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Abstract A comparative study is made between two global Linear Periodic Parameter-Varying
(LPPV) identification algorithms. The first method is a state-of-the-art subspace identification
method in the time domain. The second is a newly developed frequency domain approach, where
the identification experiment is designed carefully so we can exploit the resulting structure. For
both methods, the result is a state space model with an affine dependence on the varying
parameters, which can be used for LPV control synthesis. Simulations show that the frequency
domain procedure has a lower variance for identical experimental conditions.

1. INTRODUCTION

Although most physical systems are non-linear with re-
spect to the input, they are usually modeled by a Linear
Time-Invariant (LTI) representation as in Ljung [1999].
This model is a linearization of the nonlinear dynamics
at a chosen operating point. In practical applications like
the chemical industry, it is quite common to use the same
plant for manufacturing different products, each with its
own operational mode. In De Caigny [2009] a meta-model
interpolates between local LTI descriptions to obtain a
global model for all operating points. This intuitive ap-
proach is known as gain scheduling, and it requires the
scheduling parameter to vary slowly, so the local static
estimations remain approximately valid. Contrary to this
local approach we will identify a Linear Parameter-Varying
(LPV) plant, where the dynamics depend on some external
scheduling parameters, as discussed in Rugh and Shamma
[2000]. Only a single experiment is required, where both
the scheduling and the input are varied.
Beside the local and global classification, there is also a
model choice between an Input-Output (IO) form like in
like Louarroudi et al. [2012], Lataire and Pintelon [2011]
or a State Space (SS) representation as in Hench [1995].
From Tóth [2010] and Tóth et al. [2012], it is known that
a conversion from one LPV model class to another is not
as straightforward as in the LTI case.

There are some controller synthesis tools available for
LPV systems, see, for example Lee and Park [2007] and
Petersson and Löfberg [2011], but the models are com-
monly required to be transformed into state space form.
We will therefore concentrate immediately on the LPV
SS class, because it can be used directly in control design
applications.

The aim of this paper is to compare two state-of-the-art
LPV SS identification methods. We start by presenting
the main ideas of both techniques. Section 2 discusses the
time domain LPV subspace identification scheme of Felici

et al. [2007], called periodic-MOESP, while Section 3 treats
our newly developed frequency domain approach. The
advantages and disadvantages of both methodologies are
discussed in Section 4. Finally, in Section 5, we compare
both methods on a simulation example. We summarize the
results in Section 6.

1.1 Notation

The Linear Parameter-Varying State Space equations are
given in discrete time by

x(t+1) = A
(
p(t)
)
x(t) +B

(
p(t)
)
u(t) (1)

y(t) = C
(
p(t)
)
x(t) +D

(
p(t)
)
u(t) (2)

where t is the discrete time step, going from 1 to the
number of measurements N . We denote the number of
inputs u, states x, outputs y and scheduling variables p by
nu, nx, ny and np respectively. The matrix dimensions are
thenA ∈ Rnx×nx ,B ∈ Rnx×nu , C ∈ Rny×nx ,D ∈ Rny×nu .
To impose some structure in the general LPV identification
problem, we adopt an affine state space model, where
the state space matrix coefficients depend linearly on
the scheduling parameters p(t). The time-varying system
matrices are then given by

A
(
p(t)
)

=

np∑
i=1

Ai pi(t) (3)

where the matrices Ai are constant. All the time-variance
is due to the scheduling parameters pi(t). Identical def-
initions hold for B

(
p(t)
)
, C

(
p(t)
)

and D
(
p(t)
)
. Usually,

p1(t) = 1 to include the time-invariant case. In theory, p(t)
can be any function of time. However, in line with Felici
et al. [2007], we will use a dedicated periodic scheduling
sequence for our identification experiment.

2. TIME DOMAIN STATE SPACE IDENTIFICATION

This section explains the basic ideas behind the subspace
identification scheme. For the full details, we refer to Felici
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et al. [2007]. By briefly reviewing the method to calculate
the states and by extension the matrix coefficients, we can
better highlight the differences between both approaches.
The main goal is to estimate an observability matrix, as
in the original LTI subspace algorithms Verhaegen and
Yu [1995], Van Overschee and De Moor [1996], McKelvey
et al. [1996]. From there, the A(t) and C(t) matrices can be
estimated, and subsequently the B(t) and D(t) matrices.

2.1 Estimating the time-varying observability matrix

Starting from time step t, the d successive outputs ydt can
be written as a function of the single initial state xt and
the corresponding inputs udt . To this end, first define the
vertically stacked output vector ydt as

ydt =
[
y(t)T , y(t+1)

T , . . . , y(t+d−1)T
]T ∈ R(dny)×1

and likewise the input udt . Here d is referred to as the time
window size, which should be chosen somewhere between
the order nx of the system and the period P of the time
variation: P ≥ d > nx. Then define the observability
matrix Odt

Odt =


C(t)

C(t+1)A(t)

...
C(t+d−1)A(t+d−1) . . . A(t)

 ∈ R(dny)×nx (4)

Next, take the input-to-output matrix T dt as in (5), at the
bottom of the page. In the LTI case, T dt reduces to a block
Toeplitz matrix. For all discrete time steps t it holds that

ydt = Odt x(t) + T dt udt (6)

Many rotating mechanical systems, like rotor-bearing sys-
tems Matthews [2009], have periodically time-varying dy-
namics. In the parameter-varying framework, we can im-
pose periodicity by applying a recurring scheduling signal.
The matrices A(t), B(t), C(t) and D(t) will then repeat after
P discrete time samples A(t+P ) = A(t). By extension, O
and T then become periodic as well.
Finally, we can collect the data matrices over the periods

Y dt =
[
ydt y

d
t+P . . . y

d
t+(NP−3)P

]
∈ R(dny)×(NP−2) (7)

and similarly Udt . Also

Xt = [x(t) x(t+P ) . . . x(t+(NP−3)P )] ∈ Rnx×(NP−2) (8)

Because of the periodicity, the data equation (6) can be
extended ∀ t = 0 . . . P − 1

Y dt = OdtXt + T dt Ut (9)

From the data equation (9) the column space of all the
observability matrices Odt can be estimated, using only
algebraic operators, like RQ factorization and SVD. The
basic method only requires the input and output data
Udt+P and Y dt+P . By taking the d past inputs and outputs

Udt+P−d and Y dt+P−d as instrumental variables, unbiased

estimates of Odt can be obtained even in the presence of
white process and white output noise.

2.2 Coping with similarity transformations

The estimates Ôdt are only determined up to a similarity
transformation T (t), which will be different at each discrete
time step t. It can easily be verified that the output y(t)
remains exactly the same if we take a nonsingular matrix
T (t) and define x′(t) = T (t)x(t), and also[

A′(t) B′(t)
C ′(t) D′(t)

]
⇔
[
T (t+1)A(t)T (t)

−1 T (t+1)B(t)

C(t)T (t)
−1 D(t)

]
(10)

The undetermined T (t) can be interpreted as each of the
states x(0), x(1), . . . , x(P−1) being in a different state basis.
Once all the Ôdt are estimated ∀ 0 ≤ t ≤ P−1, using the affine
definition from equation (3), the calculated observability

matrix Ôdt can be written as a product between a time-
varying weight matrix Mt using only scheduling values,
and a constant matrix S that only depends on Ai and Ci.

Ôdt T = Odt = Mt(p(t))S(Ai,Ci) (11)

The matrix Mt ∈ Rdny×q contains all the time-variation
of Odt , but its dimension q =

∑d
j=1 nyn

j
p explodes rapidly

with the window size d. By solving (11) for all the

factorized Ôdt at the same time, the matrices are forced
to use the same state basis.

ÔT = MS (12)

TT Ô
T
ÔT = Inx

, STMT MS = Inx
(13)

Ô = blockdiag


Ôd0
Ôd1
...

ÔdP−1

 , M =


M0

M1

...
MP−1

 (14)

with Ô ∈ R(Pdny)×(Pnx), T ∈ R(Pnx)×nx and M ∈
R(Pdny)×q. M is calculated and Ô is estimated. Alterna-
tively, instead of working in the high-dimensional column
space of M , it is proposed to use the column space MMT .
This is beneficial when q � P.d.ny.
To cope with process and output noise, the equality
(12) can be replaced by minimizing the Frobenius norm
of the difference between the left and right hand sides
minT,S ‖ÔT −MS‖F . The problem is then restated as
a canonical correlation analysis problem. To decrease the
variance of the solution, at the cost of a bias, it is suggested
to use a regularization constant ν. The actual choice of the
periodic scheduling sequence p(t) has an important effect
on the degree of regularization required. In practice, ν will
have to be gridded. In one of the examples in Felici et al.
[2007], ν was scanned somewhere between 10−8 and 104.

2.3 Obtaining the constant system matrices

Since the states are now in the same basis for all dis-
crete time steps t, the Ct and At matrices can then be
peeled from the observability matrices Odt . Finally, the

T dt =


D(t) 0 . . . 0

C(t+1)B(t) D(t+1) . . . 0
C(t+2)A(t+1)B(t) C(t+2)B(t+1) . . . 0

...
...

. . .
...

C(t+d−1)A(t+d−2) . . . A(t+1)B(t) C(t+d−1)A(t+d−2) . . . A(t+2)B(t+1) . . . D(t+d−1)

 (5)
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remaining B(t) and D(t) are identified using simple least
squares. From the local A(t), the constant matrices Ai for
i = 1 . . . np can be calculated via (3). Exactly the same
conversion is be used for Bi, Ci and Di.

3. FREQUENCY DOMAIN STATE SPACE
IDENTIFICATION

The second global LPPV identification method performs
the estimates in the frequency domain. It is shown that
the transformed state space equations have a very specific
structure when the input and scheduling are both periodic
and synchronized. Even more, when the bandwidth of the
scheduling sequence p(t) is limited, the SS representation
becomes very sparse. In this section, the proposed algo-
rithm is discussed step by step. Section 4 elaborates on
the advantages and disadvantages of the frequency and
time domain approaches.

3.1 From time to frequency domain

If a periodic input and periodic scheduling is applied, and
an integer number of periods of both signals is measured
(synchronized acquisition), the state space equations (1)-
(2) can be transformed from the time domain to the
frequency domain without leakage errors. The Z-transform
is used for the formulas (1)-(2) and the Discrete Fourier
Transform (DFT) is applied to the measurements u(t) and
y(t). The multiplication of two time signals is equivalent to
the convolution ∗ of their spectra. Since we are working in
a discrete periodic framework, this convolution is circular.

zX(z) = A(z) ∗X(z) +B(z) ∗ U (z) (15)

Y (z) = C(z) ∗X(z) +D(z) ∗ U (z) (16)

As in the affine definition (3) in the time domain, the
dynamics and the time variation can be separated in the
frequency domain. We find a multiplication of the dy-
namics Ai, Bi, Ci and Di and their associated scheduling
spectra µi(z) for each discrete frequency z = ej2πk/N .

A(z) =

np∑
i=1

Ai µi(z) (17)

Note that the constant matrices Ai are identical in the
time domain (3) and the frequency domain (17) notation.
If we collect the equations for all k, we get

E.X = αµxX + β µuU (18)

Y = γ µxX + δ µuU (19)

where U ∈ C(nuN)×1, X ∈ C(nxN)×1 and Y ∈ C(nyN)×1

are vectors containing the stacked spectra of the state,
input and output for all discrete frequencies k, and

E = Inx
⊗ diag

(
1, ej2π

1
N , . . . , ej2π

N−1
N

)
(20)

µx =


Toeplitz

(
µ1, µ

H
1

)
⊗ Inx

...

Toeplitz
(
µnp

, µHnp

)
⊗ Inx

 (21)

µu =


Toeplitz

(
µ1, µ

H
1

)
⊗ Inu

...

Toeplitz
(
µnp , µ

H
np

)
⊗ Inu

 (22)

α =
[
A1 ⊗ IN A2 ⊗ IN . . . Anp

⊗ IN
]

(23)

β =
[
B1 ⊗ IN B2 ⊗ IN . . . Bnp

⊗ IN
]

(24)

γ =
[
C1 ⊗ IN C2 ⊗ IN . . . Cnp

⊗ IN
]

(25)

δ =
[
D1 ⊗ IN D2 ⊗ IN . . . Dnp

⊗ IN
]

(26)

The cyclic convolution has been rewriten as a matrix
product using the block Toeplitz matrices µx and µu.

In the LTI framework, the responses at different frequen-
cies are decoupled. This is no longer the case for an
LPV system: the output equations are coupled over the
frequencies and, therefore, have to be computed for all
frequencies at once.

If the scheduling has only a limited bandwidth, the result-
ing SS representation becomes very sparse, as illustrated
in Figure 1 for a 2nd order SISO LPV system. Because of
this sparsity, the output can be computed time-efficiently.
Since the output has to be evaluated at each iteration of
the optimization algorithm, for all (nx + ny)np(nx + nu)
parameters, this is an important result.

E X = α µx X + β µu U

Y = γ µx X + δ µu U

nx.N × nx.N nx.N × 1 nx.N × np.nx.N nx.N × 1 nx.N × np.N nu.N × 1

N × 1 N × np.nx.N nx.N × 1 N × np.N nu.N × 1

Figure 1. State Space equations in the frequency domain
for a 2nd order Single Input Single Output (SISO)
LPV system, collected for all frequencies. The peri-
odic scheduling results in a structured representation.

3.2 Optimization

In line with Lee and Poolla [1999], a non-linear optimiza-
tion routine is used to calculate the unknown constant
matrices Ai, Bi, Ci and Di. In the case of an Output Error
(OE) stochastic framework, it is possible to calculate the
Jacobian analytically. Since the state space representation
is sparse in the frequency domain, it can be calculated
time-efficiently as well. Future research will focus on ex-
tending our approach to input noise.

For a given model with parameters θ, the (complex)
output error is defined as e(θ) = Ymodel − Ymeasured. The
Maximum Likelihood Estimator (MLE) then finds the

parameters θ̂ML that minimize the non-linear least squares
cost function VML:

θ̂ML = argmin
θ

VML(θ, Z)

= argmin
θ

e(θ)HC−1e (θ)e(θ) (27)

where Ce(θ) = cov (e(θ)) is the covariance matrix. If only
output noise is present, it is parameter-independent.

A great advantage of working with synchronized data is
that we can estimate the noise covariance matrix Ce in
a pre-processing step prior to the parametric modeling
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Figure 2. Output spectrum (in dB) of an LPV system when
a single sine is applied to the input. Measuring extra
periods allows for an estimate of the noise covariance
matrix Ce. Because we only excite certain frequencies,
energy on spectral lines in between can only originate
from the noise.

of the time-invariant plants dynamics. The basic idea is
explained at the end of this subsection. Let us first take
a look at the frequency response of an LPPV system
to a single sine wave, depicted in the top of Figure 2.
Only the center frequency fu = fs/4 was exited. As in
Lataire and Pintelon [2011], the time variation then results
in responses at neighboring frequencies in the shape of
a skirt. However, these skirts can only appear at what
we call harmonic frequencies : fu + kfp. Here, fp is the
frequency of the periodic parameter variation and k ∈
Z. Since our input and scheduling signals are periodic,
measuring multiple periods causes gaps in between the
excited harmonics. The spectral resolution will improve,
meaning there will be more frequency lines. The same
input frequency fu is excited, and the LPPV system can
only influence the harmonic frequencies. Thus if there is
energy at the extra intermediate spectral lines, it must
originate from a (possibly colored) noise source, as is
illustrated by the lower graph in Figure 2. We can therefore
estimate a non-parametric noise model Ĉe from the gaps
in between the harmonics.

3.3 Initial model estimate

It is widely known that a good initial estimate is of
paramount importance in non-linear optimization. We opt
for the Best Linear Time-Invariant (BLTI) approximation
defined in Lataire et al. [2012], Pintelon et al. [2012].
Basically, an LTI model is estimated using the input
frequencies fu and the first harmonics fu±fp. This results
in an estimate of the time-invariant A1 and C1, but for
everyBi andDi. A similar approach is proposed in Lee and
Poolla [1999]. In Casella and Lovera [2008], this is called an
input-affine LPV model. In fact, the input u(t) is extended
by multiplication with each component of the scheduling
p(t). Equations (28)-(29) illustrate the identifiable blocks
for a system with one varying scheduling parameter. Recall
that p1(t) = 1, thus µ1 equals the identity matrix Inx⊗IN .

EX = [α1|��α2]

[
µ1

µ2

]
X + [β1|β2]

[
µ1

µ2

]
U (28)

Y = [γ1|��γ2]

[
µ1

µ2

]
X + [δ1|δ2]

[
µ1

µ2

]
U (29)

0 1/4 1/2

0

-320

discrete frequency f/fs

|multisine output + noise|

Figure 3. Frequency response (in dB) of an LPV system to
a multisine input. If the difference between the excited
frequencies is large enough, the skirts overlap less.
The initial LTI model with extended inputs uses the
excited frequencies fu and the first harmonics fu±fp.

α1, β1, γ1 and δ1 define an LTI system. By taking a
new, extended input U ′ = µuU with µu defined in (22),
the first harmonics are excited, and β2 and δ2 can be
estimated with an LTI model. This BLTI approximation
with extended inputs can be improved by an appropriate
design of the multisine input. As illustrated in Figure
3, if the spacing in between the input frequencies fu
is large enough, the ever-fading skirts will overlap less,
and a better LTI estimate can be obtained. In all our
experiments, this initialization has appeared to be “close
enough” to the global optimum. The trade-off lies in
the spectral resolution of the frequency response and the
accuracy of the parameter-varying dynamics. A denser
multisine makes the skirt overlap more, causing the BLTI
approximation to become less accurate. If the optimization
does not get stuck in a local minimum, the final estimated
model should yield a better fit of the dynamics.

4. DISCUSSION AND COMPARISON

4.1 Time domain

The time domain approach is based on solid linear algebra.
However, there are some parameters to be chosen. In
the periodic-MOESP method, the problem size is reduced
because of the smaller window size d < P , compared with
the lifting procedure in Hench [1995], which uses the full
period P . Although it seems logical to take d = P , based
on experience, it is reported that less accurate results are
obtained when the window length d grows much larger
than the state dimension nx. Finally, the regularization
parameter ν has to be chosen. It weights a reduction of
the variance of the solutions versus a bias. The bigger ν
becomes, the less accurate the overall fit will be. For a third
order SIMO example, regularization is already necessary,
otherwise the estimated model will be poor. In practice, ν
will have to be gridded and tested on validation data for
each identification experiment.

In the appendix of Felici et al. [2007], a proof is given that

for N → ∞, Ôdt from (9) converges to the column space
of the observability matrix Odt . However, because of the
unknown influence of the window d and the regularization
constant ν on the resulting fit, it is hard to predict the
total error on the estimated model.
A big advantage of the periodic-MOESP is that is inher-
ently designed to handle both output and process noise,
while the frequency domain approach currently only takes
the output noise into account. In future research, input
noise will be added to the LPPV framework.
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4.2 Frequency domain

The important difference with the time-domain periodic-
MOESP method is that a multisine, a sum of random
phase sine waves, is applied at the input. So both the
scheduling and the input are periodic. Although the de-
mand of periodic input and scheduling will rule out some
applications, there are certain advantages over a random
input. Measuring several periods results in a reduction of
the noise level in the frequency domain. One can think of
it as averaging out a mean where the accuracy increases
with the square root of the number of periods O

(√
Np

)
. In

the limit Np → ∞, the Fourier coefficients will converge
to the correct values, and the noise influence is eliminated.
The variance due to the time variation cannot be captured
by the BLTI model, it will remain the same for large Np.

For Np ≥ 2 the output noise power spectrum can be
estimated, as explained in Section 3.2. Colored output
noise is therefore no problem. Another important asset is
that we can get a smooth input spectrum at the frequency
band of interest. Every extra period lowers the overall
noise level. This allows for a better signal to noise ratio
in the most important dynamics region, and will thus lead
to a better estimation.

We want to stress that there are no identification param-
eters to be tuned once the experiment is designed. There
is no curse of dimensionality, because the matrices grow
linearly with the period P , the order nx of the system and
the number of scheduling parameters np. Even so, because
of the coupling over the frequency of the output equations,
we do have to compute the output for all frequencies
at once. However, since the compact notation (18)-(19)
inherently incorporates the affine structure, we do not need
to concern ourselves with the states being in different basis,
like in (11).

5. SIMULATION EXAMPLE

We illustrate both identification methods on a Single
Input, Single Output (SISO) LPV example: the flapping
dynamics of a wind turbine from van Wingerden [2008].
The cosine of the blade rotation angle yields the periodic
scheduling sequence. We have

[A(0)|A(1)] =

[
0 0.0734 −.0021 0

−6.5229 −.4997 −.0138 .5196

]
[B(0)|B(1)] =

[
0 0

−9.6277 0

]
[C(0)|C(1)] =

[
1 0 0 0

]
[D(0)|D(1)] =

[
0 0
]

As in Felici et al. [2007], 50 000 discrete time steps are
taken. For the periodic-MOESP method, this system is
excited using white noise. The frequency domain approach
requires a synchronized, periodic input, and thus a random
phase multisine is applied, with a period P = 500. The
periodic scheduling is taken p(t) = [1 , cos(2π 1

10 t)] A
drawback of the current frequency domain approach is
that the measurements must be performed in steady state,
so the inputs, states and outputs are all periodic. We
therefore have to wait until the transients have died out.
In this case, the first measurement period is discarded, and

90 100
0 %

100 %

(a) time domain method

90 100

(b) frequency domain method

Figure 4. Histogram of the Variance Accounted For, for
both LPV identification techniques.

Np = 99 periods remain. In future work we will extend the
LPV framework to model this transient behavior as well.

The identified models are validated on an independent
data set, where the input is a white random noise signal,
with the mean E {uval(t)} = 10 and a standard deviation
σ {uval(t)} = 1. From a theoretical point of view, the
identified model can be used for arbitrary and non-periodic
scheduling and inputs. This is only true if the selected
model structure is exact. For a practical application,
we better do not extrapolate the dynamical behavior
for a single parameter frequency to the full frequency
band. Therefore, the validation scheduling is chosen to
be a shifted version of the experimental setup : pval(t) =
[1 , cos(2π 1

10 t + φ)]. As a measure of performance the
Variance-Accounted-For (VAF) is used. It is defined as

VAF = max

{
1− var

(
y(t)− ŷ(t)

)
var(y(t))

, 0

}
× 100 (30)

0 1
−1

0

1

(a) time domain method

0 1

(b) frequency domain method

-0.25
0.64

0.645

0.65

(c) 95% confidence Cramér-Rao uncertainty ellipse of
the frequency domain estimates. 6.7% of the estimated
eigenvalues are outside of the 95% confidence bound.

Figure 5. Estimated invariant eigenvalues of the constant
matrices Ai in the complex plane. The big crosses
( ) indicate the poles of the underlying system. The
orange crosses ( ) on the left plot show the time
domain estimates, while the blue dots ( ) on the right
correspond to the frequency domain method.
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where ŷ(t) denotes the output signal obtained by simulat-
ing the identified LPV system, and with y(t) the noiseless
output signal of the true system. Figures 4 and 5 show
the results of 1000 Monte Carlo simulations with different
noise realizations, but identical experimental conditions.
Figure 4 displays a histogram of the VAF. The frequency
domain approach consistently yields a better fit on the
validation data. The mean VAF is 99.998 with a standard
deviation of 0.0016. Although the periodic-MOESP does
fairly well, there is more variability in its estimates.

Because of similarity transformations (10), each identified
model can be in a different state basis. However, the
eigenvalues of the Ai matrices remain invariant. They
can be interpreted as the poles of the harmonic transfer
functions. The performance can therefore also be deduced
from the pole plots depicted by Figure 5. Again, we
see that there is much more variance in the periodic
MOESP estimates. The results from the frequency domain
approach seems to converge to the true values. In fact,
we can calculate the Cramér-Rao lower bound on the
variance of the eigenvalues, by extending the perturbation
analysis in Golub and Van Loan [1996]. For the real poles,
we can then construct a 95% confidence interval. For the
complex conjugate poles, we find 95% confidence ellipses.
Figure 5c illustrates how 93.7% of the frequency domain
estimates fall within the Cramér-Rao uncertainty ellipse.
The proposed new method is therefore not only consistent,
but also asymptotically efficient!

6. CONCLUSION

Two state of the art global LPV state space identification
schemes where discussed. The frequency domain method
requires synchronized input and scheduling sequences, and
may therefore not be applicable to every application. For
the output error case, the proposed frequency domain
method is consistent and asymptotically efficient even in
the presence of colored output noise, while the periodic
MOESP has higher variance and is restricted to white
noise. Note however that the latter can also tackle (white)
process noise, and works with arbitrary inputs. Future
research will be dedicated to the extension of the frequency
domain method, to eliminate these shortcomings.
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