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Abstract: In this paper we develop a new control design procedure for continuous-time switched
linear systems. Beyond the global stability, two performance indexes based on H∞ theory and
passivity are considered. The proposed switching control design is entirely based on convex
combinations of subsystems transfer functions. In this precise context a new min-type switching
function depending on the state and input variables is introduced which opens the possibility to
generalize the same ideas to obtain less conservative solutions to other control design problems
of switched systems appearing in the literature. An illustrative example is solved and discussed.
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1. INTRODUCTION

Switched systems constitute an important subclass of hy-
brid systems characterized by presenting several subsys-
tems and a switching rule that selects, at each time instant,
one of them to be connected. The switching rule can act
in two different ways. First, it can be arbitrary and may
present an unbounded switching frequency playing the
role of a severe external perturbation, or may respect a
pre-specified interval of time in which the switching rule
remains unchanged and a subsystem is switched on by
preserving a given dwell time. In this first case, the control
goal is to assure stability and performance even in the
presence of the external perturbation or to determine the
minimum dwell time in order to accomplish the same goals.
In the second case, the switching rule can be a control
variable to be determined in order to preserve stability
and impose to the overall switched system a performance
as good as possible. In this paper, we treat the second case
where the switching rule is the control variable. The books
Liberzon [2003], Sun & Ge [2005] and the papers Decarlo
et al. [2000], Liberzon & Morse [1999], Lin & Antsaklis
[2009], Shorten et al. [2007] are useful references for early
theoretical developments on these topics.

The stability analysis of continuous-time switched linear
systems has been treated by several authors, as for in-
stance, Branicky [1998], Decarlo et al. [2000], Geromel &
Colaneri [2006], Hespanha [2004] and Liberzon & Morse
[1999]. The increasing interest on this subclass of systems
is motivated by some of their important features which
can not be directly analyzed by the classical methods
available in the literature. As for instance, if all subsys-
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tems are stable, an unappropriated switching action can
lead to an unstable behavior. On the other hand, if the
switching rule is conveniently designed, the stability of
the overall switched system can be assured even if all sub-
systems are unstable. Moreover, the consistency property
defined in the recent reference Geromel et al. [2013] makes
clear the importance of the switching rule design, since it
can enhance the overall performance when compared to
that of each isolated subsystem. The stabilization results
have been generalized to cope with state feedback control
Geromel & Deaecto [2009], Ji et al. [2005], Skafidas et al.
[1999] and output feedback control Deaecto et al. [2011],
Geromel et al. [2008].

Due to the success obtained in the field of switched linear
systems, the interest in the study of switched nonlinear
systems is increasing, as reveal the recent references Alek-
sandrov et al. [2011], Colaneri & Geromel [2008], Long
& Zhao [2011], Moulay et al. [2007], Sun & Wang [2013],
Wang et al. [2009], Wu [2009], Yang et al. [2009], and Zhao
& Hill [2008]. More specifically, Colaneri & Geromel [2008],
Long & Zhao [2011], Wang et al. [2009], Yang et al. [2009]
treat the stability analysis of general switched nonlinear
systems, in which Long & Zhao [2011] and Wu [2009]
consider the case where the switching rule is arbitrary
and Wang et al. [2009], Yang et al. [2009] deal with the
design of a stabilizing one. In Colaneri & Geromel [2008]
the two classes already mentioned of the switching rule
are treated. For switched nonlinear systems an important
subclass is the one composed by the Lur’e-type switched
systems. They are characterized by presenting a feedback
connection of a switched linear system and a nonlinearity
bounded by a sector. For time invariant Lur’e-type systems
the celebrated Popov criterion is an important issue, in
which the stability analysis is based on a condition for-
mulated in the frequency domain. However, to the best of
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our knowledge, there is no stability test in the frequency
domain allowing us to determine a stabilizing switching
rule for Lur’e-type switched nonlinear systems. It is im-
portant to mention that finding an interpretation in the
frequency domain is far from being trivial since switched
systems are time-varying and, in principle, they do not
admit a frequency domain representation. In other words,
the determination of a stabilizing switching function, in
general, can not be done on the basis of the subsystem
transfer functions. Hence, the problem of finding a transfer
function that not only represents the switched system but
also allows us to obtain a globally stabilizing switching
function opens the possibility to treat several control de-
sign problems of the literature as, for instance, the gen-
eralization of the Popov criterion to cope with switched
systems, that we have just discussed.

In this paper, we focus on determination of a stabilizing
state-input switching function based on a transfer function
approach. More specifically, our results are derived from
the existence conditions of the Lyapunov-Metzler inequali-
ties firstly introduced in Geromel & Colaneri [2006]. A new
class of switching function depending on the state and on
the exogenous input variables is the key point that allow
us to accomplish the goal of reducing the design conditions
to the search of an adequate convex combination of sub-
systems state space matrices. A performance measured in
terms similar to H∞ norm is addressed. With respect to
this particular class of performance index we go beyond
the previous existing results available in the literature
as for instance Zhai [2012]. As a natural generalization,
passivity of switched systems is also treated. The theory
is illustrated by means of an academical example.

The notations are standard. For real matrix A or vectors,
A′ indicates transpose of A. For symmetric matrices, the
symbol (•) denotes each of its symmetric blocks. The
convex combination of matrices {J1, · · · , JN} with the

same dimensions is denoted by Jλ =
∑N

j=1 λjJj where

λ = [λ1 · · ·λN ]′ ∈ R
N belongs to the unitary simplex Λ

composed by all nonnegative vectors λ ∈ R
N such that

∑N

j=1 λj = 1. The set Mc is composed by all Metzler

matrices Π = {πji} ∈ R
N×N with nonnegative off diagonal

elements satisfying
∑

j∈K
πji = 0 for all i ∈ K. The

norm of a trajectory defined for all t ≥ 0 is given by
‖w‖22 =

∫∞

0
w(t)′w(t)dt and L2 denotes the set of all

trajectories with finite norm, that is ‖w‖2 < ∞. A square
matrix is called Hurwitz stable if all eigenvalues are located
in the open left part of the complex plane.

2. PRELIMINARIES

Consider a switched linear system with the following state
space representation

ẋ=Aσx+Hσw (1)

z =Eσx+Gσw (2)

evolving from the initial condition x(0) = 0. The vectors
x(·) ∈ R

n, w(·) ∈ R
m and z(·) ∈ R

r are the state, the
exogenous input and the controlled output, respectively.
The switching function to be designed denoted by σ(·)
selects at each instant of time t ≥ 0 a subsystem among

those belonging to the set K = {1, · · · , N}. In the sequel,
we analyze some relevant aspects that arise in the design
of a suitable state-input switching function of the form
σ(x,w) whose stability and performance design conditions
are expressed in terms of a convex combination of certain
affine matrix functions. For the moment, in order to
establish the mentioned conditions for global stability
and performance optimization, we consider the Lyapunov
function candidate

v(x) = min
i∈K

x′Pix (3)

with symmetric matrices 0 < Pi ∈ R
n×n, i ∈ K to be

determined. Moreover, whenever associated to this min-
type Lyapunov function, the switching strategy

σ(x) = argmin
i∈K

x′Pix (4)

preserves global asymptotical stability and performance of
the closed-loop switched linear system under consideration
as it can be viewed in several papers included as references.
Notice that the design of this kind of switching func-
tion depends exclusively on the determination of positive
definite matrices Pi, ∀i ∈ K yielding the well known
Lyapunov and Riccati-Metzler inequalities, see Geromel &
Colaneri [2006], Geromel et al. [2008], Deaecto et al. [2011].
The results provided in this paper are obtained from the
adoption of the same Lyapunov function (3) but with

σ(x,w) = argmin
i∈K

[

x
w

]′

Ri

[

x
w

]

(5)

as the associated switching function. Of course, matri-
ces Ri for all i ∈ K of compatible dimensions can be
constrained in an obvious way such that this state-input
dependent switching strategy collapses to the state depen-
dent one (4). As it will be clear in the sequel, this more
general switching function has an important impact as far
as performance quality of the closed-loop switched system
is concerned but, clearly, for implementation it needs the
online measurement of the state and the exogenous input
of system (1)-(2).

The switched linear system (1)-(2) is composed by N sub-
systems with transfer functions Si(s) = Ei(sI−Ai)

−1Hi+
Gi, ∀i ∈ K. If the matrix Ai is Hurwitz then we can
determine its H∞ norm as being ‖Si‖∞ or verify if it is
strictly positive real, that is if Si(−jω)′ + Si(jω) > 0 for
all ω ∈ R. In this paper, we will show that a switch-
ing function of the form (5) can be designed from the
determination of λ ∈ Λ such that the transfer function
Sλ(s) = Eλ(sI − Aλ)

−1Hλ + Gλ reaches a pre-specified
property as H∞ or positive realness.

3. STABILITY

In this section, we analyze global asymptotical stability of
the switched linear system (1) with zero input w = 0 and
arbitrary initial condition x(0) = x0 ∈ R

n. The following
theorem, which is a consequence of several well known
results, is central for the existence of a stabilizing switching
function of type (4). It states that a stabilizing strategy
exists provided that the set of matrices {Ai}i∈K admits a
Hurwitz stable convex combination.

Theorem 1. Suppose there exist 0 < P ∈ R
n×n and λ ∈ Λ

such that
∑

i∈K

λiLi(P ) < 0 (6)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4069



where Li(P ) = A′
iP +PAi, ∀i ∈ K. There exists a switch-

ing function of the form (4) such that the continuous-
time switched linear system ẋ(t) = Aσ(x(t))x(t) is globally
asymptotically stable.

Proof: Assume that (6) holds for some λ ∈ Λ and P > 0.
Define −Ri = A′

iP + PAi for all i ∈ K and notice that
∑

i∈K
λiRi > 0. Furthermore, Π = −I + λe′ ∈ Mc where

e = [1 · · · 1]′ ∈ R
N . Setting Wi = WN + (RN −Ri), i ∈ K

with WN arbitrary we have for each i ∈ K

∑

j∈K

πjiWj =
∑

j∈K

λjWj −Wi

=−
∑

j∈K

λjRj +Ri

<Ri (7)

Now, choosing WN > 0 big enough we can compute
Wi > 0, i ∈ K satisfying the matrix inequalities

A′
iP + PAi +

∑

j∈K

πjiWj < 0, i ∈ K (8)

and, consequently, taking µ > 0 large enough we can add
the quantity µ−1(A′

iWi + WiAi) on the left hand side of
inequality (8) to obtain

A′
iPi + PiAi +

∑

j∈K

πjiWj < 0, i ∈ K (9)

where Pi = P + µ−1Wi > 0, i ∈ K. Finally, defining
Π = µΠ ∈ Mc and observing that the following equality
∑

j∈K
πjiWj =

∑

j∈K
πjiPi holds for all i ∈ K, it is seen

that

A′
iPi + PiAi +

∑

j∈K

πjiPj < 0, i ∈ K (10)

hold which means that we have found matrices Pi >
0, i ∈ K satisfying the Lyapunov-Metzler inequalities,
see Geromel & Colaneri [2006]. From this fact, the same
reference ensures that the switching function (4) is globally
stabilizing and the proof is concluded. ✷

The existence of a Hurwitz stable convex combination of
matrices {Ai}i∈K assures the existence of a solution to
the Lyapunov-Metzler inequalities is a known fact already
pointed out in Geromel & Colaneri [2006], Geromel et al.
[2008]. However, in the present framework the novelty is
that matrices Pi, i ∈ K do not need to be determined for
the switching function implementation. Indeed, from the
proof of Theorem 1, it can be verified that

argmin
i∈K

x′Pix= argmin
i∈K

x′Wix

= argmax
i∈K

x′Rix

= argmin
i∈K

x′Li(P )x (11)

which depends on the matrix P > 0 satisfying (6),
exclusively. This result makes clear that a global stabilizing
switching function exists and can be determined whenever
there exists P > 0 such that A′

λP + PAλ < 0 for some
λ ∈ Λ. The determination of a feasible pair (P, λ), if any,
is not a simple task but can be simplified if we search
directly λ ∈ Λ such that Aλ is Hurwitz. This numerical
aspect will be discussed in the sequel.

4. PERFORMANCE

We consider now the switched linear system (1)-(2).
Although any performance index can, in principle, be
adopted we focus our attention to two different perfor-
mance indexes that have important consequences in global
stabilization of robust and switched nonlinear systems.
The main goal is to search a min-type switching strategy
of the form

σ(x,w) = argmin
i∈K

[

x
w

]′

Ri

[

x
w

]

(12)

where the augmented matrices Ri ∈ R
(n+m)×(n+m) for all

i ∈ K are symmetric and have to be determined in such
a way that a pre-specified level of the performance index
under consideration is attained by the closed-loop switched
system.

4.1 H∞ Performance

TheH∞ performance index is defined for any asymptotical
stabilizing switching strategy denoted σ ∈ A, as being

J∞(σ) = sup
0 6=w∈L2

‖z‖22
‖w‖22

(13)

whose rationale stems on the fact that it equals the H∞

squared norm of the i-th subsystem transfer function
whenever σ(t) = i ∈ A is kept constant for all t ≥ 0.
Ideally, we want to determine a minimum guaranteed cost
associated to the optimal control problem infσ∈A J∞(σ).
However, as we know, the optimal solution of this problem
is virtually impossible to be calculated due to the discon-
tinuous nature of the switching function. Hence, we focus
on a sub-optimal solution by searching a switching func-
tion of the form (12). The next theorem puts in evidence
the conditions for the existence of a switching strategy
that imposes to the closed-loop switched system a pre-
specified guaranteed H∞ performance level associated to
J∞(σ) defined in (13).

Theorem 2. Assume the output matrices satisfy (Ei, Gi) =
(E,G) for all i ∈ K and suppose there exist 0 < P ∈ R

n×n,
ρ > 0 and λ ∈ Λ such that

∑

i∈K

λiLi(P, ρ) < 0 (14)

where

Li(P, ρ) =

[

A′
iP + PAi PHi

• −ρI

]

+

[

E′

G′

] [

E′

G′

]′

, i ∈ K

(15)
There exists a switching function of the form (12) with
Ri = Li(P, ρ) such that the continuous-time switched
linear system (1)-(2) is globally asymptotically stable and
J∞(σ) < ρ.

Proof: We prove directly the claim from the adoption of
the quadratic Lyapunov function v(x) = x′Px where P >
0 has to be adequately determined. To this end, calculating
the time derivative along a trajectory of the continuous-
time switched linear system (1)-(2), after simple algebraic
manipulations at an arbitrary instant of time t > 0 we
have

v̇(x) + z′z − ρw′w =

[

x
w

]′

Lσ(x,w)(P, ρ)

[

x
w

]

(16)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4070



Hence, choosing matrices Ri = Li(P, ρ) for all i ∈ K, the
switching function (12) and the existence of a pair (P, ρ)
satisfying (14) allow us to rewrite equality (16) as

v̇(x) + z′z − ρw′w=min
i∈K

[

x
w

]′

Li(P, ρ)

[

x
w

]

=min
λ∈Λ

[

x
w

]′
(

∑

i∈K

λiLi(P, ρ)

)

[

x
w

]

< 0 ∀(x,w) 6= 0 (17)

from which the claim follows, because setting w = 0 it is
seen that v̇(x) < 0, ∀x 6= 0 implies global asymptotical
stability which together with x(0) = 0 enforces ‖z‖22 <
ρ‖w‖22 for all w 6= 0, consequently, J∞(σ) < ρ and the
proof is concluded. ✷

At this point it is important to make clear that the choice
of the switching rule of the form (12) is crucial to get the
result of Theorem 2. Indeed, if instead of (12) we consider
a pure state dependent switching function of the form
σ(x) = argmini∈K x′Rix, then inequality (16) reduces to

v̇(x) + z′z − ρw′w=

[

x
w

]′

Lσ(x)(P, ρ)

[

x
w

]

≤ x′Nσ(x)(P, ρ)x (18)

which holds from the determination of the worst input
perturbation depending on the state variable x and the
switching function σ, yielding

x′Nσ(x)(P, ρ)x = sup
w

[

x
w

]′

Lσ(x)(P, ρ)

[

x
w

]

(19)

where

Ni(P, ρ) =A′
iP + PAi + E′E +

+(PHi − E′G)(ρI −G′G)−1(PHi − E′G)′

provided that ρI > G′G. Hence, the result of Theorem 2
remains valid if we set Ri = Ni(P, ρ), i ∈ K and assume
the existence of λ ∈ Λ such that

∑

i∈K
λiNi(P, ρ) < 0. As

we can see, unfortunately, this last inequality is a convex
combination of N quadratic matrix functions for which it
can be verified that

Nλ(P, ρ) ≤
∑

i∈K

λiNi(P, ρ) ∀λ ∈ Λ (20)

holds. Consequently, in this case, the only way to translate
the result of Theorem 2 in terms of a convex combination
of the state space matrices is to assume that the input
matrices do not depend on the switching strategy, that
is Hi = H, ∀i ∈ K, which implies that Nλ(P, ρ) =
∑

i∈K
λiNi(P, ρ) for all λ ∈ Λ. This is exactly the result

reported in Zhai [2012] which we have generalized by
adopting a more general class of state and input dependent
switching functions. It is important to stress that, for
the same reason, the result of Theorem 2 has the same
limitation if just one of the output matrices depend on
the switching function. In this case, from (15), in a similar
way, we have

Lλ(P, ρ) ≤
∑

i∈K

λiLi(P, ρ) ∀λ ∈ Λ (21)

which allows us to conclude that the convex combina-
tion does not enforce any performance upper bound to

the closed-loop system. The determination of H∞ design
conditions for general switched linear systems whose state
space realization matrices depend on the switching rule
remains an open problem of great interest. This is also
true for the whole class of discrete-time switched linear
systems.

For the class of continuous-time switched linear systems
(1)-(2) characterized by the fact that the output matrices
do not depend on the switching function, then Li(P, ρ)
defined in (15) is linear with respect to the pair of
remaining matrices (Ai, Hi) which implies that inequality
(14) holds if and only if there exist P > 0 and ρ > 0 such
that

[

A′
λP + PAλ PHλ

• −ρI

]

+

[

E′

G′

] [

E′

G′

]′

< 0 (22)

for some λ ∈ Λ. Clearly, this is equivalent to say that
Aλ is Hurwitz and ‖Sλ‖2∞ < ρ which indicates that we
have to determine the optimal convex combination from
the solution of the nonconvex problem

min
λ∈Λ

‖Sλ‖
2
∞ (23)

which is not easy to solve mainly due to the intricate de-
pendence of the H∞ norm on the elements of the matrices
that define the objective function to be minimized.

This aspect is relevant for several reasons, in particular,
as far as consistency is concerned, see Geromel et al.
[2013] for details. Indeed, a switching strategy σ(·) is
said strictly consistent if the switched linear system has
better performance than the performance of each isolated
subsystem. Assuming that Ai for some i ∈ K is Hurwitz,
because otherwise strict consistency follows trivially since
‖Si(s)‖

2
∞ is unbounded then, under this assumption, strict

consistency holds whenever

min
i∈K

‖Si‖
2
∞ −min

λ∈Λ
‖Sλ‖

2
∞ > 0 (24)

and we conclude that the optimal solution of problem (23)
provides a consistent solution which, in general, is strictly
consistent if it belongs to the strict interior of the unitary
simplex Λ. This performance gain is due exclusively to the
min-type switching strategy (12) that we have designed.

4.2 Passivity

The concept of passivity applied to the switched linear sys-
tem (1)-(2) follows from the consideration of the following
cost associated to any stabilizing switching strategy σ ∈ A

J+(σ) = sup
w∈L2

−

∫ ∞

0

z(t)′w(t)dt (25)

and requires that the dimensions of the input and output
vectors be the same, that is m = r. Our main purpose is
to determine a switching strategy of the form (12) such
that J+(σ) = 0. In this case the closed-loop system is
said passive, see Geromel et al. [2012] for details. It is
interesting to observe that if we set σ(t) = i ∈ K for
all t ≥ 0 and assume that such strategy belongs to A
then passivity of the i-th subsystem is equivalent to strict
positive realness of the transfer function Si(s), a property
that can be tested by Si(−jω)′ + Si(jω) > 0, ∀ω ∈ R.

Theorem 3. Suppose there exist 0 < P ∈ R
n×n and λ ∈ Λ

such that
∑

i∈K

λiLi(P ) < 0 (26)
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where

Li(P ) =

[

A′
iP + PAi PHi − E′

i

• −Gi −G′
i

]

, i ∈ K (27)

There exists a switching function of the form (12) with
Ri = Li(P ) such that the continuous-time switched
linear system (1)-(2) is globally asymptotically stable and
J+(σ) = 0.

Proof: As in the proof of Theorem 2, we prove directly
the claim from the adoption of the quadratic Lyapunov
function v(x) = x′Px where P > 0 has to be adequately
determined. To this end, calculating the time derivative
along a trajectory of the continuous-time switched linear
system (1)-(2), at an arbitrary instant of time t > 0 we
have

v̇(x)− z′w − w′z =

[

x
w

]′

Lσ(x,w)(P )

[

x
w

]

(28)

Hence, choosing matrices Ri = Li(P ) for all i ∈ K,
the switching function (12) and the existence of P > 0
satisfying (26) allow us to write

v̇(x)− z′w − w′z =min
i∈K

[

x
w

]′

Li(P )

[

x
w

]

=min
λ∈Λ

[

x
w

]′
(

∑

i∈K

λiLi(P )

)

[

x
w

]

< 0 ∀(x,w) 6= 0 (29)

from which the claim follows because setting w = 0 it is
seen that v̇(x) < 0, ∀x 6= 0 implies global asymptotical
stability which together with x(0) = 0 enforces

−

∫ ∞

0

z(t)′w(t)dt < 0 ∀(x,w) 6= 0 (30)

and the supremum is clearly attained at w = 0 which is
the claim. ✷

From the result of Theorem 3, it is evident that inequality
(26) holds if and only if there exists P > 0 such that
Lλ(P ) < 0 for some λ ∈ Λ which by its turn implies
that this is true if and only if the transfer function
Sλ(s) is positive real for some λ ∈ Λ. Hence, Theorem
3 puts in evidence the quality of the state-input switching
strategy proposed in this paper. Indeed, if the switching
strategy is constrained to be only state dependent then the
same result remains valid only for a restrictive subclass
of switched linear systems characterized by having only
matrix Aσ switching dependent.

Remark 1. The proposed switching strategy is clearly con-
sistent in the sense that it may render passive a switched
linear system composed by non-passive subsystems, exclu-
sively. This is an important aspect of the proposed result.

Remark 2. The determination of λ ∈ Λ such that Sλ(s)
is positive real can be faced in the frequency domain by
solving the nonconvex programming problem

sup
µ,λ∈Λa

{µ : Sλ(−jω)′ + Sλ(jω) > µI, ∀ω ∈ R} (31)

where Λa ⊂ Λ is the set of all λ ∈ Λ such that Aλ is
Hurwitz stable and verifying if at the optimal solution it
provides µopt > 0.

0

0.5

1

00.20.40.60.81
−2

0

2

4

6

8

10

12

λ1

λ2

Fig. 1. Stability domain and J∞ index.

5. EXAMPLE

This section is entirely devoted to present and discuss
an academical example to illustrate the results provided
in this paper. To this end, we consider a switched linear
system of the form (1)-(2) composed by N = 3 forth order,
unstable, SISO subsystems given by

A1 =







0 1 0 0
0 0 1 0
0 0 0 1

−4 −4 −9 0






, H1 =







0
0

−1
1







A2 =







0 1 0 0
0 0 1 0
0 0 0 1

−2 0 −6 −6






, H2 =







0
−1
1
0







A3 =







0 1 0 0
0 0 1 0
0 0 0 1

−6 −7 −3 0






, H3 =







−1
1
0
0







and the output matrices Ei = E = [1 0 0 0] and Gi = G =
1 which are the same for all i ∈ K.

5.1 Stability and H∞ performance

Figure 1 shows the external curve with inside all points
λ ∈ Λ such that Aλ is Hurwitz and the internal curve
with inside all points such that the eigenvalues of Aλ

satisfy Re(s) < −0.1. For each point of this last region,
the same figure provides the value of the squared norm
‖Sλ‖2∞. Finally, an exhaustive search gives the optimal
value of problem (23) as being λopt ≈ [0.29 0.33 0.38]′ and
‖Sλopt

‖2∞ ≈ 1.1608.

5.2 Time simulation

It is interesting to know that there exists a suitable switch-
ing strategy such that when applied to this switched sys-
tem, composed by three unstable subsystems, the closed-
loop system presents the remarkable performance J∞(σ) <
‖Sλopt

‖2∞ ≈ 1.1608. This is an immediate consequence
of Theorem 2. Indeed, setting λ = λopt we are able to
determine (Popt > 0, ρopt > 0) which minimizes ρ subject
to the LMI (14). Doing this we obtain the augmented

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4072



0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

x
(t
)

Fig. 2. Time simulation.

matrices Ri = Li(Popt, ρopt) for all i ∈ K that are used
to implement the desired switched rule (12).

Figure 2 shows the time simulation of the closed-loop
switched system with input w(t) = sin(ωoptt) for all
0 ≤ t ≤ 10(2π/ωopt) and w(t) = 0 for all t > 10(2π/ωopt)
where ωopt = 1.8042 rad/s has been determined from
ωopt = argmaxω∈R |Sλopt

(jω)|. Numerically, we have de-

termined ‖w‖22 ≈ 17.41 and ‖z‖22 ≈ 15.85 which leads to
the lower bound J∞(σ) > 0.91. Even though all subsys-
tems are unstable, the switching rule brings all the states
to zero whenever the input vanishes.

6. CONCLUSION

This paper is entirely devoted to the design of a min-type
switching strategy based on the convex combination of the
subsystems transfer functions. The novelty is the propo-
sition of a new class of state-input dependent switching
functions that allows to consider a wider class os switched
linear systems. Performance indexes similar to H∞ norm
and passivity that are usual for LTI systems are discussed
and generalized. An illustrative example puts in evidence
the usefulness of the proposed methodology.
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