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Abstract: The reliable detection of faults located in the control loop of safety critical systems is
an important aspect in reducing potential hazards induced by possible faults. Any fault detection
and diagnosis system for a safety critical system has to fulfill strong safety specifications which
can be expressed in terms of different performance criteria as detection time performance,
missed detection rate, or false alarm rate. To satisfy all design requirements in the presence
of unknown external signals and parametric uncertainties a tuning of the free parameters in the
fault detection and diagnosis system often becomes necessary after the design of residual filters.
In this paper an advanced approach to tune these free parameters based on a multi objective
parameter optimization setup is presented.
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1. INTRODUCTION

Typical challenging problems in today’s advanced control
systems designs for safety critical systems as cars and
aircraft are trying to reduce the human workload, ensuring
best handling qualities simultaneously with increased pas-
senger comfort. Despite a high system complexity, the fault
tolerant operation of such systems has to be guaranteed
over the whole operation range in presence of many pos-
sible unexpected events and inherent uncertainties in the
operation environment. To increase system autonomy, the
industry traditionally uses physical redundancy of e.g. ac-
tuators and sensors. However, this hardware-redundancy
based fault detection and diagnosis (FDD) approach is
becoming increasingly problematic when used in conjunc-
tion with the many innovative technical solutions being
developed to satisfy the greener imperatives demanded by
the society. Hardware redundancy leads to an increased
weight and hence, to an increased need of energy driving
any movable system. In recent years, to alleviate this
fault diagnosis bottleneck, efforts have been invested to
develop FDD systems which strongly rely on advanced
model based FDD techniques (e.g., Goupil [2010]).

Any FDD system of a safety critical system must fulfill
strong performance specifications which can be expressed
in terms of several criteria. Typical performance specifica-
tions are the detection time performance (DTP), missed
detection rate (MDR), and false alarm rate (FAR). Espe-
cially for safety critical systems no false alarms and missed
detections are required. Commonly in the first phase of the
FDD system design a residual filter is designed using well-
known and established design methods. Due to nonlinear-
ities, unknown inputs etc., additional filter functions and
thresholds have to be introduced in the FDD system. The
available free parameters are then tuned by trial and error

and numerous simulations to fulfill these specifications in
a second phase of the FDD system design.

Systematic approaches to calculate thresholds for linear
models are available in literature (e.g., Gertler [1998]).
However, this approach often turns out to be too conser-
vative, leading to a degradation of the FDD system. This
paper proposes an alternative approach for the selection
of the values of the free parameters, namely based on
worst case optimization techniques. Some basic criteria for
the FDD system optimization have been presented by the
author in previous contributions for different applications
(Ossmann and Varga [2011], Varga et al. [2011], Varga
and Ossmann [2012]). This paper presents an extended list
of criteria together with relevant optimization problems
to provide a complete overview of possible optimization
setups for FDD systems of safety critical systems.

The main challenge of an optimization based design and
analysis of FDD systems is to turn the discussed perfor-
mance specifications into computable optimization crite-
ria, which is the main contribution of this paper. In section
2 the general structure of a FDD system is given, including
the introduction of free parameters for the optimization.
In section 3 the performance criteria are presented, while
in section 4 the integrated tuning approach using the
presented criteria is described. In section 5 the presented
methodology is applied to a modern aircraft actuator,
which is simulated in a fully nonlinear aircraft model.

2. FDD SYSTEM STRUCTURE

In this section the general structure of an FDD system and
its subparts is presented. For a reduced complexity a FDD
system with a scalar residual signal is discussed. However,
the approach presented in the paper can easily be adapted
for the MIMO case. A typical FDD system structure for a
nonlinear system

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8570



˙̃x = F (ũ, x̃, π, d, f)
ỹ = G(ũ, x̃, π, d, f),

(1)

with the control input vector ũ, the state vector x̃, the
output vector ỹ, the disturbances d, the fault vector f
and the parameter vector π is depicted in Fig. 1 (Gertler
[1998]). The underlying system can be a single subsystem
as an actuators or sensor, or the whole closed loop system,
depending on the location of the faults to be detected and
the availability of sensor signals. The FDD system usually
includes a residual generator to generate the residual signal
r, a residual evaluator to compute the evaluation signal θ
and a threshold-based decision making block to generate
the binary decision signal ι. The detector uses as inputs
the measurement signals y and the control input signals u.
In what follows a description of the functionality of these
blocks is given.

System
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Fig. 1. Typical FDD system structure

2.1 Residual generator

A linear residual generator processes the measurable sys-
tem outputs ỹ(t) and inputs ũ(t) to generate the residual
signals r(t) which serve for decision making on the pres-
ence or absence of faults. To design such a filter the fault
detection problem has to be solved. Let x̃0, ỹ0 and ũ0 be
an equilibrium point corresponding to a fixed π = π0, such
that

0 = F (ũ0, x̃0, π0, 0, 0)
ỹ0 = G(ũ0, x̃0, π0, 0, 0).

(2)

Around this point the linearized additive fault model can
be described by the input-output form

y(s) = Gu(s)u(s) +Gd(s)d(s) +Gf (s)f(s), (3)

where y(s), u(s), d(s) and f(s) are Laplace-transformed
vectors of the p-dimensional system output vector y(t) =
ỹ − ỹ0, mu-dimensional input vector u(t) = ũ − ũ0, md-
dimensional input vector d(t) and mf -dimensional input
vector f(t). Gu(s), Gd(s) and Gf (s) are the transfer-
function matrices (TFM) from the control inputs to out-
puts, disturbance inputs to outputs and fault inputs to
outputs respectively. The input-output form of a residual
generator for this system is given by

r(s) = Q(s)

[
y(s)
u(s)

]
, (4)

whereQ(s) is in the scalar output case a 1×(p+mu) vector.
This vector has to be proper and stable to have a physically
realizable filter. The residual signal r(s) generally depends
via the system outputs y(s) of all system inputs u(s),
d(s) and f(s). The residual generation system, obtained
by replacing y(s) in (4) by its expression in (3), is given
by

r(s) = Ru(s)u(s) +Rd(s)d(s) +Rf (s)f(s) , (5)

where
[Ru(s) |Rd(s) |Rf (s) ] := Q(s)Ge(s) (6)

with

Ge(s) :=

[
Gu(s) Gd(s) Gf (s)

1 0 0

]
. (7)

The choice of Q(s) guarantees an exact decoupling of all
control- and disturbance inputs in the equilibrium point
for the linear system (3), thus Ru(s) = 0 and Rd(s) = 0,
while for f 6= 0 the residual signal r(t) is asymptoti-
cally bounded, thus Rf (0) = const (Varga [2008]). This
problem is a widely studied topic in literature. Methods
and its applications based on parity spaces (Vanek et al.
[2012]), on Kalman filters (Efimov et al. [2012]), on H∞
methods (Marcos [2012]) or nullspace methods (Varga
[2008]) amongst others are available. In this paper it is
assumed that the fault detection problem is solved for the
nominal, linear case and the free parameters are optimized
to improve the FDD system performance in case of nonlin-
earities of the underlying system, unknown disturbances,
parameter variations, etc. The exact decoupling of u and d
is only achieved for the nominal, linearized system. In all
other cases the residual signal r will never be exactly zero.
At this point the optimization based approach, described
in this paper comes into play.

2.2 Residual evaluation and decision making

To decrease the sensitivity of the FDD system in the fault
free case, it is often favorable to evaluate the residual
signal over a certain period of time. This evaluation of
the residual signal requires the computation of a measure
of the residual signal energy, for which the 2-norm of
the signal is usually an appropriate choice. The so called
Narendra signal evaluation scheme as an approximation of
the 2-norm in the form

θ(t) = α|r(t)|+ β

∫ t

0

e−γ(t−τ)|r(τ)|dτ, (8)

can be used. The filter parameters α ≥ 0 and β ≥ 0
represent weights for instantaneous and long-term values,
respectively, and γ > 0 is the forgetting factor. The
evaluation signal θ(t) is compared to a specific threshold
Jth in the decision making process to determine the
decision signal ι using the decision logic

θ(t) < Jth ⇒ ι(t) = 0 ⇒ no fault
θ(t) ≥ Jth ⇒ ι(t) = 1 ⇒ fault

(9)

The appropriate selection of the values of the free parame-
ters α, β or γ, together with an appropriate threshold Jth
essentially influences the performance of the FDD system.

3. FDD PERFORMANCE CRITERIA

In this section, different relevant performance criteria
which can be used for optimal tuning of FDD systems
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but also their a posteriori analysis Ossmann and Varga
[2011] are defined. These criteria depend on the values
of the free parameters in the architecture of the FDD
system. This can be parameters of the residual generator,
tolerances and weights of the evaluation filters. We denote
these parameters by a vector η. For the definition of
the criteria, we employ the residual evaluation signal θ(t)
which generally depends on the time histories of the signals
u, d, f , the values of the plant parameters π and FDD
system parameters η. Therefore, in what follows, we make
this dependence explicit by denoting it as θ(u, d, f, π, η, t)
and its maximum value over time by ||θ(u, d, f, π, η, t)||∞.

3.1 Robustness criterion

For safety critical systems the aim is always to guarantee
a minimum or even no false alarms as they may e.g.
unnecessarily increase the workload of the human operator
and distract him or her from safely operating the system.
In the absence of faults we can define the false alarm bound

Jfth as

Jfth(η) = sup
π ∈ Π,
u ∈ U ,
d ∈ D

||θ(u, d, 0, π, η, t)||∞. (10)

Instead of arbitrary signals u and d, in practical appli-
cations it is sufficient to use bounded input signals in
a given finite class U and bounded disturbance signals
in a finite class D. The predefined classes U and D are
typical maneuvers and disturbance signals commonly used
to validate the controllers in nonlinear simulations. The
vector π is assumed to belong to a bounded region Π ⊂ P
of the np-dimensional parameter space P. The value of

Jfth(η) represents an upper bound for the worst-case mag-
nitude of the residual evaluation signal θ in the absence of

faults. Choosing a threshold Jth = Jfth ensures the absence
of false alarms, but also limits the minimum detectable
fault amplitude. For a desired finite set F of bounded
fault signals of given magnitudes which are selected to be
detected within a required detection time td, the so called
detectability bound can be defined as

Jdth(η,Φ) = inf
π ∈ Π,
f ∈ F ,
t ≤ td

||θ(0, 0, f, π, η, t)||∞. (11)

Note that the detection times for different fault signals in
F may even be different. The value of Jth(η,Φ) represents
a lower bound for the least magnitude of the residual
evaluation signal θ for fault signals of amplitude Φ. Setting
the threshold Jth = Jdth will provide the detection of any
fault with an amplitude larger than Φ.

For an ideal design, we have Jfth ≤ Jdth, thus Jfth/J
d
th ≤

1, enabling a selection of any threshold Jfth ≤ Jth ≤
Jdth, ensuring the detection of the desired minimum fault
amplitude and no false alarms. It is reasonable to select

an additional gap ε ≥ 0 so that (1 + ε)Jfth ≤ Jth ≤ (1 −
ε)Jdth to account for any effects which have not been
considered in the design phase, as e.g. modeling errors,
unknown disturbances, uncertainties and noise. If for a

certain η we have that Jfth > Jdth, the selection of any Jth
leads inevitably to the violation of one of the two defined

conditions and either missed detections or false alarms
will be the result. In this we suggest to select Jth = Jfth
for safety critical systems, ensuring no false alarms, which
could unnecessarily distract the operator of the system. In
this case missed detections might appear, which is equal
to increasing the minimum detectable fault amplitude.

To account for the specifications of missed detections and
false alarms we can define the robustness criterion

CRB(η) := Jfth/J
d
th, (12)

directly indicating the robustness of the FDD system. The
smaller CRB can be selected, the more robust the decision
making process of the FDD system becomes against any
affects which have not been considered in the design
algorithm.

3.2 Detection time criterion

The detection time of a fault signal f(t) is the time
moment when the evaluation signal θ passes for the first
time a given threshold Jth. The detection time criterion
can be defined as the worst-case detection time

CDT (η, Jth) = sup
π ∈ Π

min
t≥0
{t|θ(0, 0, f, π, η, t) ≥ Jth} (13)

In this definition, f is assumed to be given. When consid-
ering a system where the robustness criterion is fulfilled

for a given η, the selection of Jth = Jfth(1 + ε) will lead
to the best detection time for a false alarm and missed
detection free system.

3.3 Least detectable fault magnitude criterion

The fault signals f for different fault scenarios belong to
several signal classes Fi, i = 1, . . . , k and their magnitudes
within each class are important parameters to define the
least magnitudes of detectable faults. For a given detector,
we denote by Γfmin = ||fmin||∞ the least magnitude of
detectable faults, where fmin(t) usually belongs to a given
class of faults Fi. There are different ways to determine
fmin(t):

If a detection threshold Jth is given, then the correspond-
ing Γfmin

results as the least positive value which satisfies
the condition

Jdth(η,Γfmin
) = Jth, (14)

where the left hand side represents the smallest achievable
residual signal corresponding to a fault of amplitude Γfmin

.
In this case, Γfmin

depends on both η and Jth.

Considering always a robust FDD system (CRB ≤ 1) Γfmin

can be determined from the condition that the maximum
residual signal which results in the absence of faults is
equal to the least achievable residual for the least fault
amplitude

Jdth(η,Γfmin
) = Jfth(η)(1 + ε) = Jth, (15)

where Jfth(η) is defined in (10). In this case Γfmin
depends

only of η.

In both variants, the determination of fmin involves solv-
ing the underlying nonlinear equation, where we can as-
sume that the fault signals are parameterized as f(t) =
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Γfmin
||f̄(t)||∞ , with ||f̄(t)||∞ = 1 and f̄(t) ∈ Fi. It

follows, that the least detectable fault magnitude criteria

CLF := Γfmin
(16)

is defined only implicitly, via a procedure to compute
Γfmin . Explicit approximations of Γfmin based on appro-
priate upper bounds evaluation can only be used in a full
linear setting.

Minimizing CLF (η, Jth) is equivalent to maximize the
sensitivity of the FDD system to faults and thus can be
used for optimal tuning of residual generators, but also for
tuning the parameters of the FDD system.

3.4 Optimization based FDD system analysis

Traditionally, industrial approaches to validate controllers
and FDD systems performance rely on statistical analysis
of these criteria. In the presence of unknown external
signals and parametric uncertainties, finding the worst
cases with this approach tends to be difficult and time
consuming. Therefore, an optimization approach appears
to be better suited if the worst case performance is of
interest. An adequate analysis can be achieved using the
presented criteria for a fixed set of the parameters η.
This approach offers a fast and efficient method to find
deficiencies of the designed FDD system and in this way
helps to increase the FDD systems performance. In case of
an optimization based design the criteria can be arranged
together to determine the best values of the parameters in
η. This will be discussed in the next section.

4. INTEGRATED TUNING OF FDD SYSTEMS

With the defined criteria we can formulate several opti-
mization based parameter tuning problems for an inte-
grated design of the FDD system for safety critical sys-
tems. In all these problems, we will assume that the input
signals u, d and f belong to some finite sets U , D and F ,
respectively, and the parameters π have either a contin-
uous variation in a set Π or to limit the computational
costs in a discrete set ΠN of parameter values. The sets
of inputs can be typical maneuvers or inputs (e.g., step
or sine inputs) which have to be considered during the
operation of the system. Note, in case of parameterized
input signals with rate and amplitude bounds the search
domain becomes continuous, while fixed sets lead to a
discrete set of input signals, which can be interpreted as
a kind of gridding over the possible input signals. From a
multitude of optimization problem formulations, we men-
tion only three problems, which are well suited for an
integrated parameter tuning in safety critical applications.
The primary goal is to optimize the FDD system to ensure
that the robustness criterion is fulfilled CRB ≤ 1 leading no
missed detections and false alarms. Hence, the robustness
criterion is considered as optimization constraint if other
criteria are optimized.

4.1 Robust synthesis

An important analysis task which can serve to determine
meaningful initial settings of the FDD system parameters
in η is to assess for the FDD system the lack of false alarms

and missed detections in the presence of parametric varia-
tions. This analysis can be formulated as an optimization
problem to determine

min
η
CRB(η), (17)

so that a selection of Jfth ≤ Jth ≤ Jdth is possible, if
CRB(η) ≤ 1 can be achieved.

4.2 Minimum detection time optimization

An optimization-based setting suitable for both detector
parameter tuning and for optimal choice of the FDD sys-
tem parameters is when, besides no false alarms, it is pos-
sible to guarantee the required detection time performance
(DTP). For this purpose, we can formulate an optimization
problem which directly addresses both issues, as follows

min
η
{CDT (η, Jth = Jfth) |CRB(η) ≤ 1}. (18)

4.3 Minimum detectable fault amplitude optimization

To ensure the fault detectability property of the detector
beside the required false alarm free system, it is possible
to formulate an optimization problem which directly ad-
dresses the issues, as follows

min
η,Jth
{CLF (η, Jth) |CRB(η) ≤ 1}. (19)

4.4 Multi-objective optimization based tuning

Simultaneous requirements on FAR, MDR, DTP, and
minimum fault amplitude can be handled by tuning the
free parameters of the FDD system using a multi-objective
setup, as for example

min
η
{ν1CDT (η, Jth) ν2CLF (η, Jth) |CRB(η) ≤ 1}, (20)

where νi, i = 1, 2 are suitable weights. Alternatively, strict
bounds on detection time can be handled as inequality
constraints.

5. APPLICATION

In this section an illustrative example with low mathemat-
ical complexity is presented to demonstrate the effective-
ness of the described optimization based tuning approach.
For an elevator control surface and its hydraulic actuator
implemented in a modern transport aircraft, a FDD sys-
tem is set up to be able to detect an actuator jamming
during a realistic turn maneuver. To receive realistic actu-
ator inputs as well as a realistic aerodynamic force acting
on the actuator, the actuator model and the FDD system is
implemented as a subsystem in a nonlinear aircraft model.
This enables the possibility, that the free parameters in the
FDD systems can be optimized and analyzed in the overall,
closed loop aircraft system, using the criteria presented in
Section 3 and the integrated tuning approach described
in Section 4. A linearized actuator model is considered to
illustrate the effectiveness of the presented optimization
approach.
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5.1 Aircraft model and actuator model

The closed loop aircraft system includes a detailed model
of the aerodynamics, a flight mechanical description and
a control law. A limited envelope, namely an altitude
range of 5500ft, an airspeed range of 30kts, a mass range
of 40t center of gravity range of 10% around a defined
flight condition is considered for the FDD system design.
For the estimation of the false alarm bound, a finite set
of maneuvers U is selected. Typical maneuvers used are
piloted and auto-piloted flights with various inputs. The
actuator jamming is assumed to occur before a coordinated
turn maneuver is initiated.

The actuator model represents the dynamics of an hy-
draulic servo controlled actuator which is widely used in
today’s aircraft Goupil [2010]. The dynamics are described
by a first order model

˙̃x = k(π, x̃, ˙̃x)(u− x̃), (21)

with the nonlinear gain

k(π, x̃, ˙̃x) := kcikp

√√√√∆P (x̃)− sgn( ˙̃x)Faero(π,x̃)+kd(x̃) ˙̃x2

S

∆Pref
,

(22)
where kp is the servo control gain, kci is a gain to convert
an estimated current to a corresponding rod speed, ∆P is
the hydraulic pressure delivered to the actuator, ∆Pref is
a differential pressure for a fully opened servo-valve (max-
imum rod speed), Faero represents the aerodynamic forces

at the control surface, kd(x̃) ˙̃x2 represents the estimated
servo-control load of the adjacent actuator in damping
mode and S is the actuator piston surface area. π is a
vector of aircraft and flight condition parameters including
the angle of attack α, the mach number Ma, the dynamic
pressure pdyn and the stabilizer position ih.

For a trimmed, level flight condition (π = π0) only the
stabilizer position ih is used to trim the longitudinal
motion of the aircraft with the elevator trim-position
x̃0 = 0 (thus ˙̃x0 = 0) leading to

∆P (x̃) = ∆P (0)
kci(ũ, x̃) = kci(0, 0)
kd(x̃) ˙̃x = 0

(23)

As the influence of the aerodynamic force depends on the
moving direction of the actuator, we set sgn( ˙̃x)Faero(x̃, π)
to a mean value of equal 0, eliminating the influence of
the gain on the ˙̃x. With this simplifications a linearized
actuator model can be approximated by ẋ = k0(u − x)
with the linear gain

k0 = kcikp

√
∆P (0)/∆Pref , (24)

with the linear gain k0, x = x̃ and u = ũ. With the given
hydraulic pressure delivered to the actuator of ∆P (0), the
reference pressure of ∆Pref , the gains kp and kci, (22)
results in a value of k0 = 15.7, which is equivalent to a
time constant of 63ms. This simple model will be used for
the design of the residual filter.

Note that the actuator model (21) usually cannot be used
directly in an online implementation, as the computational
burden is rather high, as the aerodynamic force is often
given only as multidimensional table data. An imple-

mentable LPV representation of the actuator to cover the
whole flight envelope is presented in Varga et al. [2011].

5.2 Residual generator

Rewriting the linearized actuator model with the output
signal y = x in an input-output form and assuming an
input located fault gives

y(s) =
k0

s+ k0
(u(s) + f(s)). (25)

For this linear first order model, the residual filter

Q(s) =

[
a

k0

s+ k0
s+ a

− a

s+ a

]
(26)

can intuitively be designed, where a is an arbitrary positive
value specifying the dynamics of the filter. Q(s) guarantees
a decoupling of the control inputs in (25) and provides the
fault-to-residual transfer function

Rf (s) =
a

s+ a
. (27)

Note, that the exact input decoupling is only guaranteed if
the real model is equivalent to the linear description (25).

5.3 Optimization of the free FDD system parameters

Uncertainties and modeling errors directly influence the
residual signal, as the decoupling from the input is not
given any more. To minimize these effects, the optimiza-
tion based approach is used to optimally select the free
parameters of the FDD system. The free parameters of
the FDD system are the parameters α, β and γ of the
Narendra filter (8). To lower the computational burden
the optimization problem is transformed into a multi-case
problem Joos [2002] by replacing the continuous search
domain Π in (10), (11) and (13) by a finite domain
ΠN = {π(1), . . . , π(N)} containing N = 16 representative
grid points. The continuous search domain is considered
in an optimization based a posteriori robustness analysis.
The optimizations are performed using the optimization
environment MOPS (Multi-Objective Parameter Search)
of DLR (Joos [2002]). Specifically, the differential evolution
global search method is used, which allows to perform
many function evaluations in parallel. The results of the
optimization are listed in Tab. 1. The nominal case indi-
cates the default situation without optimized parameters,
only using the instantaneous weight α = 1 in (8) to
evaluate the residual signal. In this case the robustness
criterion is not fulfilled (CRB > 1), inevitably leading to

missed detections, when choosing Jth = Jfth, required to
guarantee no false alarms.

The values for the free parameters of optimization 1 result
from an optimization using the robustness criterion CRB
solely. In this case the robustness criterion is fulfilled
(CRB = 0.33) as its value is below 1. The evaluation for the
detection time criterion CDT in the discrete search domain
ΠN leads to a value of 7.21s, when setting Jth = Jfth.
Both criteria values indicate that there may be some room
for improvement of the detection time performance at the
expense of robustness. In a second run the detection time
together with the robustness constraint (18) is optimized.
As expected the resulting robustness decreases, while the
detection time performance increases. In both optimiza-
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Table 1. Optimization results

Opt. criteria α; β; γ CRB(ΠN ) CDT (ΠN )

- none 1;0;- 1.03 na
1 CRB 0.01;0.78;0.001 0.33 7.21s
2 CRB , CDT 0.01;0.87;0.18 0.44 1.59s

tion runs the instantaneous weight α is reduced to its
minimum value to reduce the influence of peaks in the
residual due to noise. For faster detection time a higher
value for the forgetting factor γ is required, as low values of
the forgetting factor tend to make the FDD system slower.

5.4 Robustness analysis

In this section the result obtained by global worst-case
search in the continuous search domain Π are presented
(Tab. 2). As now the continuous search domain is covered
by the optimization, the values for the criteria increase but
remain in the required bounds. Hence, the selected grid of
N = 16 was chosen adequately to cover the envelope.

Table 2. Worst case search results

Optimization CRB(Π) CDT (Π)

- 1.43 na
1 0.34 7.8s
2 0.50 1.6s

The diagrams in Fig. 2 show the detection times tdet at
different points in the envelope as they were calculated
in the optimization process to find the worst case of the
detection time. The detection times are depicted with
different colors, starting from values in cyan (2s < tdet ≤
3s), passing trough yellow (3s < tdet ≤ 6s) to bad values
in red (tdet > 6s). The detection time mainly depends
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Fig. 2. Detection times in the flight domain using the
parameter values from optimization 1
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Fig. 3. Detection times in the flight domain using the
parameter values from optimization 2

for a fixed set of parameters η on the actuator input
during the maneuver. The larger the input is, the faster
the residual and thus the approximated norm exceed its
threshold leading to the detection of the fault. Bad values
of the detection time are therefore located at low altitudes
in combination with high mach numbers in the flight
envelope, since there the increased dynamical pressure and
the higher density lead to a decreasing of the required

actuator inputs. In the diagrams of Fig. 3 the detection
time values for the FDD system with the parameter setting
of the second optimization run is depicted, where green
points indicate good values (tdet ≤ 1s), and blue still
acceptable values (1s < tdet ≤ 2s) for the detection time.
The detection time performance has been improved, so
that an actuator jamming is detected in the whole flight
envelope within 2s.

6. CONCLUSIONS

In this paper the optimization based tuning of free pa-
rameters in an FDD system has been presented. While
the first design of the residual filter can rely on well-known
tools linear residual filter design, the followed optimization
based tuning process considers any nonlinear elements or
inputs of the underlying system. This allows a meaningful
selection of the free parameters in the FDD system and
avoids the conservativeness of linear approaches or the
commonly chosen by trial and error method relying on
numerous simulations.
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