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Abstract: This paper focuses on the fixed-time minimum-fuel out-of-plane rendezvous between
close elliptic orbits of an active spacecraft, with a passive target spacecraft, assuming a linear
impulsive setting, and a Keplerian relative motion. It is shown that the out-of-plane Keplerian
relative dynamics are simple enough to allow for an analytical solution of the problem reviewed.
The different optimal solutions, for different durations of the rendezvous, are obtained via the
analysis of the optimal conditions expressed in terms of the primer vector. A numerical example
illustrate sthese results.
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1. INTRODUCTION

For the next years, there will be an increasing demand
for the efficient execution of the autonomous rendezvous
between an active chaser spacecraft and a passive tar-
get spacecraft. Therefore, new challenges are met when
designing appropriate guidance schemes for achieving au-
tonomous far range rendezvous on highly elliptical orbits.
Autonomy means that the simplicity of onboard imple-
mentation while preserving optimality in terms of fuel con-
sumption, is fundamental. Here, the fixed-time linearized
minimum-fuel impulsive rendezvous problem, as defined
in Carter (1991), Carter and Brient (1995), is studied.
The impulsive approximation for the thrust means that
instantaneous velocity increments are applied to the chaser
whereas its position is continuous. The focus of the paper is
on the Keplerian elliptic out-of-plane rendezvous problem
for which no complete solution exists at the best of our
knowledge. A partial analytical solution has been given
for the circular case in Carter (1991) and Prussing (1969)
but as the relative motion between two vehicles in highly
elliptic orbits differs significantly from the relative motion
seen in circular rendezvous, the solution of the elliptic
problem is much more complicated as will be seen in the
sequel.

The contribution of the paper is to give a complete ana-
lytical solution of the problem whatever the duration of
the rendezvous and for all possible initial and terminal
conditions. These solution are obtained via the analysis of
the optimal conditions expressed in terms of the primer
vector as in Carter (1991) and Prussing (1969). After an-

alyzing the characteristics of the dynamics of the optimal
primer vector candidates, the complete analytical optimal
solution is presented in every possible case. One numerical
realistic example illustrates these results.

Notation: The set R≥0 denotes the non-negative reals
while N≥0 and N>0 denotes respectively the non-negative
integers and the strictly positive integers. The bars |·| refer
to the absolute value or the Euclidean norm depending
whether its argument is a scalar or a matrix. sgn is the
usual sign function.

2. PROBLEM FORMULATION

Assuming boundedness conditions on relative position and
velocity, the linearized out-of-plane time-fixed fuel-optimal
rendezvous problem may then be reformulated as the
following optimization problem

min
N,θi,∆Vi

J =

N
∑

i=1

|∆Vi|

s.t. zf =
N
∑

i=1

R(θi)

r(θi)
∆Vi

(1)

N ∈ N
∗, θi ∈ [θ0, θf ], zf ∈ R

m, n and 0 ≤ e < 1
are respectively the mean motion and the eccentricity of
the reference orbit. Note that the true anomaly θ has
been chosen as the independent variable throughout in the
paper and

zf = n(1− e2)−
3
2 (φ−1(θf )X̃f − φ−1(θ0)X̃0) 6= 0 (2)

θ0 and θf respectively denote the initial and final values
of the true anomaly during the rendezvous. φ(θ) is the
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fundamental matrix associated to the linearized relative
free motion and Φ(θ, θ0) = φ(θ)φ−1(θ0) denotes, therefore,
the transition matrix of the linearized relative free motion.
The state vectors X̃f = X̃(θf ) and X̃0 = X̃(θ0) are
composed of the relative positions and relative velocities
vectors in the LVLH frame after the usual simplifying
change of variables Yamanaka and Ankersen (2002). For
the out-of-plane Keplerian elliptic rendezvous problem, we
have Yamanaka and Ankersen (2002)

φ(θ) =

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

(3)

R(θ) =

[

− sin(θ)
cos(θ)

]

, r(θ) = 1 + e cos(θ). (4)

The optimization decision variables are the number of
impulses N , the sequence of thrust locations {θi}i=1,··· ,N

and the sequence of thrusts {∆Vi}i=1,··· ,N .

3. OPTIMALITY CONDITIONS

If the number of impulses is fixed a priori to N , problem
(1) may be considered as a parametric nonlinear non
convex transcendental optimization problem involving the
N velocity increments ∆V (θi) and N locations θi of
maneuvers. By applying a Lagrange multiplier rule for the
problem (1) as in Carter and Brient (1995), one can derive
necessary conditions of optimality (5) to (8) in terms of
the Lagrange multiplier vector λ ∈ R

m, as is recalled in
Theorem 1 below. These conditions are also sufficient in
the case of linear relative motion when strengthening them
by adding the semi-infinite constraint (9) that should be
fulfilled on the continuum [θ0, θf ] Prussing (1995).

Theorem 1. (Lawden (1963), Neustadt (1964)).

(θ1, ..., θN ,∆V1, ...,∆VN )

is an optimal solution of problem (1) if and only if there
exists a non-zero vector λ ∈ R

m, m = dim(φ) that verifies
the necessary and sufficient conditions:

∆Vi = −p(θi) |∆Vi| , ∀ i = 1, · · · , N, (5)

|∆Vi| = 0 or |p(θi)| = 1, ∀ i = 1, · · · , N, (6)

|∆Vi| = 0 or θi = θ0 or θi = θf or
d |p|
dθ

(θi) = 0, ∀ i = 1, · · · , N,
(7)

N
∑

i=1

R(θi)p(θi) |∆Vi| = −zf , (8)

|p(θ)| ≤ 1, ∀ θ ∈ [θ0, θf ]. (9)

where p(θ) is the so-called primer vector Carter (1991) and
is defined as:

p(θ) =
R(θ)Tλ

r(θ)
=

−λ1 sin(θ) + λ2 cos(θ)

1 + e cos(θ)
(10)

These results date back to the seminal work of Lawden
(1963) in the early sixties, proved rigorously later by
Neustadt in Neustadt (1964) and are based on the so-called
primer vector theory. Obviously a primer vector candidate
is completely defined by the choice of the Lagrange multi-
pliers λ1, λ2. In the next section, the particular properties
of the primer vector are analyzed such that these char-
acteristics may be used for the derivation of the optimal
solutions.

4. PRIMER VECTOR CANDIDATE DYNAMICS

By (10), p(θ) is obviously a 2π-periodic function. It is
a harmonic oscillator weighted by the positive function
r(θ) = 1 + e cos(θ). As a result, its sign changes every π.
Its derivative may be computed as follows:

dp

dθ
(θ) = −λ1(e+ cos(θ)) + λ2 sin(θ)

(1 + e cos(θ))2
. (11)

As 0 ≤ e < 1, it is easy to deduce that p(θ) reaches two
local extrema of opposite sign at θe1 and θe2 .

4.1 Lagrange multipliers as functions of an extremum

If p(θ) has an extremum p(θe) at θe then it comes from
(10) and (11) that:

λ1 = −p(θe) sin(θe), λ2 = p(θe)(e + cos(θe)). (12)

A primer vector candidate can thus be rewritten as follows:

p(θ) = p(θe)
cos(θ − θe) + e cos(θ)

1 + e cos(θ)
. (13)

4.2 Extremum ratio

From (12) it comes that:

|p(θe2)|
|p(θe1)|

sin(θe2) = − sin(θe1), (14)

|p(θe2)|
|p(θe1)|

(e + cos(θe2)) = −(e+ cos(θe1 )). (15)

By combining equations (14) and (15), one can get a
second order polynomial equation whom the ratio of the
norms is a solution:

X2 − 2e(e+ cos(θe1 ))

1− e2
X − 1 + 2e cos(θe1 ) + e2

1− e2
= 0. (16)

Only the positive one of this polynomial corresponds to
the ratio of norms, so that:

|p(θe2)|
|p(θe1)|

=
1 + 2e cos(θe1 ) + e2

1− e2
, (17)

Note that |p(θe1)| 6= 0 otherwise p(θ) ≡ 0 by (12).

From (17), it is easily seen that the maximum norm
extremum is such that cos(θe) ≤ −e whereas the mini-
mum norm extremum is such that cos(θe) ≥ −e. When
|p(θe1)| = 1 it comes that:

|p(θe2)| =
1 + 2e cos(θe1 ) + e2

1− e2
. (18)

Thus |p(θe2)| > 1 if and only if cos(θe1 ) > −e.

4.3 Extremum as a function of the Lagrange multipliers

For a given λ such that λ2 6= 0, the extremum anomalies
are given by the equation:

sin(θe)

e + cos(θe)
= −λ1

λ2

(19)

By defining Y = cos(θe) and Q = λ1

λ2
, it comes after taking

the square of (19) that:

(1 +Q2)Y 2 + 2eQ2Y + e2Q2 − 1 = 0. (20)
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So that:

cos(θe) =
±
√

1 +Q2(1− e2)− eQ2

1 +Q2
, (21)

and

sin(θe) = −Q
±
√

1 +Q2(1− e2) + e

1 +Q2
. (22)

Thus, keeping in mind the restrictions on the maximum
and minimum norm extremum, the maximum and mini-
mum norm value of the primer vector can be expressed in
terms of λ:

max
θ∈R

|p(θ)| = |λ2|(1 +Q2)
√

1 +Q2(1− e2)− e
, (23)

min
θ∈R

|p(θ)| = |λ2|(1 +Q2)
√

1 +Q2(1− e2) + e
. (24)

5. MINIMUM-FUEL OUT-OF-PLANE OPTIMAL
SOLUTIONS

The method used to derive the analytical solution of the
problem mainly consists in exploiting the different features
of the optimal primer vector and in discussing all the
different possible configurations of the optimal primer
vector. The solution of the minimum-fuel elliptic out-
of-plane rendezvous problem is strongly dependent upon
the duration of the rendezvous dθ = θf − θ0, the initial
and final anomalies θ0 and θf and upon the vector zf .
This dependency may be quite complicated as illustrated
by the next subsections. In this section, we have tried
to summarize the different solutions and the associated
conditions in the most possible clearest way. For each type
of optimal solution, the associated conditions involving dθ,
θ0, θf and zf are given. The optimal Lagrange multipliers
and related primer vector are then presented. Due to
obvious space limitations, the complete derivations of the
optimal solutions may be found in the reference Serra et al.
(2013). Let us first define some notations that will be
needed in the sequel:

θ± = min{θ ≥ θ0 /
cos(θ) = −e

sin(θ) = ±
√

1− e2
} (25)

θ±i♯ = θ♯ ± arccos(−1− 2e cos(θ♯))

θ̂±i♯ = θ♯ ± 2π ∓ arccos(−1− 2e cos(θ♯))
(26)

where ♯ = 0 for θ+i♯ and θ̂+i♯ while ♯ = f for θ−i♯ and θ̂−i♯ .

g±(θ♯) = ±e sin(θ♯) +
√

−e cos(θ♯)(1 + e cos(θ♯)) (27)

ε1 = sgn(zf1), ε2 = sgn(zf2),
ε0 = sgn(cos(θ0)zf1 + sin(θ0)zf2),
εf = sgn(cos(θf )zf1 + sin(θf )zf2).

(28)

5.1 Two interior impulses solution

Proposition 1. The optimal solution for the linearized
impulsive out-of-plane rendezvous problem is a 2-impulse
trajectory defined by the optimal locations θ± and the
defined by:

∆V (θ±) =

√
1− e2

2e
(∓ezf1 −

√

1− e2zf2), (29)

if the following conditions are verified :

e|zf | > |zf2 | and dθ ≥ 2π (30)

or

e|zf | > |zf2 | and dθ < π and sin(θ0) ≥
√

1− e2

and sin(θf ) ≤ −
√

1− e2
(31)

or
e|zf | > |zf2 | and dθ ≥ π and






























sin(θ0) ≥
√

1− e2

or

sin(θ0) ≤ −
√

1− e2 and sin(θf ) ≤ −
√

1− e2

or
{

| sin(θ0)| <
√

1− e2 and
(e+ cos(θ0))(e + cos(θf )) > 0.

(32)

Finally, the optimal Lagrange multipliers are

λ1 = −ε1
√

1− e2,
λ2 = 0,

(33)

while the optimal primer vector is defined by:

p(θ) =
ε1
√
1− e2 sin(θ)

1 + e cos(θ)
(34)

Remark 1. Note that when the rendezvous lasts more
than 2π, the optimal solution of the planning may be cho-
sen to be concentrated over two impulses, as is presented
in Proposition 1 or spread over N = N− + N+ impulses,
where N is defined by:

N = N− +N+,
N± = max {i ∈ N>0 : θ± + 2(i− 1)π ≤ θf} . (35)

The optimal locations of the N impulses are given by the
union of the two sets:

{

θ+i : i = 1, · · · , N+

}

∪
{

θ−i : i = 1, · · · , N−

}

,
θ±i = θ± + 2(i− 1)π, i = 1, · · · , N+.

(36)

The optimal directions of thrust are characterized by:

∆V (θ+i ) = ε1
∣

∣∆V (θ+i )
∣

∣ = −∆V (θ−i ) = ε1
∣

∣∆V (θ−i )
∣

∣ ,
(37)

while the optimal amplitudes are:

N+
∑

i=1

|∆V (θ+
i
)| = ε1

√
1− e2

2e

(

ezf1 +
√

1− e2zf2

)

, (38)

N
−

∑

i=1

|∆V (θ−
i
)| = ε1

√
1− e2

2e

(

ezf1 −
√

1− e2zf2

)

. (39)

Finally, the optimal consumption is defined by |zf1 |
√
1− e2.

5.2 One interior impulse solutions

Proposition 2. Provided that cos(θ0)zf1+sin(θ0)zf2 6= 0
and cos(θf )zf1 + sin(θf )zf2 6= 0, the optimal solution for
the linearized impulsive out-of-plane rendezvous problem
is a 1-impulse trajectory defined by the optimal locations
θi∗:











cos(θi∗) = −ε∗
zf2
|zf |

,

sin(θi∗) = ε∗
zf1
|zf |

,
(40)

and the optimal thrusts are defined by:

∆V (θi∗) = −ε∗|zf |+ ezf2 , (41)

with ∗ = 0, if the following conditions are verified:

e|zf | ≤ ε0zf2 and dθ < 2π and εf = −ε0 (42)
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or
e|zf | > ε0zf2 and dθ < 2π and εf = −ε0
and
|zf |+ (2e|zf | − ε0zf2) cos(θ0) + ε0zf1 sin(θ0) > 0
and
ε0(e+ cos(θ0))zf1 + (ε0zf2 − e|zf |) sin(θ0) > 0
and
|zf |+ (2e|zf | − ε0zf2) cos(θf ) + ε0zf1 sin(θf ) > 0
and
ε0(e+ cos(θf ))zf1 + (ε0zf2 − e|zf |) sin(θf ) < 0

(43)

with ∗ = 2, if the following conditions are verified:

dθ ≥ 2π and |zf2 | > e|zf | (44)

or

π ≤ dθ < 2π and e|zf | ≤ |zf2 | and εf = ε0, (45)

or
π ≤ dθ < 2π and e|zf | > |zf2 | and εf = ε0
and
|zf |+ (2e|zf | − ε2zf2) cos(θ0) + ε2zf1 sin(θ0) > 0
and
ε2zf1(e + cos(θ0))− (e|zf | − ε2zf2) sin(θ0) > 0
and
|zf |+ (2e|zf | − ε2zf2) cos(θf ) + ε2zf1 sin(θf ) > 0
and
−ε2zf1(e+ cos(θf )) + (e|zf | − ε2zf2) sin(θf ) > 0.

(46)

Finally, the optimal Lagrange multipliers are

λ1 = − zf1
|zf |

,

λ2 = ε∗e−
zf2
|zf |

,
(47)

while the optimal primer vector is defined by:

p(θ) =
zf1 sin(θ) + (ε∗e|zf | − zf2) cos(θ)

(1 + e cos(θ))|zf |
(48)

Remark 2. When dθ ≥ 2π, as in the previous case, the
optimal solution may be concentrated on one impulse or
scattered in N impulses defined by:

N = max {i ∈ N>0 : θi2 + 2(i− 1)π ≤ θf} . (49)

The optimal locations of the N impulses are:

θi = θi2 + 2(i− 1)π, i = 1, · · · , N. (50)

The optimal directions and magnitudes of thrust are then
characterized by:

∆Vi = −ε2 |∆Vi| ,
N
∑

i=1

|∆Vi| = |zf | − e|zf2 |.
(51)

Remark 3. When cos(θ0)zf1 + sin(θ0)zf2 = 0 or
cos(θf )zf1 + sin(θf )zf2 = 0, the optimal solution comes
down to a one impulse boundary solution for which there
may exist an infinite number of optimal Lagrange multipli-
ers. Without loss of generality, the primer vector may be
chosen as in (48) where ε∗ = sgn(− sin(θ∗)zf1 +cos(θ∗)zf2)
and ∗ = 0 or ∗ = f .

(1) If cos(θ0)zf1 + sin(θ0)zf2 = 0, then the optimal
solution is a one initial impulse solution and the
associated optimal thrust is given by:

∆V (θ0) = (− sin(θ0)zf1 + cos(θ0)zf2)(1 + e cos(θ0)).

(2) If cos(θf )zf1 + sin(θf )zf2 = 0, then the optimal solu-
tion is a one final impulse solution and the associated
optimal thrust is given by:

∆V (θf ) = (− sin(θf )zf1 + cos(θf )zf2)(1 + e cos(θf )).

5.3 Initial (or final) and one interior impulses

To make the next two results clearer to the reader, we’d
like to emphasize that + is associated with # = 0 (initial
impulse) while − is associated with # = f (final impulse)
as is indicated by the notation (26).

Case I

Proposition 3. The optimal solution for the linearized
impulsive out-of-plane rendezvous problem is a 2-impulse
trajectory defined by the optimal locations (θ♯, θ

±
i♯) and

the associated optimal thrusts,

∆V (θ♯) = (1 + e cos(θ♯))
cos(θ±i♯)zf1 + sin(θ±i♯)zf2

sin(θ±i♯ − θ♯)
,

∆V (θ±i♯) = −(1 + e cos(θ±i♯))
cos(θ♯)zf1 + sin(θ♯)zf2

sin(θ±i♯ − θ♯)
.

(52)
if the conditions:

♯ = 0 and dθ < π and sin(θ0) <
√

1− e2

and 1 + 2e cos(θ0) + cos(θf − θ0) ≤ 0 and










ε0 = εf
or

ε0 = −εf and
|zf |+ (2e|zf | − ε0zf2) cos(θ0)

+ε0zf1 sin(θ0) ≤ 0

(53)

or

♯ = f and dθ < π and sin(θf ) > −
√

1− e2

and 1 + 2e cos(θf ) + cos(θf − θ0) ≤ 0 and










ε0 = εf
or

ε0 = −εf and
|zf |+ (2e|zf | − ε0zf2) cos(θf )

+ε0zf1 sin(θf ) ≤ 0

(54)

or
♯ = 0 and π ≤ dθ < 2π and

sin(θ0) <
√

1− e2 and cos(θ0) ≤ 0 and
1− cos(θf − θ0) + 2 sin(θf − θ0)g

−(θ0) ≥ 0
and
|zf |+ (2e|zf | − ε0zf2) cos(θ0) + ε0zf1 sin(θ0) ≤ 0
and
sin(θf − θ0) + e(sin(θf )− sin(θ0))+
2(cos(θf − θ0) + e cos(θ0))g

−(θ0) ≤ 0

(55)

or
♯ = f and π ≤ dθ < 2π and

sin(θf ) > −
√

1− e2 and cos(θf ) ≤ 0 and
1− cos(θf − θ0) + 2 sin(θf − θ0)g

+(θf ) ≥ 0
and
|zf |+ (2e|zf |+ εfzf2) cos(θf )− εfzf1 sin(θf ) ≤ 0
and
sin(θf − θ0) + e(sin(θf )− sin(θ0))+
2(cos(θf − θ0) + e cos(θf ))g

+(θf ) ≥ 0

(56)

are verified. The optimal Lagrange multipliers are given
by:

λ1 = ε♯ (± sin(θ♯)(1 + 2e cos(θ♯)

−2 cos(θ♯)
√

−e cos(θ♯)(1 + e cos(θ♯))

)

,

λ2 = ε♯ (±e∓ cos(θ♯)(1 + e cos(θ♯)

−2 sin(θ♯)
√

−e cos(θ♯)(1 + 2e cos(θ♯))

)

,

(57)

while the optimal primer vector is defined by:
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p(θ) = p(θ±i♯)
cos(θ − θ±i♯) + e cos(θ)

1 + e cos(θ)
(58)

Case II

Proposition 4. The optimal solution for the linearized
impulsive out-of-plane rendezvous problem is a 2-impulse

trajectory defined by the optimal locations (θ♯, θ̂
±
i♯) and the

associated optimal thrusts given by (52), if the conditions:

♯ = 0 and π ≤ dθ < 2π and

sin(θ0) < −
√

1− e2 and cos(θ0) ≤ 0 and
1− cos(θf − θ0)− 2 sin(θf − θ0)g

+(θ0) ≥ 0
and
1 + 2e cos(θ0) + cos(θf − θ0) ≥ 0
and
|zf |+ (2e|zf |+ ε0zf2) cos(θ0)− ε0zf1 sin(θ0) ≤ 0
and
− sin(θf − θ0)− e(sin(θf )− sin(θ0))+
2(cos(θf − θ0) + e cos(θ0))g

+(θ0) ≥ 0

(59)

or

♯ = f and π ≤ dθ < 2π and

sin(θf ) >
√

1− e2 and cos(θf ) ≤ 0 and
1− cos(θf − θ0)− 2 sin(θf − θ0)g

−(θf ) ≥ 0
and
1 + 2e cos(θf ) + cos(θf − θ0) ≥ 0
and
|zf |+ (2e|zf | − εfzf2) cos(θf ) + εfzf1 sin(θf ) ≤ 0
and
− sin(θf − θ0)− e(sin(θf )− sin(θ0))+
2(cos(θf − θ0) + e cos(θf ))g

−(θf ) ≥ 0

(60)

are verified. The optimal Lagrange multipliers are given
by:

λ1 = ε♯ (∓ sin(θ♯)(1 + 2e cos(θ♯))

−2 cos(θ♯)
√

−e cos(θ♯)(1 + e cos(θ♯))

)

,

λ2 = ε♯ (∓e± cos(θ♯)(1 + e cos(θ♯))

−2 sin(θ♯)
√

−e cos(θ♯)(1 + 2e cos(θ♯))

)

,

(61)

while the optimal primer vector is defined by:

p(θ) = p(θ̂±i♯)
cos(θ − θ̂±i♯) + e cos(θ)

1 + e cos(θ)
(62)

Remark 4. When dθ ≥ π, the optimal solution may be a
3-impulse solution made of one initial impulse, one interior
impulse and one final impulse, if conditions (55)-(56), (55)-
(60), (56)-(59) or (58)-(62) are satisfied.

5.4 Boundary solutions

Proposition 5. The optimal solution for the linearized
impulsive out-of-plane rendezvous problem is a 2-impulse
trajectory defined by the optimal locations (θ0, θf ) and the
associated optimal thrusts,

∆V (θ0) = (1 + e cos(θ0))
cos(θf )zf1 + sin(θf )zf2

sin(θf − θ0)
,

∆V (θf ) = −(1 + e cos(θf ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θf − θ0)
,

(63)

if the conditions
dθ < π and ε0 = εf and

((sin(θ0) <
√

1− e2) or (sin(θf ) > −
√

1− e2))
and 1 + 2e cos(θf ) + cos(θf − θ0) > 0
and 1 + 2e cos(θ0) + cos(θf − θ0) > 0
and cos(θf )zf1 + sin(θf )zf2 6= 0
and cos(θ0)zf1 + sin(θ0)zf2 6= 0

(64)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = −ε0
cos(θf ) + cos(θ0) + 2e cos(θ0) cos(θf )

sin(θf − θ0)
,

λ2 = −ε0
sin(θf ) + sin(θ0) + e sin(θf + θ0)

sin(θf − θ0)
,

(65)

while the optimal primer vector is defined by:

p(θ) = ε0
(1 + e cos(θf )) sin(θ − θ0)

sin(θf − θ0)(1 + e cos(θ))

−ε0
sin(θf − θ)(1 + e cos(θ0)

sin(θf − θ0)(1 + e cos(θ))

(66)

or
π < dθ < 2π and ε0 = −εf and

|λ2|(1 +Q2)
√

1 +Q2(1− e2) + e
< 1 (67)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = εf
cos(θf )− cos(θ0)

sin(θf − θ0)
,

λ2 = εf

(

sin(θf )− sin(θ0)

sin(θf − θ0)
+ e

)

,

(68)

while the optimal primer vector is defined by:

p(θ) = −εf
sin(θ − θ0) + sin(θf − θ) + e cos(θ0)

sin(θf − θ0)(1 + e cos(θ))
(69)

or
π < dθ < 2π and ε0 = εf and
1 + 2e cos(θf ) + cos(θf − θ0) < 0 and
1 + 2e cos(θ0) + cos(θf − θ0) < 0 and
cos(θf )zf1 + sin(θf )zf2 6= 0 and
cos(θ0)zf1 + sin(θ0)zf2 6= 0 and














{

| sin(θ0)| <
√

1− e2 and
(e+ cos(θ0))(e + cos(θf )) < 0

or

sin(θ0) < −
√

1− e2 and sin(θf ) > −
√

1− e2

(70)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = ε0
cos(θf ) + cos(θ0) + 2e cos(θ0) cos(θf )

sin(θf − θ0)
,

λ2 = ε0
sin(θf ) + sin(θ0) + e sin(θf + θ0)

sin(θf − θ0)
,

(71)

while the optimal primer vector is defined by:

p(θ) = −ε0
(1 + e cos(θf )) sin(θ − θ0)

sin(θf − θ0)(1 + e cos(θ))

+ε0
sin(θf − θ)(1 + e cos(θ0)

sin(θf − θ0)(1 + e cos(θ))

(72)

Remark 5. When dθ = π and θ0 = −π
2
+ kπ, k ∈ Z,

then the optimal solution may be concentrated on one
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boundary impulse or scattered in two boundary impulses.
In that case, there may exist an infinite number of opti-
mal Lagrange multipliers and the optimal directions and
amplitudes of thrust are then characterized by:

∆V (θ0)

|∆V (θ0)|
= ε1 and

∆V (θf )

|∆V (θf )|
= −ε1, (73)

with |∆V (θ0)|+ |∆V (θf )| = |zf |.
6. NUMERICAL EXAMPLE

The first example is based on the PROBA-3 mission whose
main goals are to demonstrate the technologies required
for Formation Flying of two spacecraft in highly elliptical
orbit Peyrard et al. (2013). This mission is made of two
independent minisatellites in HEO (Highly-elliptical Earth
Orbit) in Precise Formation Flying formation. These two
satellites are close to one another with the capacity to
accurately control their attitude and separation. Among
the different demonstrations scheduled for the PROBA-
3 mission, rendezvous experiments will be one of the key
technologies tested for on-board autonomy. The necessary
orbital elements and conditions for the out-of-plane ren-
dezvous definition are given in Table 1.

Semi-major axis a = 37039.887 km.

Eccentricity e = 0.80621

θ0 2.042 rad.

XT
0

[−5 0.5 ] km m/s

θf 3π rad.

XT
f

[ 20 0.2 ] m m/s

Table 1. Rendezvous parameters

The optimal solution for the impulsive rendezvous is
presented in Table 2. Note that, since dθ > 2π, it is
always possible to choose an optimal solution scattered
over the maximum number of impulsive maneuvers while
preserving the optimal consumption as demonstrated here.

θ1 (rad) 2.5085

∆V (θ1) m/s −0.3492

θ2 (rad) 3.7747

∆V (θ2) m/s 0.1639

θ3 (rad) 8.7917

∆V (θ3) m/s −0.3492

Fuel Cost m/s 0.8624

Table 2. Optimal solution for Proba 3 example

Figures 1 and 2 respectively depict the optimal out-of-
plane trajectory in the phase plane and the optimal primer
vector.
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Fig. 1. Optimal trajectory in phase plane: Proba 3.
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Fig. 2. Optimal primer vector: Proba 3.

7. CONCLUSIONS

A new analytical solution has been proposed to address
the problem of time-fixed fuel-optimal out-of-plane elliptic
rendezvous between spacecraft in a linear setting. Despite
its apparent complexity (different number of cases and
conditions), this analytical solution paves the way for
onboard implementation in order to develop operational
autonomy of future missions.
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