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Abstract
In this paper a class of input-parametrized bilinear positive systems is considered. This class is
characterized by the fact that the input variables affect only the diagonal entries of the dynamical
matrix. The class of systems considered is relevant to a variety of dynamical models arising in
system biology and compartmental systems. Given a final time tf , it is proven that the any
component of the state vector at tf is a convex functional of the input variables. If a linear cost
of the final state is considered this result has the important consequence that any Pontryagin
solution of the associated optimal control problem is optimal and can be numerically computed
by using standard gradient-type algorithms. A few extensions are given and an example is
provided to illustrate the theory.

1. INTRODUCTION

This note deals with optimal control for a class of input-
parametrized linear positive systems. The main motivation
lies in the observation that in many biological models the
input represents a scheduling function that acts on the
system parameters and has to be designed to minimize
a cost representing the infection over a certain interval
of time. The study of optimal control problems for such
systems may then help inform application areas such as
infection treatment protocols. For instance, in the recent
work Hernandez-Vargas et al. (2013), a certain class of
simplified HIV treatment switched models are consid-
ered in order to prolong the viral rebound and mitigate
the infection effects. This class of problems also arise in
certain types of epidemiological models, for example in
SI (susceptible/infection) models (e.g. Rami et al. (2013);
Moreno et al. (2002)), at small initial infection stage.

The class of systems considered is related to that of
switched/hybrid systems, for which the optimal control
problem has been widely studied Cassandras et al. (2001),
Dmitruk and Kaganovich (2011) and the variational ap-
proach has been developed by Rapoport (1996) and
Margaliot (2006). The optimal control problem is inher-
ently nonlinear and therefore non-convex in general. There
is therefore no guarantee that solutions satisfying the
Pontragyn maximum principle provide globally optimal
solutions. Moreover, finding such solutions is in general
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a formidable task, since it requires backward and forward
iterations of the state-costate dynamics with no guarantee
of convergence.

Convexity of the cost with respect to the control function
is therefore a very strong property that ensures optimality
of the Pontragyn solutions and allows the use of simple
interior point algorithms to find an optimal solution.

In this note we prove that, for an important class of
input-parametrized positive systems, the cost functional
is indeed convex with respect to the control variables.

The paper is organized as follows. The class of systems
and the associated optimal control problem are defined in
Section 2. The main result on convexity is introduced in
Section 3 and the proof of the main theorem is given in
Section 4, where also some hints on the possible algorithms
are given together with possible important extensions on
the class of considered cost functions that preserve convex-
ity. Section 5 includes an example taken from Rami et al.
(2013) and dealing with a epidemiological model with
small initial infection status.

We use the following notation. The semiring of nonneg-
ative n-tuples of real numbers is Rn

+. A square matrix
A = [aij ] is Metzler if its off-diagonal entries are nonnega-
tive, aij ≥ 0 for every i ̸= j. The symbol 1 denotes a vector
with all entries equal to 1. For details on positive systems
the reader is referred to Farina and Rinaldi (2000).

2. OPTIMAL CONTROL PROBLEM

Consider a nonlinear system described by

ẋ = A(u)x = (M + Λ(u))x, x(0) = x0 (1)
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where x(t) is the n-dimensional state vector, M is Metzler,
Λ(u) is an n×n diagonal matrix of convex and continuous
functions of u and u(t), for each t, is a m-dimensional
control variable belonging to the polytope

U .
=

{
u ∈ Rm

+ : 1′u = 1
}
.

We assume further that u, as a function of time, belongs to
the functional space Us of piecewise continuous functions
taking values in U , in the interval [0, tf ] where tf > 0 is a
given final time instant.

Since A(u) is Metzler for any u, Rn
+ is positively invariant

for any u ∈ Us, i.e. the system is positive.

Remark 1. The class of systems described by (1) includes
linear systems in a polytope when

Λ(u) =

M∑
i=1

Λiui (2)

with u ∈ Us. This system can be considered to be
the embedding of a linear switched system. In this case
Λ(u) = Λσ where the switching signal σ is a left continuous
piecewise constant signal taking values in the finite set
M = {1, 2, · · · ,M} so that ui(t) = 1 if σ(t) = i and
ui(t) = 0 otherwise.

For instance, such a system can represent a simplified
model of treatment of HIV infection dynamics (see for ex-
ample Hernandez-Vargas et al. (2013)), where x represents
the concentrations of various viral mutants in a patient,
and σ represents the selection of a suitable therapy. Other
examples can be found in the widespread SIR (or SI,
or SIRS) models of epidemiology over a network, in the
initial infection phase (see for example Rami et al. (2013);
Moreno et al. (2002)). The embedded system is important
in the context of optimal control, since it is capable of
capturing possible singular arcs corresponding to sliding
trajectories of the system state.

We now considered an optimal control problem for system
(1), with terminal cost functional:

J(u, x0) := c′x(tf ) (3)

where c is a nonnegative vector. The problem is to find
uo ∈ Us that minimizes the cost, i.e. minu∈Us J(u, x0).

In the literature on optimal control, direct sufficient con-
ditions (for instance associated with Hamilton-Jacobi-
Bellman equations) are often impractical. Therefore, many
results give necessary conditions for optimality using the
Pontryagin principle, as a starting point for seeking op-
timal solutions. We therefore define a Pontragyin so-
lution as a candidate optimal control solution satisfy-
ing the necessary conditions. For further details see e.g.
Bressan and Piccoli (2007).

Definition 1. A triple uo(t) : [0, tf ]× U , xo(t), πo(t), that
satisfies (for almost all t) the system of equations:

ẋo(t) =A(uo(t))xo(t) (4)

−π̇o(t) =A(uo(t))′πo(t) (5)

uo(t) ∈ argmin
u∈U

{πo′(t)A(u)xo(t)} (6)

with boundary conditions xo(0) = x0, π
o(tf ) = c, is called

a Pontryagin solution for the optimal control problem.

3. CONVEXITY

We are now ready to state the main result of the paper,
namely the convexity of the map u ∈ Us → J(u, x0) ∈ R+.

Theorem 1. Consider system (1) and assume that M is a
Metzler matrix, Λ(u) is a diagonal matrix composed by
convex functions of u ∈ U , and consider the cost function
(3), where c is a nonnegative vector. Then, the functional
u → c′x(tf ) from Us to R+ is convex.

The proof of the above result will be given next. However,
to stress its importance, the following theorem stating the
optimality of a Pontragyn solution associated with the
optimal control problem is provided.

Theorem 2. Consider (1) and assume that M Metzler,
Λ(u) is a diagonal matrix composed by convex functions
of u ∈ U , and consider the cost function (3), where c is
a nonnegative vector. Then the optimal control problem
admits at least one Pontryagin solution (uo, xo, πo) and uo

is a global optimal control signal relative to x0. Moreover,
the value of the optimal cost functional is πo′(0)x0.

Proof Note first that the optimal control for system (1)
and cost (3) always exists. Indeed, see e.g. Theorem 5.1.1
in Bressan and Piccoli (2007), a sufficient condition is that
the sets of velocities F (x, u) := {A(u)x; u ∈ U} are
convex and that the vector field is bounded by an affine
function of the norm of the state variable, i.e. ∥(M +
Λ(u))x∥ ≤ α(1+∥x∥) for some positive scalar α, and for all
x ∈ Rn

+ and u ∈ U . These conditions are of course satisfied
in our case. Let an optimal triple be xo, uo, πo. This triple
is a Pontryagin solution, as defined in Definition 1. Indeed,
the Hamiltonian function associated with system (1) and
the linear cost (3) is

H(x, u, π) = π(t)′A(u)x(t)

and π̇(t) = −
(
∂H
∂x

)′
= −A(u)′π(t), ẋ(t) =

(
∂H
∂π

)′
=

A(u)x(t), with π(tf ) = c and x(0) = x0. The transversal
conditions are satisfied and for all u ∈ U :

H(xo, uo, πo) ≤ H(xo, u, πo).

In view of the Pontryagin principle, the triple (xo, πo, uo)
satisfies the necessary conditions for optimality. Theorem 1
states the convexity of the cost with respect to u ∈ Us. This
fact is sufficient, see (Bressan and Piccoli, 2007, Theorem
5.1.1), to guarantee optimality. 2

4. PROOF OF THEOREM 1

Here we prove Theorem 1. Given u ∈ Us, system (1)
become a linear time-varying positive system described by

ẋ(t) = (M + Λ(u(t)))x(t) (7)

Let Φ(u, t, t0) be the transition matrix of M +Λ(u(t)), i.e.

d

dt
Φ(u, t, t0) = (M +Λ(u(t)))Φ(u, t, t0), Φ(u, t0, t0) = I

Given tf > 0, and a positive vector c rewrite the cost as

J(u, x0) = c′Φ(u, tf , t0)x0

We now prove that

(i) the cost function J(u, x0) from U into R+ is convex
(ii) the cost functional u → J(u, x0) from Ūs into R+

is convex, where Ūs = {Λ : [0, tf ] → L} is the set of
piecewise constant functions in U .
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(iii) the cost functional u → J(u, x0) from Us into R+ is
convex (Theorem 1).

Let us start by stating two technical lemmas.

Lemma 1. Consider a scalar function f : U → R+ defined
as

f(u) = ew
′z(u)

where w ∈ Rn
+ and assume that the entries of vector z(u)

are twice differentiable convex functions of u ∈ U . Then
the function f(u) is convex.

Proof. The gradient of f(u) is ∂f(u)
∂u = f(u)w′Zu and

the Hessian is ∂2f(u)
∂2u = f(u)Z ′

uww
′Zu +

∑n
i=1 wi

∂2zi(u)
∂2u ,

where Z ′
u is the gradient of z(u). The vector w is by

assumption non-negative i.e. wi ≥ 0, i = 1, 2, · · · , n.
Moreover, the Hessian matrices ∂2zi(u)

∂2u ,i = 1, 2, · · · , n are
positive semidefinite, since we assume z(u) is a convex

function of u. Therefore ∂2f(u)
∂2u is positive semidefinite, and

therefore f(u) is convex. ⋄
Lemma 2. Let fk(u), k = 1, 2, · · · , p be a sequence of
convex functions on a convex domain, and assume that
the sequence point-wise converges to a function f(u). Then
f(u) is convex.

Proof. Assume by contradiction that f(u) is not convex,
that is, there exist two points u1 and u2 and 0 < α < 1
such that, denoting by u = αu1 + (1− α)u2, we have

f(u) > αf(u1) + (1− α)f(u2) (8)

On the other hand, from the convexity assumption on fk,

− fk(u) + αfk(u1) + (1− α)fk(u2) ≥ 0 (9)

for all k. Taking the limit, we have

f(u) ≤ αf(u1) + (1− α)f(u2)

which contradicts (8).

4.1 (i): Convexity of the cost in U

We first consider the case of a constant u, i.e. point (i)
above. Note first that for a constant u the transition
matrix is Φ(u, tf , 0) = e(M+Λ(u))tf , so that the cost is

J(u, x0) = c′e(M+Λ(u))tfx0.

Lemma 3. For any non-negative c and x0, the function
f(u) : U → R+ defined by

f(u) = J(u, x0) = c′e(M+Λ(u))tfx0 (10)

is convex in u.

Proof. We first note that f(u) in (10) is a well defined
continuous function of u. Then recall a useful formula for
the exponential of the sum of two matrices (Cohen (1981)):

e(M+Λ(u))tf = lim
k→∞

(
e

Mtf
k e

Λ(u)tf
k

)k

Therefore, defining the functions

fk(u) = c′
(
e

Mtf
k e

Λ(u)tf
k

)k

x0

we have
fk(u) → f(u)

Let us consider the generic function fk(u). Since e
Mtf

k is a

nonnegative matrix and e
Λ(u)tf

k is a diagonal matrix with

elements ξi
.
= e(λi(u)tf/k) we have that fk(u) is a positive

polynomial in the variables ξi. Formally

fk(u) =
∑

k1+...+kN=k

(
αk1,k2,...,kN ξk1

1 ξk2
2 . . . ξkN

N

)
with α• ≥ 0 formed from the appropriate sums of products

of elements of c, e
Mtf

k , and x0. On the other hand if
we replace ξi = e(λi(u)tf/k) we get that each monomial
satisfies

ξk1
1 ξk2

2 . . . ξkN

N = e
∑n

i=1
λi(u)kitf/k = ew

′z(u)

where w′ = [k1tf/k k2tf/k · · · kntf/k] and z(u)′ =
[λ1(u)λ2(u) · · · λn(u)]. Since w is nonnegative and λi(u)
are convex functions of u in view of Lemma 1 we conclude
that fk(u) is convex for all k. The proof then follows from
the fact that fk(u) → f(u) = J(u, x0), and hence J(u, x0)
is a convex function of u. 2

4.2 (ii): Convexity of the cost in Ūs

Lemma 4. Let u(t) be a piecewise constant function of t

u(t) = u[i], ti−1 ≤ t < ti = ti−1 + Ti

with i = 1, 2, . . . ,K. Then

J(u, x0) = c⊤
∏
i

e(M+Λ(u[i]))Tix0 (11)

is convex in the values u[i].

Proof. The proof follows similar lines of argument to the
proof of Lemma 3. We approximate each exponential

e(M+Λ(u[i]))Ti ≈
(
e

MTi
k e

Λ(u[i])Ti
k

)k

as before and we notice that we get a polynomial with
positive coefficients in the unknowns ξi,j = eλi,jTi/k, where
λi,j , j = 1, 2, · · · , n are the elements on the diagonal of

Λ(u[i]). This polynomial is convex and hence the limit
function is convex as well. 2

Remark 2. The convexity results have been presented in
the case where the intervals [tk−1, tk] are common to all
functions. This is without loss of generality, since if each
function of u(t) has its own interval partition, we consider
the “intersection” of these intervals.

4.3 Point (iii): Convexity of the cost in Ūs

We now are in a position to prove the main result, Theorem
1. Given any piecewise continuous function of time f(t) in
the interval [0, tf ], there exists a sequence of piecewise–
constant functions fk which converge to f in the integral
norm ∫ tf

0

|fk(t)− f(t)|dt → 0

As a consequence c⊤Φ(u, tf , t0)x0 can be achieved as the
limit of functions of the form (11). Repeating the convexity
and limit argument, by contradiction assume that

u(t) = αu{1}(t) + (1− α)u{2}(t)

and that

J(u, x0) > αJ(u{1}, x0) + (1− α)J(u{2}, x0)
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for some 0 < α < 1. On the other hand, the function u
can be seen as the limit of a sequence of piecewise constant
functions ū(k), and the same for u{1} and u{2}. Thanks to
convexity with respect to Ūs, the opposite inequality is
satisfied, i.e.

J(ū(k), x0) ≤ αc⊤J(u{1}(k), x0) + (1− α)J(ū{2}(k), x0)

This leads to a contradiction.

4.4 Algorithms

We end this section by providing a computational scheme
for the optimal control problem. The convexity property
allows using different types of algorithms to find the
solution of

min
u∈Us

J(u), J(u) = c′x(tf )

Computations can be cast in discrete-time, by taking, as
done in the previous section, a subdivision of the interval
[0, tf ] into N intervals T1, T2, · · · , TN . The control variable
may be approximated as piecewise constant, i.e. (with
T0 = 0, TN = tf ):

u(t) = ū[k], t ∈ [
k−1∑
i=1

Ti,
k−1∑
i=1

Ti + Tk)

The discretized control is denoted by ū taking values in Ū ,
the cartesian products of U . Hence the problem is to find

min
u∈Ū

J(ū, x0) = min
u∈Ū

c′
1∏

i=N

e(M+Λ(ū[i])Tix0 (12)

The constrained optimization problem can be solved using
the standard Matlab function fmincon.m which is based on
an interior point method. Notice indeed that Ū is a convex
set and that J(ū, x0) is a convex function of ū.

To further assist the convex minimisation, note that we can
explicitly compute the gradient of the cost. The gradient
of J(ū, x0) is a mN -dimensional row vector and the jth m-
dimensional row entry g[j](k) can be computed from (12).
Indeed a simple computation shows that the generic r-th

entry g
[j]
r (k) of g[j] is

g[j]r (k) = c′Ψ[j]
r

(
Φ[j]

r |ū(k)
)
Γ[j]
r x0

where

Ψ[j]
r =

j+1∏
i=N

e(M+Λ(ū[i]))Ti , Γ[j]
r =

1∏
i=j−1

e(M+Λ(ū[i]))Ti

and

Φ[j]
r =

∂e(M+Λ(ū[j]))Tj

∂ūj
r

=

∫ Tj

0

e(M+Λ(ū[j]))(t−τ) ∂Λ(ū
[j])

∂ū
[j]
r

e(M+Λ(ū[j]))τdτ

= (0 I) e

M + Λ(ū[j]) 0
∂Λ(ū[j])

∂ū
[j]
r

M + Λ(ū[j])

Tj (
I
0

)
Notice that the algorithm can be further enhanced by
explicit computation of the Hessian matrix.

As a last observation, notice that the optimal cost
J(uo, x0) is a concave function of x0, see for instance
the recent papers Hernandez-Vargas et al. (2011) and
Blanchini et al. (2012). Then taking x0 ∈ A for some
predefined set of initial states, it may also be of interest to
find a saddle point solution of the min-max problem

min
u∈Us

max
x0∈A

J(x0, u)

i.e. a solution u∗, x∗
0 such that J(x0, u

∗) ≤ J(x∗
0, u

∗) ≤
J(x∗

0, u) for any x0 ∈ A, where A = {x0 ∈ Rn
+ : 1nx0 =

1}, and any u ∈ Us. In this regard, taking again the above
discretization of u, we are able to write the computational
scheme

ū[k+1] =ProjŪ

(
ū[k] − αg[k]

)
(13)

x̄
[k+1]
0 =ProjA

(
x̄
[k]
0 + αh[k]

)
(14)

where ProjA is the projection on A, h[k] is the gradient
of J(x0, u) with respect to x0 at the k-th iteration. The
vector h can be easily computed (thanks to the linearity of

J(x0, u) with respect to x0, as h = c′
∏1

i=N e(M+Λ(ū[i]))Ti .

4.5 Extensions

The proof of convexity has been carried out by looking at
a problem where the cost is a generic linear combination
of the final state. However we know that any convex and
nondecreasing function of a convex function is convex, and
hence a similar analysis can be carried out considering such
a cost. Linearity of the cost with respect to xf and linearity
of the system for any given control function also implies
linearity with respect to the initial state, so implying
concavity of the optimal cost with respect to x0. Notice
that to preserve concavity it is possible to consider a cost
that is a concave and nonincreasing function of the state.

Note also that the cost functional can be readily extended
to an integral cost of the form

J(u, x0) = c′x(tf ) +

∫ tf

0

d′x(t)dt (15)

where d is a nonnegative vector. Indeed the former problem
(1) and cost (3) are recovered by augmenting the state

as follows. Let ξ = [x′ η], with η =
∫ t

0
d′x(τ)dτ and

J(u, x0) =
[
c′ 1

]
ξ(tf ).

Following a similar rationale we can also establish an
extension of the presented theory for systems affected by a
constant input, i.e. ẋ = A(u)x+b, where b is a nonnegative
vector. This can be achieved again by state augmentation,
i.e. ξ = [x′ b] so that J(u, x0) =

[
c′ 0

]
ξ(tf ).

Finally, notice that the convexity property also holds when
the cost is enriched by an additional term that depends on
the control variable u ∈ Us, say h(u), provided that h is a
convex functional of u.

Therefore, our convexity properties holds when the cost is

J(x0, u) = c′x(tf ) +

∫ tf

0

d′x(t)dt+ h(u)

under the assumption the the system structure ẋ = (M +
Λ(u)) is such that Λ(u) is a diagonal matrix with convex
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function of u, M is a nonnegative matrix and h is a convex
functional of u.

5. EXAMPLE

The example is taken from Rami et al. (2013) and concerns
the epidemiological model of a population divided into n
groups. Each group is divided into two classes, i.e. Ii(t)
infectives and Si(t) susceptibles. Under the assumption
that the total number Ii(t) + Si(t) = Ni is constant and
letting xi(t) = Ii(t)/Ni one can write, for i = 1, 2, · · · , n:

ẋi(t) = (1− xi(t))

N∑
j=1

βijNj

Ni
xj(t)− (γi + µi)xi(t) (16)

where βij is the rate at which susceptibles in group i are
infected by infectives in group j, γi is the rate at which
an infective individual in group i is cured and µi the birth
and death rates in group i (assumed to be equal since
the number of the total population in the same group is
constant). Note that the set 0 ≤ xi ≤ 1, i = 1, 2, · · · , 4, is
positively invariant.

We now assume that, for each group i, m different cures
are possible, so that the rate γi depends on an additional
index, say σ = {1, 2, · · · ,m}, that represents the switching
signal that orchestrates the different therapies for each
group i. Therefore, we replace γi in (16) with γσi. The
addition of the therapy scheduling preserves the positive
invariance property of the set 0 ≤ xi ≤ 1, i = 1, 2, · · · , 4.
We also make the simplifying assumption that the change
of therapies does not affect the rates βij . Finally, we
linearize the system around the disease free equilibrium
x = 0. The linearized system is then given by

ẋ = (M + Λσ)x (17)

where M is a nonnegative matrix with entries Mij =
βijNj/Ni and Λ1,Λ2, · · · ,Λm are diagonal matrices. The
entries of Λσ are denoted by λσi and are as follows:
λσi = −γσi − µi. We can define the associated embedded
system as

ẋ = (M + Λ(u))x (18)

where the vector u = [u1, u2, · · ·um]′ lives in the polytope∑m
i=1 ui = 1, ui ≥ 0 and Λ(u) =

∑m
i=1 Λiui. Λ(u) is convex

with respect to u, so that the result of Section 4.3 can be
used to conclude that, given a final time tf , the scalar
cost functional J(x0, u) = f(x(tf )) is a convex functional
of u ∈ Us provided that f is a monotonically increasing
function. In the following example we consider a finite time
optimal control problem with integral cost, namely

J(x0) =

∫ tf

0

c̄′x(t)dt (19)

where c̄ is a nonnegative column vector. Notice that it
is easy to cast the optimal control problem for (18),
(19) in the formulation studied in the formulation studies
in the previous section. Indeed it is enough to add an
additional state variable z with initial value z(0) = 0 and
equation ż = c̄′x so that J(x0) = c′[x(tf )

′ z(tf )]
′ with

c = [0...0 1]′. It goes without saying that if system (17) is
stabilizable, it is possible to tackle the problem of finding
the optimal control for the infinite horizon problem, i.e.
the minimization of

J̄(x0) =

∫ ∞

0

c̄′x(t)dt

The stabilization problem, even for positive systems, is
a formidable task for dimensions greater than 2, see the
recent paper Blanchini et al. (2012). A sufficient condition
for stabilizability ẋ = Aσx is given by looking at the so-
called co-positive Lyapunov-Metzler inequalities

p′iAi +
∑
j ̸=i

µij(pj − pi) + c̄′ < 0, i = 1, 2, · · · ,m (20)

If there exist nonnegative vectors pi, i = 1, 2, · · · ,m, and
nonnegative numbers µij , j ̸= i satisfying (20), then the
switching law σ = argmini p

′
ix is stabilizing and such that

J(x0) < mini p
′
ix0. If this is the case, one can optimize the

upper bound with respect to the free parameters λij .

5.1 Simulation results

Consider system (16) and its linearized version (17) with

M =

 0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 0.9649 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5469 0.9706 0.1419


Λ1 =diag{−4.442,−2.5140,−6.0511,−2.4946}
Λ2 =diag{−2.7808,−2.9818,−5.2238,−4.6278}

The task is to find the optimal control that minimizes

J(x0) =

∫ ∞

0

4∑
i=1

xi(t)dt

with the initial state given by x0 = [0.05 0.15 0.25 0.35]′.

According to (19) we set c = [0 0 0 0 1]. Moreover, letting

A(u) =

[
M + Λ(u) 0

c̄′ 0

]
and Λ(u) = Λ1u1 +Λ2(1− u1), we can tackle the problem
of minimizing J(x0) = limtf→∞ c′ξ(tf ) under the system

dynamics given by ξ̇ = A(u)ξ.

First let us consider fixed u. Notice that both A1 = M+Λ1

and A2 = M+Λ2 are Hurwitz stable, so that the best value
of the cost for constant u in the vertices can be easily found
J(x0) = mini q

′
ix0 where qi = −c′(Λi +M)−1, i = 1, 2. It

turns out that J(x0) = 0.622. Notice that by taking a
constant u strictly inside the polytope, the best constant
control is u1 = 0.26, u2 = 0.74, that corresponds to a
sliding mode for the switching system. With this control
the cost is J(x0) = 0.601.

One can also optimize the values of the parameters µij

in order to minimize the upper bound of the cost given
by the co-positive Lyapunov-Metzler inequalities (20).
Taking µ12 = 0.74, µ21 = 0.26 one obtains p1 =
[0.876 0.933 0.652 1.083], p2 = [1.229 0.833 0.723 0.725] and
applying the associated sub-optimal switching strategy one
obtains a cost equal to 0.582. The (state-feedback) control
law generates a sort of periodic behaviour in that the
control switches from u1 = 0 to u1 = 1 in a periodic
fashion.

We have computed the optimal control numerically, with a
time horizon of 20 seconds, and 0.1 second discretization,
using an analytical gradient, as described in Section 4.4,
and the interior point algorithm in the Matlab function,
fmincon. Surprisingly, in this particular case, the opti-
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mal cost for the linearized system, J(x0) = 0.582, is
equal to the cost obtained by the sub-optimal switching
strategy. As for the concave-convex mixed strategy, see
(13), (14), the results show that the worst initial state is
x0 = α[0.206 0.1631, 0.0043 0.126]′, where α is any positive
scalar. Notice that since the system is linear the cost is
also linear with respect to x0 and hence only the direction
is important. The associated cost is J(x0) = 0.4321α.

When applied to the nonlinear system, (16), the best
constant control within the vertices is with u1 = 0 and the
associated cost is 0.411. The best constant control within
the polytope is u1 = 0.26, u2 = 0.74 and the associated
cost is 0.403. The switching strategy based on the LM
inequalities provides a cost equal to 0.3922. If we compute
the optimal control worked out for the linearized system,
the cost is again equal (up to numerical errors) to the
cost due to the switching strategy based on the co-positive
Lyapunov-Metzler inequalities. Finally, the min-max op-
timal strategy with x0 = [0.206 0.1631, 0.0043 0.126]′ has
been applied to the nonlinear system, giving a cost equal to
0.407. The transient of the state-variables and the optimal
input function are illustrated in Figs. 1, 2 respectively.
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Figure 1. State variables of the nonlinear system (optimal
mixed control for the linearized system)
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Figure 2. Optimal control variable associated with the
worst initial state

6. CONCLUSIONS

In this paper we have examined the convexity of the cost
functional with respect to the input function of a particular
class of positive systems. Such systems are characterized

by the fact that the control variables affect the diagonal
entries only, and these entries are convex functions of the
control variables. The convexity property of the cost is
important since is sufficient to guarantee the optimality
of solutions satisfying the Pontragyn minimum principle
in a optimal control context. This fact opens the way to
the use efficient computational methods to find the optimal
control. On the other hand, the class of systems considered
is amenable to characterize important applications in the
field of system biology. In particular, a simple example
taken from a infective/suscective epidemiological model is
considered. Extensions of this work can consider questions
such as: the search for different application models and
the extension of the theory to a wider class of positive
nonlinear dynamic systems.
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