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Abstract: Decentralized overlapping feedback control laws are designed for a vehicle-string bias system 
which controlled over networks in this paper. The dynamic model of vehicle-string bias system is treated 
as an interconnected system with overlapping states. Using the mathematic framework of the Inclusion 
Principle, the interconnected system is expanded into a higher dimensional space in which the subsystems 
appear to be disjoint. Then, for the locally extracted subsystems with respect to network-induced time-
delay and packet-dropout, by modeling the networked control system (NCS) as an asynchronous dynamic 
system (ADS) with rate constraints on events, the state feedback controllers are designed and the sufficient 
exponential stability criterion is derived. The design procedure is based on linear matrix inequalities (LMI). 
As a final step, the decentralized controllers are contracted back to the original space for implementation. 
The simulation result is given to show the effectiveness of the method. 

 

1. INTRODUCTION 

Intelligent vehicle/highway systems (IVHS) have attracted a 
considerable attention among researchers (Jonathan A. 
Rogge and Dirk Aeyels, 2008; Gianluca Antonelli and 
Stefano Chiaverini , 2006; Jonathan A. Rogge and Dirk 
Aeyels, 2008; Varaiya P ,1993). The IVHS architecture is 
usually based on the notion of platoons, vehicle-string 
following the leading vehicle with small intra-platoon 
separation and the focus is on developing control methods to 
allow platoons of vehicles to automatically move at a 
desired velocity with a specified spacing distance between 
vehicles. Control of platoons of vehicles has been studied 
from different viewpoints (D. N. Godbole and J. Lygeros., 
1994; S. Sheikholeslam and C. A. Desoer ,1992; D. Swaroop 
and J. K. Hedrick, 1996).The so-called spacing and headway 
control strategies are discussed (Srdjan S. Stankovic, 
Milorad J. Stanojevic, and Dragoslav D. Siljak , 2000; D. 
Swaroop, J. K. Hedrick, C. C. Chien, and P. Ioannou, 1994) . 
Generally, decentralized control schemes are chosen since 
they are superior in terms of reliability with respect to 
structural reconfigurations to centralized control schemes.  

From a viewpoint, model of platoon can be treated as an 
interconnected system of overlapping subsystems (the 
subsystems share common components). This allows one to 
consider control structures based on overlapping. A general 
mathematical framework for overlapping decompositions 
and decentralized control is the Inclusion Principle (M. 
Ikeda, D. D. Siljak and D. E. White, 1984; Chu, D., and 
Siljak, D. D., 2005). A dynamic system with overlapping 
information structure constraints is expanded into a larger 

state space where the subsystems appear as disjoint. Then, 
the estimation and control laws are designed in the expanded 
space using standard methods for disjoint subsystems. Under 
the inclusion conditions, the laws can be contracted to the 
smaller space for implementation in the original system (X.-
B. Chen and S.S. Stankovic, 2005; Zecevic, A. I., and Siljak, 
D. D. , 2005). The motivation to use decentralized 
overlapping control comes from the fact that it has already 
been successfully applied to control a model of a platoon of 
vehicles (Srdjan S. Stankovic, Milorad J. Stanojevic, and 
Dragoslav D. Siljak , 2000). 

Recently, new methods and algorithms have been proposed 
to include communication issues into the decentralized 
control design framework (Smith, R. S. and Hadaegh, F. 
Y. ,2007; Roberts, D. G. and  Stilwell, D. J.,2005; Stubbs, A., 
Vladimerou, V., Fulford, A., Strick, J., and Dullerud, G. 
E. ,2006). Though a variety of structures and models in this 
framework have been analyzed, there remains a gap between 
decentralized control and control over networks (Lubomir 
Bakule, 2008). To the authors’ knowledge, strategies taking 
systematically into account networked control systems 
(NCSs) which controlled over realistic decentralized 
communication channels have not yet been reported.  

Network-induced delay and packet-dropout are two main 
problems in NCSs. In this paper, a novel strategy is 
presented for decentralized overlapping state feedback 
design with respect to network-induced time-delay and 
packet-dropout. Firstly, The dynamic model of vehicle-
string bias system is expanded into a higher dimensional 
space in which the subsystems appear to be disjoint using 
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the Inclusion Principle ; Then, for the locally extracted 
subsystems, by modeling the networked control systems as 
an asynchronous dynamical system （ADS）  with rate 
constraints on events, the sufficient time-delay and data 
packet dropout criterion for the exponential stability of the 
networked control systems are presented and proved by 
using the Lyapunov stability theory.  Last, the decentralized 
controllers are contracted back to the original space for 
implementation based on the Inclusion Principle.  

The organization of the paper is as follows. In section 2, the 
linear bias model of a platoon that can be treated as an 
interconnected system with state coupled is described. In 
section 3, the Inclusion Principle and corresponding 
expansion and contraction procedures are presented, and in 
section 4, a decentralized networked controller design 
procedure and sufficient conditions for exponentially stable 
are derived in terms of LMI algorithms. In section 5, 
simulation results for a platoon consisting of 4 vehicles are 
studied. 

2. MODEL DESCRIPTION 

Let   automotive vehicle in a platoon be represented by 
the following model (Levine, W. S. and M. Athans, 1966):  

thi

1, 1

, 1, 2, ,

, 2,3, ,
i i i

i i i i

v v u i N

d v v i− −

Δ = −Δ + Δ =

Δ = Δ − Δ = N

N

)

              (1) 

Where ,  and  are derivation of the velocity, 
spacing distance and control input respectively, for sake of 
simplicity, the above formula can be denoted 

ivΔ 1,i id −Δ iuΔ

1, 1

, 1, 2, ,

, 2,3, ,
i i i

i i i i

v v u i N

d v v i− −

= − + =

= − =
                 (2) 

It will be initially assumed that the measurements of , v , 
 are available in i  vehicles. To illustrate this, consider 

an interconnected system with three subsystems as shown in 
Fig. 1. 

1,i id − i

1iv − th

 

 
Fig.1. Plot of a platoon with information structure constraint 
 
Based on (2), the following state-space model S of the entire 
platoon can be formulated (assuming that all the vehicles 
have identical model) as follow: 

: ,S x Ax Bu y Cx= + =                     （3） 

Where: 

 

( 1 1,2 2 2,3 1,, , , , , ,
T

N N Nx v d v d d v−=

( )1 2, , , T
Nu u u u=

( )1 1,2 2 2,3 1,
, , , , , ,

N N N

T

v d v d d vy y y y y y y
−

=         and 

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The overlapping interconnections between subsystems are 
depicted with dashed lines. 

3. OVERLAPPING STRUCTURE DECOMPOSITION 

3.1 Inclusion Principle 

Consider a pair ( ),S S of linear time-invariant continuous-

time dynamic systems represented by 
: ,

: ,

S x Ax Bu y Cx

S x Ax Bu y Cx

= + =

= + =
                    （4） 

Where ( )0 0x t x=  and ( )0 0x t x= , nx R∈ and nx R∈ are the 

states, and  the inputs, and  the 

outputs of  S and ,respectively.  

pu R∈ pu R∈ qy R∈ qy R∈

S

It is assumed that n n, ,p p q q≤ ≤ . ≤

Definition 1: The system S  includes the system S if there 
exists a quadruplet of full rank matrices { }, , ,U V R S  
satisfying nUV I= , such that for any 0x  and u in S the 
conditions 0

V4 V3 V2 V1

subsystem3 subsystem2 subsystem1 
0x Vx=  and u Ru= imply x Ux= and y Sy= . 

There are different combinations of state, input and output 
contractions/expansions (X.-B. Chen and S.S. Stankovic, 
2005).We shall focus our attention to one particular case of 
restriction. 

Theorem 1 the system S is a restriction of if there exist full 
rank matrices 

S
{ }, ,V R T such that 

; ;AV VA BR VB CV TC= = =  
If the pairs of matrices (U, V), (Q, R), and (S, T) are 
specified, the matrices can be expressed as , ,A B C

, ,A B

C

A V A U M B V B Q M

C T C U M

= + = +

= +
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Where AM , BM , and CM   are complementary matrices of 

appropriate dimensions. For  to be an expansion of S, a 
proper choice of

S
AM , BM , and CM  is required and 

satisfying 
0; 0; 0A B CM V M R M V= = =  

If static feedback control laws for both systems are assumed 
to be in the following form: 

, m nu Kx K R ×= ∈ ; , m nu Kx K R ×= ∈  

Then the condition for close-loop system ( ):S x A BK x= +  

is included in ( ):S x A BK x= +  are given as 

Theorem 2:  S  is a restriction of S  if one of the following 
is true: 

(a)  , ,AV VA BR VB KV RK= = =

(b) , ,AV VA B VBQ K QKV= = =  

3.2 Overlapping Structure Decomposition 

Let us consider a linear system (3). We regard the system as 
composed of N-1 overlapping subsystems. By choose 
expansion matrices 

( )2 1 1 1 2, , 1, , 1, , ,V T diag I O O O I= =  
( )2 1 1 1, , 1, , 1, , ,U S diag I O O O Iβ β β= =

( )1 1 11, , , , , 1R diag O O O=
2

N

]

 
( )1 1 11, , , , , 1Q diag O O Oβ β β=  

Satisfying 
2 1 2 1; ;N NUV I QR I ST I− −= = =  

Where 

[ ] [1 11 1 , 1TO Oβ β β= = −  

β is the dynamic balance factor of overlapping structure 
decomposition, 0 1β< < . 

 Complement matrix can be chosen 

2

2

1 2

3

1

2

1

1

0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

d

a

d d

a

A d

d

aN

d

m
m
m m

m
M m

m
m
m

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢

= ⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

2

3

1

0 0 0 0 0
0 0 0
0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

b

B b

bN

m

M m

m −

⎡
⎢
⎢
⎢
⎢= ⎢
⎢
⎢
⎢
⎢
⎣

 

[ ]2 3 10, , 0, , , , 0C c c cNM diag m m m −=  

Where 
[ ]1dm β β= − , ( ) ( )2 1 1dm β β= − − −⎡ ⎤⎣ ⎦  

( ) ( )1 1
aim

β β
β β

− − −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

( ) ( )1 1
bim

β β
β β

− − −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

( ) ( )1 1
cim

β β
β β

− − −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, i N  2,3, , 1= −

N

Thus, we obtain overlapping structural decomposition pair-
wise subsystem.  That is 

1 1
1

1 1, 1,

1 1

1 1,

1 0 0 1 0
: 1 0 1 0 0

0 0 1 0 1

1 0 0
0 1 0 , 2,3, ,
0 0 1

i

i

i

i i
i

i i i i i
i

i i

v i

d i i

iv

v v
u

S d d
u

v v

y v
y d i

vy

− −
−

− − −

− −

− −

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

4. DECENTRALIZED NETWORKED CONTROL 

4.1 Modelling of networked control 

For the locally extracted subsystems, the considered NCS 
with both time-delay and packet-dropout is shown in Fig. 2 
 

 
Discrete Controller 

S2

iτ

Network with time-delay and packet-dropout 

Decentralized Sub-systems 

S1

ˆkx  
ku

kxActuator

Sensor

Fig.2. Laconic Model of NCS with time-delay and data-
packet dropout 

Throughout the paper, the following assumptions are needed 
for the considered NCS: 
A1: The sensor is time-driven, and its sampling interval is T, 

both the controller and the actuator are event driven; 
A2: The constant network-induced delay 

satisfying 0 i Tτ≤ < , where i sc caτ τ τ= + , and  scτ  is the 
sensor-to-controller delay while caτ   is the controller-to-
actuator delay. 

We use S1 to denote the event that a packet is successfully 
transmitted; use S2 to denote the event that a packet is 
dropout.  
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We denote AT
dA e= ,  0 0

( ) iT As
d iB e

τ
τ

−
= ∫ Bds

τ
τ

−
= ∫ 0

( )
T As

d iB e Bdsτ = ∫

1)
T

1( )
i

T As
d i T

B e Bds ,  

(1) When event S1 occurs, we choose 

( 1)ˆ ,
ˆ

ˆ , (
i k i

ik
ik i

x kT t k
x

x kT t k T
τ

τ
− < ≤ +⎧

= ⎨ + < ≤ +⎩
 

(2) When event S2 occurs, namely there is packet-dropout, 
we have  ( 1)ˆ ˆik i kx x −=

Thus, the model of the NCS under consideration is then 
described as follows: 

1 0

1 ˆ:
ˆ

k d k d k d k

k k

k k

1 1x A x B u B u
S y Cx

x x

+ = + +
=
=

−

              (5) 

1 1

2 ˆ:
ˆ

k d k d k

k k

k k

x A x B u
S y Cx

x x

+ −= +
=
=

                         (6) 

Applying the controller  to system (5), (6) and 
results in the following close-loop NCS  

ˆku Kx= k

1 0 1
1

1
:

ˆ ˆ0
k kd d d

k k

x xA B K B K
S

x xI
+

−

⎡⎡ ⎤ ⎡+
= ⎢⎢ ⎥ ⎢

⎣ ⎦ ⎣⎣ ⎦

⎤ ⎤
⎥ ⎥

⎦

k

            (7) 

1 1
2

1
:

ˆ ˆ0
k d d

k k

x xA B K
S

x xI
+

−

⎡ ⎤⎡ ⎤ ⎡
= ⎢ ⎥⎢ ⎥ ⎢

⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎦

                      (8) 

4.2 Design of controller 

Definition 2 the close-loop NCS is said to be exponentially 
stable with decay rate 0α >  if  

( )lim 0t

t
e x tα

→+∞
=  is true 

Lemma 1 (Arash Hassibi, Stephen P.Boyd and Jonathan 
P.How., 1999) given a difference equation  

1 ( ), 1, 2, ,k s kx f x s N+ = = , 

a sufficient condition for exponential stability is the 
existence of , that V is continuously 

differentiable 
: nV R R+→

2 2
1 2( )x V x xβ β≤ ≤ , where 1 20, 0β β> > , 

and 1 2, , , 0Nα α α >  satisfying 

2
1( ) ( ) ( 1) (k k sV x V x V xα −

+ − ≤ − )k  and 

1 2
1 2 1Nrr r

Nα α α α> >  

Lemma 2 [Schur complement]: given symmetric 
matrices  and matrix , where 1 2,Σ Σ 3Σ 1 1

TΣ = Σ  

and , then  if and only if 20 T< Σ = Σ

1 3

3 2
0

T⎡ ⎤Σ Σ
<⎢ ⎥

Σ −Σ⎣ ⎦
 or . 2 3

3 1
0T

−Σ Σ⎡ ⎤
<⎢ ⎥

Σ Σ⎣ ⎦

Lemma 3 (Xie, L. 1996) given matrices 1 2 3, , , kM M M Δ , 
where arbitrary matrix kΔ satisfying T

k k IΔ Δ ≤ , M1 is 
symmetry matrix, then , if 
and only if there exist constant

1 3 2 2 3 0T T T
k kM M M M M+ Δ + Δ <

0ε > , such that 
1

1 3 3 2 2 0T TM M M M Mε ε−+ + <  

The exponential stability result for NCS (7), (8) is presented 
in the following theorem. 

Theorem 3: For given positive scalar r denoting event rate, 
applying the controller , if there exist matrices T, X, 

and scalar , such that the following inequalities 

ˆku Kx= k

K 1 2,a a

1
1 2 0r ra a α−× > >  

2
1 0

2
1 1

0 1

0 ( )

0 ( )

T
d d

T
d

d d d

T a X A X B K X

a T B Y
A X B K X B K X X

−

−

⎡ ⎤− +
⎢ ⎥

0− <⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

 

2
2

2
2

0 ( )

0 (

T
d

T
d

d d

a X A X

T a T B K X
A X B K X X

−

−

⎡ ⎤−
⎢ ⎥

) 0− <⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

hold, then the closed-loop NCS (7), (8) is exponentially 
stable. 

Proof: Choose the Lyapunov function 

( ) 1 1k k
T T

k kV k x Px x Qx− −= +  

When event S1 occurs, by (7) we have 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
Ω=−+

−
−

−

1
11

2
1 ˆ

ˆ)()1(
k

kT
k

T
k x

x
xxkVakV  

Where 
2

0 0 1 0
1 2

1 0 1 1

( ) ( ) ( )
( ) ( ) ( )

T T
d d d d d d d

T T
d d d d d

1

1

A B K P A B K Q a P A B K PB K
B K P A B K B K PB K a Q

−

−

⎡ ⎤+ + + − +
Ω = ⎢ ⎥

+ −⎣ ⎦

0

 

By Lemma 2 and Lemma 3, the following inequality holds 

0)()1( 2
1 <−+ − kVakV  

This implies 

2
1 0

2
1 1

1
0 1

0 ( )
0 ( )

( )

T
d d

T
d

d d d

Q a P A B K
a Q B K

A B K B K P

−

−

−

⎡ ⎤− +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 

Left and right multiply by { }1 1, ,diag P P I− −  

respectively, and let 
2

1
1 3 2 3 0T −Σ + Σ Σ Σ <

1X P−= ,  1 1T P QP− −=
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We derive 

2
1 0

2
1 1

0 1

0 ( )

0 ( ) 0

T
d d

T
d

d d d

T a X A X B KX

a T B Y
A X B KX B KX X

−

−

⎡ ⎤− +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

2

 

When event S2 occurs, we have 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
Ω=−+

−
−

−

1
21

2
2 ˆ

ˆ)()1(
k

kT
k

T
k x

x
xxkVakV  

Where 

2
2 1

2 2
1 1 1( ) ( )

T T
d d d d

T T
d d d d

A PA a P A PB K
B K PA B K PB K Q a Q

−

−

⎡ ⎤−
Ω = ⎢ ⎥

⎦+ −⎣

) 0

0 0 0 0
1 0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0 0
0 0 0 1
0 0 0 0 0 0 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

0
0 0

0 0
0 0 0 1

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0
0

0 0 0 0
0 0 1 0
0 0 0 1

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

}

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

B

 

Similar to event S1, we derive 

2
2

2
2

0 ( )

0 (

T
d

T
d

d d

a X A X

T a T B KX
A X B KX X

−

−

⎡ ⎤−
⎢ ⎥

− <⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

So, NCS is exponentially stable. 

5.  SIMULATION RESULT 

Let us consider a vehicle-string bias system which is 
composed of 4 vehicles. The system model can be described 
as (3), where 

1 0 0
1

0 1
0 0 1 1

1 0 0
0 0 1

−

−

 

1 0 0 0
0 0 0 0
0 1 0
0 0
0 0 1 0
0 0

,  
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0
0 0 0 1 0 0

1 0 0
0 0 0
0 0 0

According to inclusion principle, by choosing the 
transformation matrices { satisfying theorem 1, 

system S can be expanded to , where 

, , ,U V R S

S

1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥= −
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

s

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Then, for the locally extracted subsystems, we choose 
sample interval 0.1T = , time-delay 1 0.06sτ = ，

s2 0.03τ = ， 3 0.07sτ =  respectively, and assume that initial 
velocity 10 3 ;v m s= 20 1 ;v m s= 30 5 ;v m s= 40 2 ;v m s= de
-sired velocity 3.5dv m s= , initial spacing distance of four 
vehicles are (2,1,2) meters respectively, specified spacing 
distance 5dl m= .  

Suppose packet-dropout rate 0.9γ = , according to Theorem3, 
we have 1 21.07, 0.6a a= =  and state feedback gain matrix 

0.374 0.2137 0.159 0 0 0 0 0 0
0.1592 0.2045 0.3439 0 0 0 0 0 0

0 0 0 0.374 0.2137 0.159 0 0 0
0 0 0 0.1592 0.2045 0.3439 0 0 0
0 0 0 0 0 0 0.374 0.2137 0.159
0 0 0 0 0 0 0.1592 0.2045 0.3439

K

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

 

for implementation, choose 0.5β = , by Theorem2,  we 
obtain control laws 

0.374 0.2137 0.159 0 0 0 0
0.0796 0.1023 0.359 0.107 0.08 0 0

0 0 0.0796 0.1023 0.359 0.107 0.08
0 0 0 0 0.1592 0.2045 0.3439

K

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

 

Simulation results are presented in Figs. 3 and 4. 
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Fig.3. velocity of 4 vehicles
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Fig.4. spacing distance of 4 vehicles
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6. CONCLUSIONS 

In this paper, an efficient method to design decentralized 
overlapping control laws for a platoon of vehicles with 
overlapping information structure in the networked control 
framework has been proposed. The platoon is modeled as an 
interconnected system. Static state feedback control laws 
were designed in the expanded space using the Inclusion 
Principle with respect to Network-induced delay and packet-
dropout, and then contracted back to the original space for 
implementation. Since the algorithm is formulated in the 
expanded space where subsystems are disjoint, this method 
offers significant reduction in computational time due to the 
possibility of parallel processing. As an example, the 
procedure was applied to a platoon of four vehicles, and the 
obtained results are promising. 
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