
Frequency domain EIV identification:
a Frisch Scheme approach

Umberto Soverini ∗ Torsten Söderström ∗∗
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1. INTRODUCTION

Representations where errors or measurement noises are present
on both inputs and outputs are usually called errors–in–
variables (EIV) models and play an important role in several
engineering applications. The identification of EIV models has
been deeply investigated in the literature and many solutions
have been proposed with different approaches (Söderström,
2007, 2012).

Among them, frequency domain identification techniques have
received particular attention (Pintelon and Schoukens, 2012).
The frequency domain approach has some special features, not
present in time domain methods. In particular, filtering can be
reduced to the selection of appropriate frequencies in a limited
band of the signal spectrum; moreover, continuous–time and
discrete–time models can be handled with equal difficulties
(McKelvey, 2002). From a theoretic point of view, there is a full
equivalence between time and frequency domain identification
methods, also for finite data records (Agüero et al., 2010).

In this work the EIV identification problem for SISO systems
is addressed by using a frequency domain approach, when the
noise-free input is an arbitrary sequence. The system input and
output are assumed to be affected by additive white noises with
unknown variances. The proposed solution can be viewed as
a frequency domain version of the so–called Frisch Scheme
approach, originally developed for time domain techniques
(Guidorzi et al., 2008). In particular, the proposed identifica-
tion criterion can be considered as the frequential counterpart
of the time domain covariance–matching criterion, originally
presented in (Diversi et al., 2003).

The organization of the paper is as follows. Section 2 defines the
EIV identification problem in the frequency domain. In Section
3 the problem is reformulated as a Frisch Scheme problem
and the search for the solution is analyzed within this context.
Section 4 describes a possible identification criterion, based on
covariance–matching properties that can be directly computed
in the frequency domain. In Section 5 the effectiveness of
the proposed approach is verified by means of Monte Carlo

simulations. Finally some concluding remarks are reported in
Section 6.

2. STATEMENT OF THE PROBLEM

Consider the linear time–invariant SISO system described in
Figure 1. The noise–free input and output û(t), ŷ(t) are linked
by the linear difference equation

A(z−1) ŷ(t) = B(z−1) û(t), (1)

where A(z−1) and B(z−1) are polynomials in the backward
shift operator z−1

A(z−1) = 1 + α1 z
−1 + · · ·+ αn z

−n (2)

B(z−1) = β0 + β1 z
−1 + · · ·+ βn z

−n. (3)

In the EIV environment the input and output measurements are
assumed to be corrupted by additive noise so that the available
observations are

u(t) = û(t) + ũ(t) (4)
y(t) = ŷ(t) + ỹ(t). (5)

The following assumptions are satisfied.

A1. System (1) is asymptotically stable.
A2. A(z−1) and B(z−1) do not share any common factor.
A3. The order n of the system is assumed as a priori known.
A4. The noise–free input û(t) is a quasi–stationary bounded

deterministic signal (Ljung, 1999) and is persistently ex-
citing of sufficiently high order.

A5. ũ(t) and ỹ(t) are zero–mean, mutually uncorrelated Gaus-
sian white processes with unknown variances λ∗

u and λ∗

y ,
respectively.

Let {u(t)}N−1
t=0 and {y(t)}N−1

t=0 be a set of input and output
observations at N equidistant time instants. The corresponding
Discrete Fourier Transforms (DFTs) are defined as
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ũ(t) ỹ(t)
+ +

u(t) y(t)

Fig. 1. Errors–in–variables model

U(ωk) =
1√
N

N−1
∑

t=0

u(t) e−jωkt (6)

Y (ωk) =
1√
N

N−1
∑

t=0

y(t) e−jωkt , (7)

where ωk = 2πk/N and k = 0, . . . , N−1. The system transfer
function is represented as

G(e−jωk) =
B(e−jωk )

A(e−jωk )
. (8)

The DFTs defined in (6) and (7) can be expressed in matrix
form by introducing the N ×N Fourier matrix FN (Agüero et
al., 2010) whose entries are defined as follows

FN = [fik] (9)

fik =
1√
N

e−j 2π

N
(i−1)(k−1) i, k = 1, . . . , N . (10)

In can be proved that matrix FN is unitary, i.e. FNFH
N = I ,

where (·)H denotes the transpose and conjugate operation.

Defining the following vectors in time and frequency domain

vu = [u(0) . . . u(N − 1)]T (11)

vy = [y(0) . . . y(N − 1)]T (12)

VU = [U(ω0) . . . U(ωN−1)]
T (13)

VY = [Y (ω0) . . . Y (ωN−1)]
T (14)

the relations (6) and (7) can be represented by the linear
transformations

VU = FN vu (15)
VY = FN vy . (16)

In the frequency domain, the problem under investigation can
be stated as follows.

Problem 1. Let U(ωk), Y (ωk) be a set of noisy measurements
generated by an EIV system of type (1)–(5), under Assumptions
A1–A5, where ωk = 2πk/N and k = 0, . . . , N − 1. Estimate
the system parametersαi (i = 1, . . . , n), βi (i = 0, . . . , n) and
the noise variances λ∗

u, λ∗

y .

Under the additional assumption that the noise variances λ∗

u, λ∗

y

are unknown but their ratio ρ = λ∗

y/λ
∗

u is known, a maximum
likelihood solution of Problem 1. can be obtained, as described
in (Soverini and Söderström, 2014).

3. FREQUENCY DOMAIN FRISCH SCHEME

With reference to the noise–free signals û(t) and ŷ(t), defini-
tions similar to (11)–(14) and (15)–(16) hold, i.e.

v̂u = [û(0) . . . û(N − 1)]T (17)

v̂y = [ŷ(0) . . . ŷ(N − 1)]T (18)

V̂U = [Û(ω0) . . . Û(ωN−1)]
T (19)

V̂Y = [Ŷ (ω0) . . . Ŷ (ωN−1)]
T , (20)

where

V̂U = FN v̂u (21)

V̂Y = FN v̂y . (22)

It is a well–known fact (Pintelon et al., 1997) that for finite
N , even in absence of noise, the ratio of the DFTs Ŷ (ωk) and
Û(ωk) (ωk = 2πk/N ) is not equal to the true transfer function

G(e−jωk ) 6= Ŷ (ωk)

Û(ωk)
. (23)

In fact, it can be proved that the DFTs Ŷ (ωk) and Û(ωk)
exactly satisfy an extended model that includes also a transient
term, i.e.

A(e−jωk ) Ŷ (ωk) = B(e−jωk ) Û(ωk) + T (e−jωk) , (24)

where T (z−1) is a polynomial of order n− 1

T (z−1) = τ0 + τ1 z
−1 + · · ·+ τn−1 z

−n+1 (25)

that takes into account the effects of the initial and final condi-
tions of the experiment.

By considering the whole number of frequencies, eq. (24) can
be rewritten in a matrix form. For this purpose, introduce the
parameter vectors

θα = [αn . . . α11 ]T (26)

θβ = [βn . . . β1β0]
T (27)

θτ = [τn−1 . . . τ0]
T . (28)

and define the following vector Θ, with dimension p = 3n+2,
containing the whole number of parameters

Θ = [−θTβ − θTτ θTα ]T . (29)

In absence of noise, the system parameters can be recovered by
means of the following procedure. Define the row vectors

Zn+1(ωk) = [e−jnωk e−j(n−1)ωk . . . e−jωk 1] (30)

Zn(ωk) = [e−j(n−1)ωk . . . e−jωk 1] , (31)

whose entries are constructed with multiple frequencies of ωk,
and construct the following matrices

Π =







Zn+1(ω0)
...

Zn+1(ωN−1)






Ψ =







Zn(ω0)
...

Zn(ωN−1)






. (32)

of dimension N × (n+ 1) and N × n, respectively.

With the noise–free input–output DFTs (19) and (20) construct
the following N ×N diagonal matrices

V̂ diag
U =











Û(ω0) 0 . . . 0

0 Û(ω1) . . . 0
...

. . .
...

0 . . . 0 Û(ωN−1)











(33)

V̂ diag
Y =











Ŷ (ω0) 0 . . . 0

0 Ŷ (ω1) . . . 0
...

. . .
...

0 . . . 0 Ŷ (ωN−1)











. (34)
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Compute the N × (n+ 1) matrices

Φ̂B = V̂ diag
U Π Φ̂A = V̂ diag

Y Π (35)

and set
Φ̂T = Ψ . (36)

Construct the N × p matrix

Φ̂ = [Φ̂B | Φ̂T | Φ̂A] . (37)

Thus, eq. (24) can be rewritten as

Φ̂Θ = 0 . (38)

It then holds
Σ̂Θ = 0 , (39)

where Σ̂ is the p× p matrix

Σ̂ =
1

N
(Φ̂HΦ̂) . (40)

In presence of noise, the previous procedure can be modified
as follows. With the noisy input–output DFTs (13) and (14)
construct the N ×N diagonal matrices

V diag
U =









U(ω0) 0 . . . 0
0 U(ω1) . . . 0
...

. . .
...

0 . . . 0 U(ωN−1)









(41)

V diag
Y =









Y (ω0) 0 . . . 0
0 Y (ω1) . . . 0
...

. . .
...

0 . . . 0 Y (ωN−1)









, (42)

compute the matrices

ΦB = V diag
U Π ΦA = V diag

Y Π ΦT = Ψ (43)

and construct the N × p matrix

Φ = [ΦB |ΦT | ΦA] . (44)

Because of Assumptions A5, when N → ∞, we obtain the
following p× p positive definite matrix

Σ =
1

N
(ΦHΦ) = Σ̂ + Σ̃∗ , (45)

where

Σ̃∗ =





λ∗

u In+1 0 0
0 0n 0
0 0 λ∗

y In+1



 . (46)

From (39) and (45), the parameter vector Θ, defined in (29),
can be obtained as the kernel of

(

Σ− Σ̃∗

)

Θ = 0 . (47)

Starting from knowledge of the noisy matrix Σ, the determina-
tion of the system parameter vectorΘ and of the noise variances
λ∗

u, λ∗

y can be seen as a Frisch Scheme problem (Beghelli et al.,
1990), (Guidorzi et al., 2008).

Consider the set of non–negative definite diagonal matrices of
type

Σ̃ =

[

λu In+1 0 0
0 0n 0
0 0 λy In+1

]

(48)

such that

Σ− Σ̃ ≥ 0 det
(

Σ− Σ̃
)

= 0 . (49)

With the same reasoning of (Beghelli et al., 1990), the following
statements can be proved.

Theorem 1. The set of all matrices Σ̃ satisfying conditions
(49) defines the points P = (λu, λy) of a convex curve S(Σ)
belonging to the first quadrant of the noise space R2 whose
concavity faces the origin. At every point P = (λu, λy) can
be associated the noise matrix Σ̃(P ) and the coefficient vector
Θ(P ) satisfying the relation

(

Σ− Σ̃(P )
)

Θ(P ) = 0 . 3 (50)

In Figure 2 an example of S(Σ) is reported.

Theorem 2. Because of the relations (46) and (47), the point
P ∗ = (λ∗

u, λ
∗

y), associated with the true variances of ũ(t) and
ỹ(t), belongs to S(Σ) and the corresponding coefficient vector
Θ(P ∗) is characterized (after a normalization of its last entry to
1) by the true system parameter vector, i.e. Θ(P ∗) = Θ. 3

Theorem 3. Partition the matrix Σ as follows

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

(51)

where Σ11 is the square matrix of dimension (n + 1). The
intersection of S(Σ) with the λu axis is the point Pu =
(λmax

u , 0) where

λmax
u = min eig

(

Σ11 − Σ12 Σ
−1
22 Σ21

)

. (52)

Partition the matrix Σ instead as follows

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

(53)

where Σ22 is the square matrix of dimension (n + 1). The
intersection of S(Σ) with the λy axis is the point Py =
(0, λmax

y ) where

λmax
y = min eig

(

Σ22 − Σ21 Σ
−1
11 Σ12

)

. 3 (54)

The next theorem describes a parametrization of the curveS(Σ)
that allows to associate a solution of (49) with every straight
line departing from the origin and lying in the first quadrant
(Guidorzi et al., 2008). This parametrization plays an important
role in the practical implementation of the identification algo-
rithm.

Theorem 4. Let ξ = (ξ1, ξ2) be a generic point of the first
quadrant of R2 and r the straight line from the origin through
ξ. Its intersection with S(Σ) is the point P = (λu, λy) given by

λu =
ξ1
λM

λy =
ξ2
λM

(55)

where
λM = max eig

(

Σ−1Σ̃ξ

)

(56)

Σ̃ξ =

[

ξ1 In+1 0 0
0 0n 0
0 0 ξ2 In+1

]

. 3 (57)

Remark 1. The described procedure allows to construct the
curve S(Σ) in the noise space (λu, λy) also when only a subset
of the whole frequency range is used, i.e. ωk ∈ W = [ωi, ωf ],
with i ≥ 0 and f ≤ N − 1, on condition that the number
of frequencies L = f − i + 1 is large enough. The subset
W = [ωi, ωf ] must be chosen by the user on the basis of a
priori knowledge of the frequency properties of the transfer
function G(e−jωk ) and of the noise–free input Û(ωk).

As asserted in Theorem 2, the determination of the point
P ∗ on S(Σ) leads to the solution of Problem 1. For this
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Fig. 2. Typical shape of S(Σ).
purpose a search criterion must be introduced. Unfortunately,
the theoretic properties of S(Σ) described so far do not allow
to distinguish point P ∗ from the other points of the curve.

4. A COVARIANCE–MATCHING CRITERION

In this section we will describe a possible search criterion in
order to find the point P ∗ on S(Σ). The proposed criterion is
based on considerations analogue to those reported in (Diversi
et al., 2003) with reference to time domain EIV identification
techniques.

Define the process
Γ(ωk) = A(e−jωk )Y (ωk)−B(e−jωk)U(ωk)− T (e−jωk)

= A(e−jωk ) Ỹ (ωk)−B(e−jωk) Ũ(ωk) . (58)
By introducing the diagonal matrices

Ṽ diag
Y =











Ỹ (ω0) 0 . . . 0

0 Ỹ (ω1) . . . 0
...

. . .
...

0 . . . 0 Ỹ (ωN−1)











(59)

Ṽ diag
U =











Ũ(ω0) 0 . . . 0
0 Ũ(ω1) . . . 0
...

. . .
...

0 . . . 0 Ũ(ωN−1)











(60)

it is possible to define the N × (n+ 1) matrices

Φ̃A = Ṽ diag
Y Π Φ̃B = Ṽ diag

U Π (61)
so that from (58) we can write the following expressions in
vector form

VΓ = ΦA θTα − ΦB θTβ − ΦT θTτ (62)

= Φ̃A θTα − Φ̃B θTβ (63)
where

VΓ = [Γ(ω0) . . .Γ(ωN−1)]
T . (64)

Equation (63) is the DFT vector form of the time domain
relation

γ(t) = A(z−1) ỹ(t)−B(z−1) ũ(t) . (65)
It results

VΓ = FNvγ , (66)
where

vγ = [γ(0) . . . γ(N − 1)]T . (67)
and FN has been defined in (9)–(10).

From (65), the process γ(t) is the sum of two MA processes
driven by the white noises ỹ(t) and ũ(t). Because of the
assumptions on ỹ(t) and ũ(t) the autocorrelations of γ(t),
rγ(τ) = E [γ(t) γ(t− τ)] = rγ(−τ), are given by

rγ(0) = λ̃∗

y

n
∑

i=0

α2
i + λ̃∗

u

n
∑

i=0

β2
i (68)

rγ(τ) = λ̃∗

y

n−τ
∑

i=0

αi αi+τ + λ̃∗

u

n−τ
∑

i=0

βi βi+τ (69)

for τ = 1, . . . , n

rγ(τ) = 0 for τ > n , (70)

where α0 = 1. For every point P = (λu, λy) of S(Σ), define
now the vector

rτ (P ) = [rγ(0, P ) rγ(1, P ) . . . rγ(τ, P )]
T (71)

whose entries are computed by means of (68)–(70) using the
variances λu, λy and the parameters Θ(P ).

It is also possible to compute the sample vector

r̄τ (P ) = [r̄γ(0, P ) r̄γ(1, P ) . . . r̄γ(τ, P )]
T (72)

by means of the time domain sequence γ(t). For this purpose
we can proceed as follows. Consider the Hankel matrix

Hτ (γ) =









γ(n) . . . γ(n+ τ)
γ(n+ 1) . . . γ(n+ τ + 1)

...
...

γ(N − τ − 1) . . . γ(N − 1)









. (73)

with τ ≥ n.

Remark 2. The value of τ is a user choice that can influence the
performance of the identification algorithm. This aspect will be
illustrated by means of a numerical example in Section 5.

Let us define with viγ (i = 0, . . . , τ ) the column vectors of
Hτ (γ), i.e.

Hτ (γ) =
[

vτγ . . . v1γ v0γ
]

. (74)

Each vector viγ has dimension M = N − τ − n and can be
obtained from the N–dimensional vector vγ (67) by a proper
selection of its entries

viγ = J i vγ (75)

where
J i = [0M×(N−M−i) | IM | 0M×i] . (76)

The sample autocorrelations r̄γ(i, P ) can thus be obtained as

r̄γ(i, P ) =
1

M
(v0γ)

T (viγ) i = 0, . . . , τ . (77)

In the following we will show that the autocorrelations r̄γ(i, P )
can also be computed starting from the frequency domain
vector VΓ obtained from the data by means of (62).

Let us denote with V i
Γ the DFT vector corresponding to viγ , i.e.

V i
Γ = FM viγ i = 0, . . . , τ (78)

where FM is the M × M Fourier matrix defined according to
equations (9)–(10).

Since

V i
Γ = FM viγ = FM J i vγ = FM J i F−1

N VΓ , (79)

it results
V i
Γ = Zi VΓ (80)

where
Zi = FM J i F−1

N . (81)
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Thus, recalling that

F−H
M F−1

M = (FM FH
M )−1 = IM , (82)

we have

r̄γ(i, P ) =
1

M
(v0γ)

T (viγ) =
1

M
(V 0

Γ )
H F−H

M F−1
M V i

Γ

=
1

M
(V 0

Γ )
H V i

Γ . (83)

Finally, we obtain

r̄γ(i, P ) =
1

M
(V 0

Γ )
H V i

Γ =
1

M
V H
Γ (Z0)H Zi VΓ

=
1

M
V H
Γ Ri VΓ (84)

where

Ri = (Z0)H Zi = F−H
N (J0)T J i F−1

N . (85)

Note that the matrices Ri (i = 0, . . . , τ ) can be evaluated in
advance, before computing VΓ through (62).

Since, for N → ∞
rτ (P

∗) = r̄τ (P
∗) = [rγ(0) rγ(1) . . . rγ(τ)]

T
, (86)

the following covariance–matching cost function can be con-
sidered

J(P ) = ‖rτ (P )− r̄τ (P )‖2 (87)

where the theoretical statistical properties of γ(t) are compared
with those computed from the data.

Problem 1 can thus be solved by minimizing J(P ) along S(Σ).
In fact, the point P ◦ associated with the minimum of J(P ) can
be considered as an estimate of the point P ∗ = (λ∗

u, λ
∗

y). Once
P ∗ is estimated, an estimate of the system parameter vector Θ
can be obtained through (50).

It is thus possible to develop the following algorithm.

Algorithm 1.

(1) Compute, on the basis of the available data U(ωk), Y (ωk)
with ωk = 2πk/N (k = 0, . . . , N − 1), the matrices ΦA,
ΦB and ΦT as in (43) and construct the matrix Φ as in
(44).

(2) Compute, as in (45), the sample estimate of matrix

Σ =
1

N
(ΦHΦ) . (88)

(3) Select τ ≥ n and compute matrices Ri (i = 0, . . . , τ )
with (85).

(4) Start from a generic point ξ (a generic direction) in the
first quadrant of R2 and compute, by means of (55)–(57)
the corresponding point P = (λu, λy) on S(Σ).

(5) Compute the estimates of Σ̂(P ) and Θ(P ) by means of
the relations

Σ̂(P ) = Σ− diag [λu In+1 | 0n |λy In+1] , (89)

Σ̂(P )Θ(P ) = 0 . (90)

(6) Construct the vector rτ (P ) as in (71) through (68)–(70).
(7) Compute the frequency vector VΓ by means of (62).
(8) Compute through (84) the entries of vector r̄τ (P ), defined

in (72).
(9) Compute the value of the cost function J(P ) (87).

(10) Search on the curve S(Σ) for the point P ◦ associated with
the minimum of J(P ).

Table 1. True and estimated parameters obtained
with Alg.1 and the Frisch-CM algorithm

true Alg.1 Frisch−CM

α1 −0.5 −0.4965 ± 0.0599 −0.4969 ± 0.0600

α2 0.3 0.2986 ± 0.0648 0.2996 ± 0.0664

β0 2 1.9973 ± 0.0908 1.9958 ± 0.0903

β1 −1.2 −1.1970 ± 0.1371 −1.1970 ± 0.1372

β2 −0.6 −0.6034 ± 0.1754 −0.6007 ± 0.1798

λ∗

u 0.1 0.0997 ± 0.0360 0.1001 ± 0.0363

λ∗

y 0.6 0.5643 ± 0.1755 0.5743 ± 0.1763

5. NUMERICAL EXAMPLES

Example 1. The proposed algorithm has been tested on se-
quences generated by a second–order model of type (1), already
proposed in (Diversi et al., 2007)

A(z−1) = 1− 0.5 z−1 + 0.3 z−2 (91)

B(z−1) = 2− 1.2 z−1 − 0.6 z−2 . (92)
The input is a pseudo random binary sequence with unit vari-
ance and length N = 250. A Monte Carlo simulation of 100
independent runs have been performed by adding to the noise–
free sequences û(·), ŷ(·) different white noise realizations with
variances λ∗

u = 0.1, λ∗

y = 0.6, corresponding to a signal to
noise ratio (SNR) of about 10 dB on both input and output.
Algorithm 1 has been implemented by choosing τ = 4 for the
number of autocorrelations.

Table 1 reports the empirical means of the system parameter
estimates and of the noise variance estimates, together with
the corresponding standard deviations, obtained with the Algo-
rithm 1 and with the covariance–matching algorithm proposed
in (Diversi et al., 2003), denoted with Frisch-CM.

The table shows that the described identification method yields
good results, comparable with those obtained by means of the
corresponding time domain version.

Example 2. As a second example, the features of the new
method have been illustrated by means of the following
second–order model

A(z−1) = 1− 1.5 z−1 + 0.7 z−2 (93)

B(z−1) = 0.54− 0.36 z−1 − 0.18 z−2 , (94)
characterized by a pair of complex poles much closer to the unit
circle. The input is a white noise process with unit variance and
length N . The performance of the proposed method has been
evaluated by varying the number of the available frequencies,
with N = 65, N = 125, N = 250 and N = 500. For every
value of N , a Monte Carlo simulation of 100 independent runs
has been performed by adding to the noise–free sequences û(·),
ŷ(·) different white noise realizations with variances λ∗

u = 0.1,
λ∗

y = 0.1, corresponding to a SNR of about 10 dB on both input
and output.

Defining the system parameters vector as

θ = [θTβ θTα ]T , (95)
the performance of the estimation algorithm has been evaluated
by means of the normalized root mean square error

NRMSE =
1

‖θ‖

√

√

√

√

1

100

100
∑

i=1

‖θ̂i − θ‖2, (96)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4635



100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Number of frequencies N

N
R

M
S

E

Fig. 3. NRMSE versus N for different values of τ : τ = 2 green
(dashed); τ = 4 red (solid); τ = 6 blue (dash–dotted).

where θ̂i denotes the estimate of θ obtained in the i–th trial of
the Monte Carlo simulation.

Figure 3 reports the NRMSE versus the number of frequencies
N , for different values of τ : τ = n, τ = 2n and τ = 3n. It
can be observed that increasing the number of autocorrelations
τ does not necessarily improve the quality of the parameter
estimates. Moreover, the improvement is often marginal in
comparison with the increase of the computational burden.
From the simulation experiences, a good choice is τ = 2n.

Example 3. In order to verify the selective properties described
in Remark 1, the algorithm has been tested on the following
fourth–order model, also considered in (Zhang et al., 2013)

A(z−1) = 1− 3.57 z−1 + 5.13 z−2 − 3.5 z−3 + 0.96 z−4

B(z−1) = 10−2 × p(z−1)

p(z−1) = 1 + 1.15 z−1 + 1.02 z−2 + 0.27 z−3 + 0.05 z−4 .

The noise–free input û(t) is a white noise process with unit
variance and length N . Two Monte Carlo simulations of 100
independent runs have been performed by adding different
white noise realizations with variances λ∗

u = 0.03, λ∗

y = 0.2,
corresponding to a signal to noise ratio (SNR) of about 15 dB
on both input and output.

In both cases the system has been identified under conditions of
equal computational burden for Algorithm 1, by choosing τ =
2n and by using only 200 frequencies. The first Monte Carlo
simulation has been performed with N = 200. The system
transfer function G(e−jωk ), defined in (8), has been identified
by using all the frequency data. The second Monte Carlo
simulation has been performed with N = 2000 frequencies.
However, the system transfer function has been identified by
using the L = 200 frequencies in the window W = [ω0, ω199].

Figure 4 reports the true value of |G(e−jωk )|dB , together with
the means of the two estimated transfer functions (TF). In
the frequency region around the two peaks of |G(e−jωk )| the
advantageous effects of filtering are evident.

6. CONCLUSIONS

In this paper a new frequency domain identification method has
been proposed for EIV models affected by additive white noises
with unknown variances. The method does not require any as-
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Fig. 4. True TF: red, solid; Estimated TF, N = 200: green,
dashed; Estimated TF, N = 2000, L = 200: blue, dash–
dotted.

sumption of periodicity for the input process. The effectiveness
of the proposed method has been verified by means of Monte
Carlo simulations.
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