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Abstract: Design methods of adaptive H, consensus control of multi-agent systems composed
of the first-order and the second-order regression models and nonlinear terms by utilizing neural
network approximators, are presented in this paper. The proposed control schemes are derived
as solutions of certain H,, control problems, where estimation errors of tuning parameters,
imperfect knowledge of the leader, and approximate and algorithmic errors in the neural network
estimation schemes are regarded as external disturbances to the process.

1. INTRODUCTION

Among plenty of cooperative control problems of multi-
agent systems, distributed consensus tracking of multi-
agent systems with limited communication networks, has
been a basic and important topic, and various research
results have been reported for various processes and under
various conditions (Olfati-Saber et al. [2007], Ren et al.
[2007], Cao and Ren [2011], Wen et al. [2012]). In those
research works, adaptive control or sliding mode control
methodologies were also proposed in order to deal with
uncertainties of agents, and stability of control systems
was assured via Lyapunov function analysis. Furthermore,
robustness properties of the control schemes were also
discussed. However, those results are restricted to simple
linear processes, and so much attention does not have been
paid on control performance such as optimal property or
transient performance in those approaches.

The purpose of the paper is to present design methods
of adaptive H,, consensus control of multi-agent systems
composed of the first-order and the second-order regression
models and nonlinear terms based on the notion of inverse
optimality (Krsti¢ and Deng [1998], Miyasato [2000]). This
is an extension of the work (Miyasato [2013]) to nonlinear
regression models, and the neural network approximators
are introduced to estimate nonlinear parametric elements
in the agents. The proposed control schemes are derived
as solutions of certain H., control problems, where esti-
mation errors of tuning parameters, imperfect knowledge
of the leader, and approximate and algorithmic errors in
the neural network estimation schemes are regarded as
external disturbances to the process.

2. MULTI-AGENT SYSTEM AND INFORMATION
NETWORK

First, mathematical preliminaries on information network
graph of multi-agent systems are summarized (Ren et al.
[2007], Cao and Ren [2011]). We consider a weighted
undirected graph G = (V, £, A) as a model of interaction
among agents. ¥V = {l,---, N} is a node set, which
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corresponds to a set of agents, and £ C V x V is an edge
set. An edge (i,7) € £ indicates that the agent i and j
can communicate with each other. Associated with &£, we
introduce a weighted adjacency matrix A = [a;;] € RN *V,
and the entry a;; of it is defined such as a;; = aj; >
0 (when (4, ) € €) and a;; = aj; = 0 (otherwise). A
path is a sequence of edges in the form (i1, 42), (i2,13), « -
(i; € V), and the undirected graph is called connected, if
there is always an undirected path between every pair of

distinct nodes. For the adjacency matrix A = [a;;], the
Laplacian matrix L = [l;;] € RY*Y is defined by l; =
Z];[: 1 aij and l;; = —ay; (i # j). The Laplacian matrix

JFi
is symmetric and positive-semidefinite, and furthermore,
has a simple 0 eigenvalue with the associated eigenvector
1=[1---1]7, and all other eigenvalues are positive, if the
corresponding undirected graph is connected.

In this manuscript, we consider a consensus control prob-
lem of leader-follower type, and x( is a leader which each
agent ¢ € V (a follower) should follow. For the leader
and the followers, a;o is defined such as a;0 > 0 (when
leader’s information is available to follower 7), and a;o = 0
(otherwise), and from a;o and L, the matrix M € RV*N
is defined by M = L + diag (a10 - - - ano). M is symmetric
and positive definite, if 1. at least one a;9 (1 <4 < N) is
positive, and 2. the graph G is connected (Cao and Ren
[2011]). Hereafter, we assume those assumptions 1 and 2.

3. ADAPTIVE H,, CONSENSUS CONTOL FOR
FIRST-ORDER MODELS

3.1 Problem Statement

We consider a multi-agent system composed of the first-
order regression models with nonlinear terms described as
follows (i=1,---, N):

#i(t) = Xi(t)0; + Fi(zi(t)) + Biui(t), (1)
where z; € R" is a state, u; € R" is an input, 0; € R/

is an unknown parameter vector, and X; € R™*! is a
regressor matrix composed of z; and its structure is known
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a priori. It is assumed that X; is bounded for bounded
z;. Fiy(x;) € R™ is an unknown nonlinear term, and
B; € R™™"™ is an unknown matrix of the form

B, = diag (b;1,-- -, bin), (2)

and the sign of b;; is known a priori. Hereafter, it is
assumed that b;; > 0 without loss of generality. The
control objective is to achieve consensus tracking of the
leader-follower type such as x; — x;, ©; — xo (i, j =
1,---, N).

3.2 Representation of Nonlinear Term

In this paper, it is assumed that F;(z;) is approximated
by a three-layered neural network (a nonlinear parametric
model) as follows:

WAS(Vii2:) + pina ()

Fi(z;) = :
Wi S(Vih @) + pritn ()
= W'S(Vi"#;) + pir(z;) € R™, (3)
T = [z}, 1]" e R* T, (4)
Wij = [wij1, -+, wigm]" €R™, (1<j<n), (5)
Vii = [vij1, -+, Vijm] € R D xm,
vijg ER™L (1<j<n, 1<k<m), (6
S(VJJ’UZ) = [s(vileii), cee s(vzjmfi)r eR™, (7)
1
W' = e 0720 (®)
Wi 0 0
W= | g g | €RTON o)
0 0 Wi
Sz = [S(Vazi)T, -+, S(Viz)]T e R™, (10)
pir (2:) = [pana (1), -+, paan(2s)]” € R, (11)

where Vj; and W;; are layer weights of the j-th neural
network for the i-th agent, and m is a number of cells
of each neural network. s(v'2) is a sigmoid function, and
wi1(z;) is a vector of an approximation error for F;(zx;).

3.8 Neural Network Approximator

Based on the fact that any continuous function over a
compact set can be approximated by a three-layered neural
network with an arbitrary small approximate error (Funa-
hashi [1989]), the following assumption is introduced.

Assumption 1. There exist layer weights V;; and Wj;
satisfying the following relations.

lpir (w4)] < digjii (4), (12)
where d;1; are unknown positive constants, and ;;(x;) are
known positive functions.

(I<j<n),

The estimates of the layer weights V;; and W;; are denoted
by Vij and Wij, respectively. Then, the neural network
estimation error W;']-S (\A/Jsﬁl) - WES(ViFz;) is evaluated
in the following lemma (Zhang et al. [1999]).

Lemma 2. For the three-layered neural network, the esti-
mation error is evaluated as follows:

WES(Vida:) — WES(Vilz;)
= W(8i; — S, Vid @) + WES, VI + pinj,  (13)

|ig| < Vil 1207585
HIWa |- 1555 Vig @l + Wi, (14)
Wij = Wiz = Wiy, Vig = Vij = Vi, (15)
SZJ = S(VJ@), (16)
Siy = diag(8;51, -+ 8ijm); (17)
= (19)

e VTS & T VTS T
For convenience’ sake, W (S;;—5;,;V;;%;) and W5 S, Vi T

in (13) are rewritten into the following regression forms.

Wi (Siy — Sy, Vi @i) = Wiwijo. (19)
WS VEE: = ijkdiplin®i = D 0wije,  (20)
k=1 k=1
wijo = Sij = SV z,  wijk = (Wigkdin) T, (21)
Vije = Vijk — Vijk- (22)
Then the overall representation of (13) is given by
ARIUAENES UACIUAEY

=0, + i2, (23)

o, =@, ... 7T, (<1> - @i) : (24)

Dy = [W;E’ U;rjl’ B U;rjm]T7 (25)

Qi = blOCk diag[Qﬂ, tey an}, (26)

Qij = [w;rjfb w;rjh ) w;l’ij (27)

iz = [piz1, -+, Mz‘zn]T7 (28)

gi = S(‘/);T:EZ) = [S(Vgl—jl)-r’ T S(VJL@)T]T’ (29)
S, 0 0

Si = 0 0 s (30)
0 05

Also, the left-hand sides of (12) and (14) are summarized
into the following forms, respectively.

[ diivn Y1 00 di11
= 0 0 : = \IJilDih (32)
L dilnwin 0 0 wzn diln
[ Vil - 1 2W Si [l + Wil - 1185 Vil 2l + Wi |
L Vil - 1ZWi Sinll 4 Wil - 1S5 Vi @all + [Win 1
W1 0 O Djoq
=l 0 . 0 : = Vo Do, (33)
0 0 U, Doy,
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Wiz = [l WS, 11 155Vl 1] (34)
Diay = [IVisll, IWisll, 1Wis ] (35)

3.4 Control Law and Error Equation

Associated with the information network graph G, we
employ the following control law.

wit) = K1) [~ Xa(0)fs() - W S(VT ;)

—Q Z Q5 {1‘1 (t)

x; ()} + niodo(t) | + vi(t)
T2
= p( )UzO( ) + Ui(t>7 (36)

where a;; (1 <i < N, 0 < j < N) is defined as the entry
of the adjacency matrix A and M, and « > 0 is a design

parameter. (-) is denoted as a current estimate of (-), and
P; is defined by

P; = diag (pi1,- -+, pin), Pij = 1/bij. (37)
Concerned with a;g, nio is defined as follows:
o 1:a;p>0
o = {0 : otherwise. (38)

Furthermore, v; is a stabilizing signal to be determined
later based on H., control criterion. A tracking error
between the leader xo and the follower x; is defined by

Zi(t) = x;i(t) — zo(t) (39)
and the substitution of (36) and (39) into (1) yields
Zi(t) = X;(t)0; 4+ Fi(zs(t)) + Byuy(t) — do(t)
=Xi(t)0; — Qi(t)®; + Uio(t) Bipi
i — piz + Bivi(t)
+a ¢ —(ly; +ap)z Z Li;;(t)
j=1
J#
+(nio — 1)o(t), (40)
0; =0, —0;, B =p;—pi, (41)
Uio = diag (w01, Uion), (42)
wio = [wio1,++» Wion] ", (43)
pi = [pin,-- -, pin] - (44)

Then, the total representation of the multi-agent system
is given as follows (® denotes Kronecker product) :

i(t) = —X(1)0 — Qt)® + Up(t)Bp — o (M @ I) &(t)

+{(No = 1) ® I} @o(t) + p1 — p2 + Bo(t),  (45)
z =[], 25", (46)
X = block diag (X1, -+, Xn), (47)
2 = block diag (Q1,- -+, Qn), (48)
=167, 08", (=60-0), (49)
d=[d],.--, dN]", (®=0—a), (50)

Uy = block diag (Uig, - - -, Uno), (51)
B = block diag (B, -+, Bn), (52)
p=Ipi, - 8" (B=D—p) (53)
No = [n10,- -+, nwvo (54)

=[1,---, 1T, (55)
v=1[of, -, v§]" (56)
p = [pdys s it e = e, oo el (57)

8.5 Adaptive H,, Consensus Control for First-Order
Models

A positive function Wy is defined by

1
Wo(t) = 50T (M © 1) ()
1 ¢~ T _1 (3
+5 {be) v} 7 {be) v}, (58)
(Fl = F-lr > 0)7
b= [b-lr’a b;rV]Ta b; = [bila"'7 biN]T' (59)
The tuning law of b is determined such as
b(t) = Pr {0, V()T (M @ 1) (1)}, (60)
V = block diag (V4, -+, Vi), (61)
‘/i = diag (Uila Ty ’Uin), (62)
Vi = [Uilv Tty vin]Ta (63)

where Pr(-) are projection operations in which tuning
parameters are constrained to bounded regions deduced
from upper-bounds and lower-bounds of each element of
b (Ioannou and Sun [1996]). Then, the time derivative of
Wy along its trajectory is given as follows:

Wo(t) < —2(t)T (M @ I) X ()6(t)
—#()" (M ®I)Q(t)d(t)

+2(t)"T (M @ 1) Uo(t) Bi(t)

—ai(t)" (M @ 1) ()

+2(t) T (M @ 1) {(No — 1) ® I} io(t)
+i(t)T (M ®I) B(t)u(t)

+E(6)T (M @ 1) (= pa)- (64)

From the evaluation of Wy (64), we introduce the next
virtual system.

Q

6
E=1+) gudi+ gov, (65)
i=1

f=—-aM®I)i, (66)
g =X, g12=Q, g13 = U, g14a = I,
915 = V1, gi6 = Vs, go = B, (67)
dy = =0, dy = —®, d3 = Bp,
dy = {(No — 1)@ I} &0, d5 = Dy, dg = Do, (68)
Uy = block diag[¥qq, -+, U1,

= block diag[W1s, - - -, Wnol, (69)
D, = [D-lrl’ M) D-II\—fl}Tv
Dy =[Dfy, -+, Dy, (70)
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where d; ~ dg are regarded as external disturbances to the
process. Especially, dy~d3 are estimation errors of the tun-
ing parameters, and dy4 is concerned with imperfect knowl-
edge of the leader. d5 and dg correspond to approximate
and algorithmic errors respectively included in the neural
network estimation schemes. We are to stabilize the virtual
system via a control input v by utilizing H., criterion
for those external disturbances dy ~ dg (Krsti¢ and Deng
[1998], Miyasato [2000]). For that purpose, we introduce
the following Hamilton-Jacobi-Isaacs (HJI) equation and
its solution V4.

6
1 ”‘C 17‘,V0H2 -
CfVO + 1 {X_; g%_g - (EQQVO)R 1(E92V0>T

! (72)

Vo = iczT (M®I)z,

where g and R are a positive function and a positive def-
inite matrix respectively, and those are derived from HJI
equation based on inverse optimality for the given solution
Vo and the positive constants y;~7s. The substitution of
the solution Vg (72) into HJI equation (71) yields

1 XXT ot
a:zT(M®1)25:+aET(M®1){ — + ——
4 7 V3

v,ur 1 ool o, vl .
e 222—BR_1BT}-
3 V4 V5 V6

(M®I)F+q=0.

Then, R and ¢ are obtained such as

(73)

R B'XXTBT BB T
" 3
B—lB—T

+B_1UQU(—)I—B_T
V2 Vi
N N N ~ —1
B0, 0TBT B lw,ulB-T
+ L1 + 22 +K>

, (74
73 % )
g=ai" (M ®I)*%
1 . N
+i5cT (M®I)BKB" (M ®1)i, (75)

where K is a diagonal positive definite matrix (a design
parameter). From R, v is derived as a solution of the
corresponding H,, control problem as follows:

1 1 N
v=—3 R (L, Vo) = —SRBT (M@ D). (76)
Then, by evaluating the time derivative of Wy,
WO <—q- v"Ru
1 R T
+ (v + 5R—lBT (M ® I)i;) R-
Lo, 1aT ~
. v+§R B'(M®I)z

2

XT(MeI)z
2 2 2
dy|? =2 ||ldy - 27
+illda| =1 ||da 22
0T (M eI)z|?
3 ld|* =23 |ldo = — 55—
Y2

2

UT (M & 1) 7
sl — 7 [ - PALE D
V3
~ 112
2 2 2 M)z
dal? =2 ||, = LLE DT
+7i [ da| V1 ||Ca 22
UT|(M o D). |
g2 - 42 a5 - TELE DT
V5
V(Mo D).
o2 — 53 o - LALEDT: " 7y
6
T T
|Z‘*E[‘Zl|a”'7 |Z’m|] ) (Z: [Zla"'7 Zm] )7 (78)

we obtain the next theorem.

Theorem 3. The partial adaptive control system (36),
(60), (76) is uniformly bounded for arbitrary bounded
design parameters 6, ®, p, and v is a sub-optimal control
input which minimizes the upper bound on the cost
functional J.

J(t)= sup

di~de€L2

6 t
=307 [ dilPar
i=1 0

Also we have the next inequality.
t

/{q + 0" Ro}dr 4+ Wo(t)
0

(79)

/{q + v Ru}dr + Wy(t)
0

(80)

i

6 t
<32 / |2 + Wo(0).
=1 0

Theorem 3 denotes the properties of the partial adaptive

control system (36), (60), (76), where the tunings of 8, ®,
p are not necessarily required. Furthermore, the Ls-gain

property between \/q +vTRv and dy ~ dg is prescribed
by the design parameters 7, ~ g, and it indicates that the
boundedness of the control systems is assured for arbitrary

bounded system parameters 6, ®, p.

Next, the tuning laws of 0, ®, p are determined as follows:
O(t) = Pr{TX ()T (M ® 1) 3(1)} |
b(t) = Pr{TsQt)T (M @ 1) 3(t)}
p(t) =Pr{-TuUs(t)" (M @ I)i(t)},
(Ty=T4 >0, T3=T4% >0, Ty=T] >0),
where I'y is especially chosen as a diagonal matrix. F:r(;)

(81)

are projection operations in which tuning parameters 6, ®,
p are constrained to bounded regions deduced from upper-
bounds of é, d, and upper-bounds and lower-bounds of
each element of p, respectively (Toannou and Sun [1996]).
A positive function W is defined by

W(t) = §j(t)T (M ®1I)z(t)
+% {b) - b}T it {b) - v}
+% {é(t) - 9}Tr;1 {é(t) 9}
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+% {<i>(t) - @}Trgl {(i(t) - <I>}
5 {6(0) ~ T BET 50) ).

From the time derivative of W along its trajectory,

(82)

W(t) < —ai(t)T (M@ I1)?&(t) — #@(N (M @1)?i(t)
o T M)W U (M 1) i)

—@@(t)T(M @ 1)U Ul (M @ I) Z(t)
6
1 . .
—§~(t)T (M®I)Bt)KB(t)" (M ® I)i(t)
+glldall + 22llds 1 + 7éllde 1,

we obtain the following theorem.

Theorem 4. The total adaptive control system (36), (60),
(76), (81) is uniformly bounded, and if Zo(t) = 0 or the
information of the leader i is available for all followers
({(Ng — 1) ® I'} &9 = 0), then it follows that

(83)

z 6
: 1 N 2
Th_r)r(lm sup / |Z(®)||“dt < const - Z% . (84)
5 -

=9

Otherwise, when @ (t) # 0 and the information of ¢ is
not available for all followers ({(Ng—1)® I} &g # 0), then
the next relation holds.

T
6
1
Tliixéosupf/ﬂi(t)ﬂzdt < const.z;%?. (85)
0 =

4. ADAPTIVE H,, CONSEINSUS CONTROL FOR
SECOND-ORDER MODEL

4.1 Problem Statement

Next, we consider a multi-agent systems composed of
the second-order regression models with nonlinear terms
described as follows (i=1,---,N):

CCZ(f) = )(1(75)9z + Fl(xz(t), LL’Z(t)) + Bzul(t), (86)
where x;, wu;, 0;, Fi(x;,d;), X; are defined similarly to
the previous case, and the form of B; is the same as
the former one. X; is a regressor matrix composed of
z; and &;, and is bounded for bounded z; and #;. The
communication structure among agents is prescribed by
the information network graph G. The control objective is
to achieve consensus tracking of the leader-follower type
together with velocity tracking such as z; — z;, ; — &5,
T; — o, Ty — g (27]:177N)

4.2 Representation of Nonlinear Term

Similarly to the first-order case, it is assumed that
F;(x;, ;) is approximated by a three-layered neural net-
work (a nonlinear parametric model) as follows:

WS(ViiZ) + pinn (z:)
Wi S(VinZi) + pritn(2i)

wm

=WS(V,'z) + pir(2) € R™,

Z =[x}, &, 1]T € R*"H

70

(87)
(83)

where notations are the same as the previous one except
for z; instead of ;.

4.8 Control Law and Error Equation

Associated with the information network graph, we utilize
the following control law.

wit) = K1) [~ Xa(®)fi(0) - W S(VTz))

N
=Y ai{mi(t) — z;()}
iZs

N
—a Y a{i(t) = ()} + nioo(t)
ji=0
J#i
+vi(t)
= P (t)uio(t) + vi(t), (89)
where the definitions of a;; (1 <¢ < N,0<j < N),a >0,
P;, n;o, v; are the same as the previous case. A consensus
tracking error Z; is denoted by (39), and the substitution
of (89) and (39) into (86) yields the total representation
of the multi-agent system such as
() =—X ()0 — Q)0 + Uy(t)Bp — (M @ 1) &(t)
—a(M®I)i(t)+ {(No— 1) ® I}io(t)
+p1 — p2 + Bu(t), (90)

where the definitions of Z, X, 0, Q, Uy, B, p, N, 1, v, ®
are the same as the previous ones.

4.4 Adaptive Ho, Consensus Control for Second-Order
Models

For the matrix M and the positive constants «, ~, the
matrices P and @ are defined such as

%MQ ’%M ’72M2 %MZ
pP= , Q= 91
%M §M %MQ aM? —yM oD

It can be shown that P and @ are both positive definite,
if ~ satisfies the next condition (Cao and Ren [2011]).

404)\min (M)
"4 + 042>\min(M)
Hereafter, it is assumed that v satisfies (92). Utilizing the
positive definite P, a positive function Wy is defined by

Wo(t) = 2(t)T (P ® I) 2(t)
+% {B(t) - b}Trl—l {E(t) - b} :

<y < min{ Amin (M) (92)

(93)

F= T (94)
(T1 =T{ >0),

where b is defined similarly to the previous case. The
tuning law of b is chosen such as
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b(t) = Pr{TyV (1)" (95)

5(t) = 2(t) +yE(b), (96)
where V, Pr() are the same as the previous ones. Then,
the time derivative of Wy is given by

(M®I)5(t)},

Wo(t) < =5(6)T (M ® 1) X(1)0(t)
—E(t)T (M @ 1) Q(t)d(t)
+3(t)T (M © 1) Uy (1) Bp(t)
R OMCENED
+5(t)T (M @ 1) {(No — 1) ® I} &o(t)
+5)T (M ® I) B(t)v(t)
+2) T (M @ 1) (u1 — p2). (97)
From (97), we introduce the next virtual system.
= [+ Zgud + 920, (98)
0 I -
f{—(M@I) —a(M@I)}Z’ (99)
0 0 0
g11 = [X],Qm— {9}7913— [U ],
g14 = [?] , 915 = [‘1(’)1} y 916 = [\192] )
n=|p) (100)

The definitions dy~dg are the same as the previous case.
We are to stabilize the virtual system via a control input
v by utilizing H, criterion, where d; ~ dg are regarded as
external disturbances to the process. Then, by repeating
the similar discussions to the first-order case, we introduce
the following Hamilton-Jacobi-Isaacs (HJI) equation (71)
and its solution Vp (101).

Vo=2"(P®I)Z (101)

Then similarly to the first-order case, for R (74) and ¢
defined such as

1 . N
q:ET(Q®I)Z+ZET(M®I)BKBT(M®I)
and for v deduced from R such as
1 1 .
v= —53—1(592V0)T = —iR_lBT (M ®1I)

we obtain the next theorem.

Theorem 5. The partial adaptive control system (89),
(95), (103) is uniformly bounded for arbitrary bounded
design parameters é, <i>, p, and and v is a sub-optimal
control input which minimizes the upper bound on the
cost functional J (79), where Wy and ¢ are newly defined
by (93), (102). Also we have the inequality (80) for the
new Wy and q.

5,(102)

5, (103)

Next, the tuning laws of é (iD, p are determined as follows:
é( Pr{FQX )T (M eI)s(t)},
ci>( = Pr {I39( (M®I) 5(t)},
p(t) =Pr{- 114Uo O (M@I)3(t)},

where the definition of Pr(-) is the same as the previous

one. Then, similarly to the previous, we obtain the follow-
ing theorem.

(104)

Theorem 6. The total adaptive control system (89), (95),
(103), (104) is uniformly bounded, and if & (t) = 0 or the
information of the leader Iy is available for all followers
{(No—-1)® I} xo = 0), then it follows that

hm sup — /H )||?dt < const - Z%.

Otherwise, when xo( ) # 0 and the 1nformat10n of &g is
not available for all followers ({(No —1)® I} &g # 0), then
the next relation holds.

6
. 1 ~ ) ,
%EnooS“pf/HZ(t)II dtﬁconshg%.
0 =

5. CONCLUDING REMARKS

(105)

(106)

Design methods of adaptive H,, consensus control of
multi-agent systems composed of the first-order and the
second-order regression models with nonlinear terms have
been presented in this paper. The neural network approx-
imators are introduced to estimate nonlinear parametric
elements in the agents. The proposed control schemes are
derived as solutions of certain H,, control problems, where
estimation errors of tuning parameters, imperfect knowl-
edge of the leader, and approximate and algorithmic errors
in the neural network estimation schemes are regarded as
external disturbances to the process. It is shown that the
desirable consensus tracking is achieved approximately via
adaptation schemes and Lo-gain design parameters.
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