1(b) 5ˆ| ( 5) |i iπ ≠  increases as ω  grows. In Fig. 3 and Fig. 4, 
however, the distributions of method1 5( | )iS x x ω→  and 

method2 5( | )iS x x ω→  of the two processes are similar. 
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(a) method1( | )j iS x x ω→  of process (7) 
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Frequency ω (0 toπ )  
(b) method1( | )j iS x x ω→  of process (8) 

Fig. 3 Distribution of method1( | )j iS x x ω→  over frequency 
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Frequency ω (0 toπ ) 
(a) method2 ( | )j iS x x ω→  of process (7) 
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Frequency ω (0 toπ ) 
(b) method1( | )j iS x x ω→  of process (8) 

Fig. 4 Distribution of method2 ( | )j iS x x ω→  over frequency 

The example shows that the interpretation of distribution of 
method1( | )j iS x x ω→  or method2 ( | )j iS x x ω→  over frequency is 

more reasonable than that of PDC. 

4.3 Example 3 

We further discuss the interpretation of the distributions of 
method1( | )j iS x x ω→  or method2 ( | )j iS x x ω→  in the frequency 

domain. 

Consider a second-order VAR process as follows: 
1 1 1

2 2 1

2 2 2 2

( ) 0.3 ( 1) 0.15 ( 2)
0.4 ( 1) 0.2 ( 2) ( )

( ) 0.2 ( 1) 0.2 ( 2) ( )

x k x k x k
x k x k e k

x k x k x k e k

= − − −
           + − + − +
 = − + − +     

    (17) 

where ( )( 1,2)ie k i =  are Gaussian noises with the covariance 
matrix of the noises set to be identity, and 5000 data points 
have been simulated. 

Fig.5 gives the corresponding calculated method1( | )j iS x x ω→  

and method2 ( | )j iS x x ω→ , of which the values both appear to 
be maximal around 0.4 π . 
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(a)                                                 (b) 
Fig. 5. Results of the two methods 

In order to discuss the interpretation of these distributions the 
frequency domain, the following second-order process (18) is 
used 

1 1 1 2

2 1

2 2 2 2

( ) 0.3 ( 1) 0.15 ( 2) 0.4 ( 1)
0.2 ( 2) ( )

( ) 0.2 ( 1) 0.2 ( 2) ( ) sin( )

x k x k x k x k
x k e k

x k x k x k e k kω

= − − − + −
            + − +
 = − + − + +

   (18)    

where ( )( 1,2)ie k i =  are Gaussian noises and the covariance 
matrix of the noises is set to be identity, too.  
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We choose ω  from 0 to π  with interval 0.01π  and 
calculate Granger causality 

2 1x xF →  at each frequency. The 
averaged 

2 1x xF →  of 50 random simulation experiments at each 
frequency is given in Fig. 6. 

The distribution of Granger causality 
2 1x xF →  in the frequency 

domain is consistent with the above two and the maximum of 
2 1x xF →  is also at frequency around 0.4 π .  

0 10 20 30 40 50 60 70 80 90 100
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

 
Frequency / 0.01ω π (0 to π ) 

Fig. 6  Averaged 
2 1x xF →  versus frequency 

The above examples 2 and 3 show that the distributions of 
the two methods given in this paper are reasonable and can 
reveal the strength, which reflects how much jx  contributes 
to improving the precision of prediction of ix , at different 
frequencies. 

5. CONCLUDING REMARKS 

In this paper, we have proposed two frequency domain 
causality analysis methods in the hypothesis testing 
framework to solve the two existing issues in PDC. The main 
contribution of the two methods includes: (i) An index to 
quantify the causal strength and the threshold are defined; 
thus the methods can not only detect the causality among the 
time series, but also have the ability to measure the causal 
strength. The interpretation of causal strength is shown to be 
consistent with that of Granger causality and transfer entropy. 
(ii) The distribution over frequency is meaningful and can 
reveal how the causal strength varies. 
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