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Abstract: The impact of time delay on the dynamics of a hybrid model of pulsatile feedback
endocrine regulation is investigated. The model in hand can be seen as an impulsive and delayed
version of the popular in computational biology Goodwin oscillator, where the feedback is
implemented by means of pulse modulation. The value of the time delay is related to the duration
of the time interval between the firing times of the feedback impulses. Under the assumption of
a cascade structure of the continuous part of the model, the hybrid dynamics of the closed-loop
system are shown to be governed by a discrete mapping propagating through the firing times of
the impulsive feedback. Conditions for existence and stability of periodic solutions of the model
are obtained. Bifurcation analysis of the mapping reveals the phenomenon of bistability arising
for larger time delay values but not observed for the smaller ones.

Keywords: Delay systems, Impulse signals, Biomedical systems, Stability analysis, Amplitude
modulation, Frequency modulation

1. INTRODUCTION

A mathematical model called “Goodwin oscillator” was
first proposed by Goodwin [1965] and developed further
by Griffith [1968]. Its intended purpose was to describe
oscillatory phenomena in biochemistry. However, over the
years, it found broad applications in various fields of math-
ematical biology. In particular, the Goodwin oscillator
was adopted in Smith [1980, 1983] to describe periodic
behaviors in endocrine systems and at present is referred
to as the Smith model. To capture the episodic nature of
pulsatile (non-basal) endocrine feedback, the model was
modified in Churilov et al. [2009] by implementing the
biologically motivated principles of impulsive control (see
e.g. Gelig and Churilov [1998]). Being applied to the testos-
terone regulation in the human male, the impulsive model
demonstrated a good agreement with experimental data
in Mattsson and Medvedev [2013] and gave theoretical
explanations to some experimentally observed phenomena,
including deterministic chaos, Zhusubaliyev et al. [2012].

Starting from the early work of Smith [1983], a time delay
was introduced into the Goodwin oscilator to align it
with the biological reality (see also Cartwright and Husain

? AC was partly supported by the Russian Foundation for Basic
Research, Grant 14-01-00107-a. AM was in part financed by the
European Research Council, Advanced Grant 247035 (SysTEAM)
and Grant 2012-3153 from the Swedish Research Council.

[1986], Das et al. [1994], Keenan and Veldhuis [1998], Ruan
and Wei [2001], Mukhopadhyay and Bhattacharyya [2004])
and induce sustained oscillations. Similarly, in Churilov
et al. [2012, 2013, 2014], a time delay was included into
the impulsive Goodwin-Smith model, but rather in order
to model the transport phenomena and the time necessary
for synthesis of a hormone. In fact, the impulsive Goodwin-
Smith model is known to lack equilibria, Churilov et al.
[2009].

The main assumption on the delay made in the analysis of
Churilov et al. [2012, 2013, 2014] was that the delay value
is strictly less than the least time interval between two
consecutive firing times of the impulsive feedback. This
assumption appears to be satisfied for the testosterone hor-
monal regulation in the human male (see, e.g., Cartwright
and Husain [1986]) but not for pulsatile endocrine loops
in general. For instance, in MacGregor and Leng [2005],
where hypothalamic control of the growth hormone (GH)
secretion is considered, the time delay for the stimulation
by GH of the releasable store of somatostatin is estimated
to 60 minutes. The experimental data provided by Veld-
huis et al. [2000] demonstrate that, for adolescent females,
the estimated GH interburst interval is less than an hour,
while for young males it is usually greater, but can be less
than an hour at certain time intervals. Hence, evidently,
the results of Churilov et al. [2012, 2013] are not directly
applicable in these cases.
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In this paper, a generalization of the earlier published
analysis of periodic solutions in the impulsive Goodwin
oscillator with a time delay in the continuous part of
the system is considered. The periodicity implies that the
firing times of the impulsive feedback repeat themselves
modulo the solution period. In contrast with the prior
research, the time delay value is allowed to be greater than
the least interval between two consecutive feedback firing
times. Yet, the delay value is still bounded from above by
a double of the latter. To the best of our knowledge, the
times delays in pulsatile endocrine systems usefully satisfy
this relaxed condition.

The paper is organized as follows. First the notion of
finite-dimension reducible time delay systems is briefly
reviewed. Then, the impulsive Goodwin-Smith model with
delay in the continuous part is revisited under new and
relaxed assumptions on the time delay value. A pointwise
discrete mapping describing the propagation of the system
dynamics from one firing time of the pulse-modulated
feedback to another is derived and analyzed. Further,
existence and stability of periodic solutions of the model
in question (m-cycles) are studied. Finally, the bistability
phenomenon arising for larger values of the time delay in
the mapping is investigated by bifurcation analysis.

2. FD-REDUCIBLE TIME DELAY SYSTEMS

Consider the autonomous system with delayed state

dx

dt
= A0x(t) +A1x(t− τ), (1)

where x(t) ∈ Rp, A0, A1 ∈ Rp×p, and τ is a constant time
delay for t > 0, subject to the initial (vector) function
x(t) = ϕ(t), −τ 6 t < 0.

The following definition was introduced in Churilov et al.
[2012, 2013].

Definition 1. Time-delay linear system (1) is called finite-
dimension reducible (FD-reducible) if there exists a con-
stant matrix D ∈ Rp×p such that any solution x(t) of (1)
defined for t > 0 satisfies the linear differential equation

dx

dt
= Dx (2)

for t > τ .

FD-reducibility means that the solutions of time-delay
system (1) are indistinguishable from those of a finite-
dimensional system of order p on the time interval [τ,+∞).
The theorem below summarizes the essential properties of
FD-reducible systems (see Churilov et al. [2013] for the
proof).

Theorem 1. FD-reducibility of system (1) is equivalent to
any of the statements (i), (ii):

(i) The matrix coefficients of (1) satisfy

A1A
k
0A1 = 0 for all k = 0, 1, . . . , p− 1. (3)

(ii) There exists an invertible p× p matrix S such that

S−1A0S =

[
U 0
W V

]
, S−1A1S =

[
0 0
W̄ 0

]
, (4)

where the blocks U , V are square and the sizes of the
blocks W and W̄ are equal.

Moreover, the matrix D in FD-reduced system (2) for a
FD-reducible system (1) is uniquely given by

D = A0 +A1e−A0τ . (5)

In the special coordinate basis given by (4), system (1) can
be rewritten as

du

dt
= Uu, (6)

dv

dt
= Wu+ V v + W̄u(t− τ) (7)

with xT = [uT, vT], where ·T denotes transpose. Thus D
defined by (5) takes the form

D =

[
U 0

W + W̄ e−Uτ V

]
.

It is convenient now to, without loss of generality, assume
that system (1) is represented in the form of (6), (7).

3. A TIME-DELAY IMPULSIVE SYSTEM

Consider an extension of the impulsive Goodwin-Smith
model treated in Churilov et al. [2009] to the class of
systems with delayed continuous part:

dx

dt
= A0x(t) +A1x(t− τ), y = Cx,

tn+1 = tn + Tn, x(t+n ) = x(t−n ) + λnB,

Tn = Φ(y(tn)), λn = F (y(tn)).

(8)

Without loss of generality, assume t0 = 0. Here B is a
column and C is a row such that CB = 0. Let also

BT =
[
BT

1 , BT
2

]
,

where the dimensions of the vectors B1, B2 correspond to
those of u, v, respectively.

The continuously differentiable functions Φ(·), F (·) satisfy

0 < Φ1 6 Φ(·) 6 Φ2, 0 < F1 6 F (·) 6 F2,

for some constants Φi, Fi, i = 1, 2. The latter condition
implies that system (8) has no equilibria.

Previously, in Churilov et al. [2012, 2013], the case when
infy Φ(y) > τ , was considered so that

Tk > τ (9)

for all k > 0. The analysis carried out in Churilov
et al. [2012] indicates that no qualitative changes in the
periodic solutions of the model arise for the time delay
values bounded by the least time interval between two
consecutive firings of the impulsive feedback. In hybrid
system (8), such delays can be characterized as small since
they do not contribute much to the interaction of the
continuous and discrete parts.

In this paper, a less restrictive condition of 2 infy Φ(y) > τ
is imposed on the time delay value, resulting in

Tk + Tk−1 > τ (10)

for all k > 1. As it will be shown below, this relaxed condi-
tion on the time delay drastically changes the situation. In
particular, for larger time delays, dynamical system (1) can
exhibit complex nonlinear phenomena such as bistability
and quasiperiodic oscillations.

Consider the following four cases as illustrated in Fig. 1:

(i) Tn > τ, Tn−1 > τ ;
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Fig. 1. Four feasible subsets of Tn, Tn−1

(ii) Tn < τ, Tn−1 > τ ;
(iii) Tn > τ, Tn−1 < τ ;
(iv) Tn 6 τ, Tn−1 < τ, Tn−1 + Tn > τ ,

for any n > 1.

The border values Tn = τ or Tn−1 = τ represent the limit
cases. Moreover, (10) implies that Tn−2 + Tn−1 > τ for
n > 2. Thus, it holds

tn−2 + τ = tn − Tn − Tn−1 + τ < tn. (11)

Notice that while the function x(t) jumps at the points tk,
k = 0, 1, . . ., the function x(t − τ) jumps at the points of
the sequence

T = {tk + τ, k = 0, 1, . . .}.
From (11), it follows that any time interval (tn, tn+1),
where n > 1, contains no more than two points of T,
namely tn−1 + τ and tn + τ .

Thus the conditions (i)–(iv) can be rewritten as follows:
the interval (tn, tn+1) contains

(i) a single point tn + τ from T;
(ii) no points from T;

(iii) two points tn−1 + τ , tn + τ from T;
(iv) a single point tn−1 + τ from T.

Define four sets of vector pairs (x, z), where x ∈ Rp,
z ∈ Rp:

Ω1 = {(x, z) : Φ(Cx) > τ, Φ(Cz) > τ},
Ω2 = {(x, z) : Φ(Cx) 6 τ, Φ(Cz) > τ},
Ω3 = {(x, z) : Φ(Cx) > τ, Φ(Cz) < τ},
Ω4 = {(x, z) : Φ(Cx) 6 τ, Φ(Cz) < τ}.

Introduce also a map Q(x, z) in the following manner:

(1) Q(x, z) = Q1(x) for (x, z) ∈ Ω1, where

Q1(x) = eDΦ(Cx)x+ F (Cx)eD(Φ(Cx)−τ)eA0τB;

(2) Q(x, z) = Q2(x) for (x, z) ∈ Ω2, where

Q2(x) = eDΦ(Cx)x+ F (Cx)eA0Φ(Cx)B;

(3) Q(x, z) = Q3(x, z) for (x, z) ∈ Ω3, where Q3(x, z) =
Q1(x) +R(x, z) and

R(x, z) = F (Cz)eDΦ(Cx)
[
eD(Φ(Cz)−τ)eA0τ − eA0Φ(Cz)

]
B;

(4) Q(x, z) = Q4(x, z) for (x, z) ∈ Ω4, where Q4(x, z) =
Q2(x) +R(x, z).

The map Q(x, z) has the following properties.

Lemma 1. The map Q(x, z) is continuous in the domain
of its definition Ω = ∪4

i=1Ωi.

Proof. From the formulas for Qi, i = 1, ..., 4, it is easily
seen that for the values of x yielding Φ(Cx) = τ , one has
Q1(x) = Q2(x) and so Q3(x, z) = Q4(x, z). At the same
time, if Φ(Cz) = τ , then R(x, z) = 0, so Q1(x) = Q3(x, z)
and Q2(x) = Q4(x, z). 2

Recall that the modulation functions Φ(·), F (·) are con-
tinuously differentiable.

Lemma 2. The partial derivatives of the map Q(x, z) are
discontinuous. They have gaps on the surfaces

Π1 = {(x, z) : Φ(Cx) = τ}, Π2 = {(x, z) : Φ(Cz) = τ}.

Proof. Let us consider Π1. Since Q1 −Q2 = Q3 −Q4 for
all x, z, it suffices to calculate the partial derivatives of
Q1 −Q2. One has

∂(Q1 −Q2)

∂z
= 0.

Since (D −A0)eA0τ = A1, it follows

∂(Q1 −Q2)

∂x

∣∣∣∣
Φ(Cx)=τ

= F (Cx)Φ′(Cx)A1BC.

Consider Π2. Similarly Q4 −Q2 = Q3 −Q1 = R for all x,
z and the partial derivatives of R(x, z) calculated on the
surface Φ(Cz) = τ satisfy

∂R

∂x
= 0,

∂R

∂z
= F (Cz)Φ′(Cz)eDΦ(Cx)A1BC.

2

Introduce the notation x̄n = x(t−n ).

Theorem 2. Let n > 2. Then any solution of (8) satisfies
the recurrent relationship

x̄n+1 = Q(x̄n, x̄n−1). (12)

Proof. Omitted for brevity.

Remark. More precisely, if T0 > τ then (12) is valid for
n > 1. Otherwise, (12) is valid for n > 2. If an initial
function ϕ(t), −τ 6 t 6 0, is given, then x̄0 = ϕ(0) and
the initial points x̄1 (when T0 > τ) or x̄1, x̄2 (when T0 6 τ ,
T0 + T1 > τ) can be obtained by a direct integration of
(8).

Introduce zn = x̄n−1 for n > 1. Then (12) can be rewritten
in an augmented form as a system of first-order equations[

x̄n+1

zn+1

]
= P (x̄n, zn), P (x, z) =

[
Q(x, z)
x

]
. (13)

Let J(x, z) be the Jacobian matrix of P (x, z). Clearly, it
holds that

J(x, z) =

[
∂Q/∂x ∂Q/∂z
Ip 0

]
.

In particular, if (x, z) ∈ Ω1 ∪ Ω2, then ∂Q/∂z = 0 and
the spectrum of J(x, z) is the union of the eigenvalues of
∂Q/∂z and of a zero eigenvalue of multiplicity p.

4. EXISTENCE AND STABILITY OF PERIODIC
SOLUTIONS

Consider existence conditions for a periodic solution x(t)
of (8) with exactly m impulses in the least period (an m-
cycle). Then x(t) is T -periodic with

T = T0 + T1 + . . .+ Tm−1 = tm. (14)

The relationship t0 = 0 is utilized above.
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With respect to the discrete-time form of the system
expressed in (12), suppose that there exists an m-periodic
solution {x̄k}, such that x̄k+m = x̄k holds for all k and the
vectors x̄0, . . . , x̄m−1 are all different to each other. Then
Tk+m = Tk, λk+m = λk for all k > 0. Moreover,

tk+m = tk + T, k = 0, 1, . . . (15)

The sequence {x̄k} is an m-periodic solution of (12) if
its first m terms satisfy the system of transcendental
equations

x̄k+1 = Q(x̄k, x̄k−1), k = 0, 1, . . . ,m− 1, (16)

where x̄m = x̄0, x̄m+1 = x̄1. In particular, for a 1-cycle, a
vector x̄0 can be found as a solution of the equation

x̄0 = Q(x̄0, x̄0). (17)

Assume that Tk = Φ(Cx̄k) 6= τ, k = 0, . . . ,m − 1, to
avoid non-smoothness.

Lemma 3. Suppose that a sequence {x̄k} is m-periodic
and satisfies (16). Then there exists an initial function
ϕ(t), −τ 6 t 6 0, such that a solution x(t) of (8) with
the initial condition x(t) = ϕ(t), −τ 6 t 6 0, is T -periodic
with T defined by (14) and satisfies x(t−k ) = x̄k, k = 0, . . ..

Proof. Let the linear part of system (8) be already
written in the block matrix form (6), (7). Denote[

un
vn

]
= x̄n.

Define a function u(t) as

u(t) = eU(t−tk)uk, tk−1 < t < tk,

k = 1, 2, . . .. Obviously u(t) satisfies (6) and u(t−k ) = uk,
k = 1, 2, . . .. It is easily seen that since the sequence {uk}
is m-periodic and (15) is fulfilled, then the function u(t) is
T -periodic for t > 0. Extend u(t) T -periodically for t < 0.
Set ϕ1(t) = u(t), −τ 6 t 6 0, as an initial function for
u(t). Notice that if τ > T0, the initial function needs to be
discontinuos. Define

Ψ(t) = Wu(t) + W̄u(t− τ),

where the function u(t) is as defined above. Obviously,
Ψ(t) is T -periodical for all t > −τ . Define the function

v(t) = eV (t−tk)vk +

∫ t

tk

eV (t−θ)Ψ(θ) dθ

for tk−1 < t < tk, k = 0, 1, . . .. It is easy to check that
v(t) satisfies (7) and v(t−k ) = vk, k = 1, 2, . . .. Since the
sequence {vk} is m-periodical, Ψ(t) is T -periodical and
(15) is satisfied, the function v(t) is also T -periodical. As
v(t) is not delayed in equation (7), there is no need in
initial conditions for v(t) other that v(t−0 ) = v0. 2

In contrast with Churilov et al. [2012, 2013, 2014], the
consideration here cannot be limited to continuous initial
functions. Piecewise continuous initial functions will be
treated instead. For a solution (x(t), tn) of system (8)
with a piecewise continuous initial function ϕ(t), take a
piecewise continuous perturbed function ϕ̃(t) that is close
to ϕ(t), namely such that the L1-norm

‖ϕ̃− ϕ‖1 =

∫ 0

−τ
‖ϕ̃(θ)− ϕ(θ)‖ dθ

is small, where ‖ · ‖ is the Euclidean vector norm. As
previously, let x̄n = x(t−n ).

Definition 2. A solution x(t) will be called stable if for any
ε > 0 there exists a number ε0(ε) > 0 such that for the
perturbed solution (x̃(t), t̃n) with a piecewise continuous
initial function ϕ̃(t), t̃0 = 0, and x̃n = x̃(t̃−n ) such that
‖ϕ̃(t) − ϕ(t)‖1 < ε0, it applies that ‖x̄n − x̃n‖ < ε for all

n > 0.

A solution x(t) will be called asymptotically stable if it
is stable and, moreover, there exists a number ε1 > 0
such that ‖x̄n − x̃n‖ → 0 as n → ∞, provided that
‖ϕ̃(t)− ϕ(t)‖1 < ε1.

Obviously, when ‖ϕ̃(t) − ϕ(t)‖1 is sufficiently small then
x̃0, x̃1 and x̃2 are close to x̄0, x̄1 and x̄2, respectively.
Thus, the consideration can be limited to local stability of
forward orbits of discrete map (16).

The local stability of an m-periodic solution can be ex-
plored with help of the product of Jacobian matrices

Jm = J(x̄1, x̄0)J(x̄2, x̄1) . . . J(x̄m, x̄m−1).

by checking its eigenvalues. The solution is stable provided
Jm is Schur stable (i.e., all its eigenvalues lie inside the unit
circle).

Notice that for m = 1 one has J1 = J(x̄0, x̄0). Naturally,
the point (x̄0, x̄0) belongs either to the region Ω1, or to
the region Ω4.

5. BIFURCATION ANALYSIS: BISTABILITY

Map (12) governing the propagation of the continuous
state variables of hybrid system (8) is highly nonlinear
and hard to study analytically. The focus of the bifur-
cation analysis below is on a specific nonlinear dynamics
phenomenon, namely bistability, that arises in the system
in hand due to the presence of a larger time delay. Inter-
estingly, bistability is not observed for lower values of the
time delay in (8). Bistability, implementing two distinct
stable behaviors, appears to be of paramount importance
for biological systems (see, e.g., Chaves et al. [2008]).

Following Churilov et al. [2012, 2013], consider an impul-
sive system with time delay

dx1

dt
= −b1x1,

dx2

dt
= −b2x2 + g1x1,

dx3

dt
= −b2x3 + g2x2(t− τ).

Here b1, b2, b3, g1, g2, τ are positive parameters. Then,
with respect to times delay system (1), it is seen that

A0 =

[−b1 0 0
g1 −b2 0
0 0 −b3

]
, A1 =

[
0 0 0
0 0 0
0 g2 0

]
and the conditions of Theorem 1 are readily satisfied.

Suppose that x1(t) has jumps at the time instants tn,
n > 0:

x1(t+n ) = x1(t−n ) + λn, tn+1 = tn + Tn, (18)

where
λn = F (x3(tn)), Tn = Φ(x3(tn)). (19)

In this analysis, the modulation functions are assumed to
be the Hill functions

Φ(y) = k1 + k2
(y/h)p

1 + (y/h)p
, F (y) = k3 +

k4

1 + (y/h)p
,
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Fig. 2. Bifurcation diagram for b1 = 0.045, illustrating
the bistability, i.e. coexistence of two stable 1-cycles
of the different types. This coexistence gives rise to
hysteretic transitions at the saddle-node bifurcation
points τ1 and τ2. Here the solid lines denoted by
numbers 1 (the blue one) and 3 (the green one)
correspond to stable fixed points with (x̄0, x̄0) ∈ Ω1

and (x̄0, x̄0) ∈ Ω4, respectively. The dashed line
denoted by number 2 corresponds to saddle fixed
points (x̄0, x̄0) ∈ Ω1.

and the parameter values are taken as the follows: b1 =
0.045, b2 = 0.15, b3 = 0.2, k1 = 60.0, k2 = 40.0, k3 = 3.0,
k4 = 2.0, g1 = 2.0, g2 = 0.5, h = 2.7 and p = 2.
The time delay τ will be used as a varying parameter
(0 < τ < 120.0).

In terms of testosterone (Te) regulation in the male,
x1 is interpreted as the concentration of gonadotropin
releasing hormone (GnRH), x2 as the concentration of
luteinizing hormone and x3 as the concentration of Te. The
concentration of GnRH is subject to jumps due to a pulse-
frequency and pulse-amplitude modulated feedback from
Te implemented by neurons within the hypothalamus (see
Evans et al. [2009]) and described by (18), (19). Clearly,
the time delay values assumed here lie partly outside
of the physiologically motivated range for testosterone
regulation and are intentionally selected to include large
delays for the purpose of illustrating the arising dynamical
phenomena.

Fig. 2 exhibits an example of a one-dimensional bifurcation
diagram for the region of bistability obtained by varying
the time delay τ , while keeping the other parameters
constant. The vertical axis shows the third coordinate of
x̄0, where (x̄0, x̄0) is a fixed point of map (12).

For the values of the time delay 0 < τ < τ1, map (12) pos-
sesses a single stable fixed point (x̄0, x̄0) that corresponds
to a 1-cycle in closed-loop system (8). As τ increases,
this fixed point undergoes a saddle-node bifurcation at
τ = τ2 in which the stable node merges with a saddle and
disappears. The saddle can be followed backwards in the
bifurcation diagram (dashed curve) to the point τ = τ1,
where it undergoes a second saddle-node bifurcation, and
a new stable node is born.

The interval τ1 < τ < τ2 between the saddle-node bifurca-
tion points τ1 and τ2 is a region of bistability where two
stable 1-cycles of different types coexist. When crossing the
boundaries of the bistability region, the system displays
hysteretic transitions from a stable 1-cycle of one type to
a 1-cycle of another type and vice versa.

Fig. 3. Two-dimensional projection of the phase portrait
in the region of multistability. A stable node N that
corresponds to a 1-cycle with (x̄0, x̄0) ∈ Ω1 coexists
with a stable focus F that corresponds to a 1-cycle
with (x̄0, x̄0) ∈ Ω4. Here S is a saddle related to
a 1-cycle with (x̄0, x̄0) ∈ Ω1. WU

± are the unstable
manifolds of the saddle S. The stable manifold of
the saddle S separates the basins of attraction of the
coexisting stable fixed points N and F . Here τ = 93.0
and b1 = 0.045.

Fig. 4. Temporal variations of x1(t), x2(t) and x3(t) for a
1-cycle related to a stable node N with (x0, x0) ∈ Ω1,
T0 ≈ 99.3. τ = 92.4 and b1 = 0.05707. This solution
coexists with the stable 4-cycle (see Fig. 5).

Fig. 3 displays a two-dimensional projection of the tra-
jectories of map (12) for a value of τ from the interval
τ1 < τ < τ2.

Stable cycles of different periodicity can also coexist in
the model. To illustrate this fact, Fig. 4 and Fig. 5 de-
pict temporal variations of the continuous state variables
x1(t), x2(t) and x3(t) for the coexisting 1- and 4-cycles,
respectively.

CONCLUSIONS

An earlier formulated hybrid mathematical model of pul-
satile feedback endocrine regulation is considered for large
values of the time delay. The notion of large time delays is
defined with respect to the distance between firing times of
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Fig. 5. Temporal variations of x1(t), x2(t) and x3(t) for a
stable 4-cycle with T0 ≈ 95.06, T1 ≈ 95.86, T2 ≈ 89.50
and T3 ≈ 67.86. Here T is the period of this motion:
T = T0 + T1 + T2 + T3, τ = 92.4 and b1 = 0.05707.

the feedback. Under the assumption of cascade structure of
the continuous dynamics, a pointwise mapping describing
the propagation of the continuous and delay-free part of
the system through the firing time instants of the impulsive
feedback is derived. Existence and stability of the periodic
solutions of the hybrid model are investigated analytically.
Bifurcation analysis of the pointwise mapping suggests
that, in contrast with the previously treated case of smaller
time delays, large values of the time delay in the endocrine
loop can lead to e.g. bistability.
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