
Data-Based Characteristics Analysis for
Linear Discrete-Time Systems

Zhuo Wang, Derong Liu

The State Key Laboratory of Management and Control for Complex
Systems, Institute of Automation, Chinese Academy of Sciences,

Beijing 100190, China (e-mail: wangzhuo12300@gmail.com,
derong.liu@ia.ac.cn).

Abstract: In this paper, we develop data-based methods to analyze the characteristics of linear
discrete-time systems, which have unknown parameter matrices. These characteristics include
output controllability, asymptotic stability of the equilibrium point, bounded-input bounded-
state stability, and bounded-input bounded-output stability. Our methods only use measured
state and output data to verify the system properties. They are direct analysis methods and
do not need to identify the unknown parameter matrices. These data-based methods not only
can avoid identification errors, but also have lower computational complexity than traditional
model-based analysis approaches.
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1. INTRODUCTION

The modern industries have become considerably complex
in manufacturing technologies, production processes and
equipments. They have complicated characteristics, such
as strong nonlinearities, uncertain operating system envi-
ronments, strong coupling properties, as well as unknown
dynamic parameters Chai et al. [2011]. As a consequence,
engineers often met a lot of difficulties in the work of
accurate model/parameter identifications Hjalmarsson et
al. [2011], Rensfelt and Söderström [2011], which are estab-
lished based on physical mechanisms using the first princi-
ple techniques. In this context, the traditional model-based
methods, which are based on mathematical analysis and
physical (chemical) mechanisms, have become more and
more infeasible. People are seeking methodologies which do
not rely on mathematical models, to analyze and control
these kinds of systems.

Since information science and technology are widely used
and are developing rapidly, we are in an era of big data.
With the applications of the techniques such as digital
sensors, digital storage, digital computation, and digital
communication, etc., modern industries are generating
huge amounts of online and offline data every day. Such
data contain useful information and knowledge about the
dynamical characteristics of the system. How to effectively
utilize these data becomes a problem of great practical
significance. Therefore, there is an urgent need to establish
the data-based theories and the relevant methodologies
to perform system modeling, analysis, control, decision
making, and optimization.

When the mathematical model of the system is unknown,
to analyze the system characteristics, traditional model-
based methods usually need to determine the structure
of the system model and identify the corresponding pa-

rameters first. Up until now, there are many methods for
system identification and model construction, such as least
squares methods Ding et al. [2011], Verhaegen and Verdult
[2007], which can deal with noises and can avoid biased
results; neural networks methods Lu [2011], Michalkiewicz
[2012], which are good at nonlinear system identification;
as well as support vector machine methods Liu et al.
[2010], Zhang et al. [2009], which are performing well in
regularization of system parameters, and are applicable to
high-dimensional data sets. However, these model-based
methods spend much time on system identification and
cannot avoid the errors occurred during the identification
process. According to this circumstance, data-based meth-
ods for system identification and model reduction are at-
tracting attentions Battistelli et al. [2012], Rapisarda and
Trentelman [2011], while direct system analysis methods
using measured data, might also be a good choice.

Based on the above considerations, we will develop some
data-based methods to analyze the characteristics of linear
discrete-time systems. They are direct methods, which
do not identify the unknown system parameter matrices.
We will study the output controllability, the asymptotic
stability of the equilibrium point, the input-to-state sta-
bility, and the input-to-output stability of the system. Our
methods rely only on the measured data, and offer a new
perspective on the study of system properties.

It must be pointed out that when the input takes effect, it
is meaningful to study its influence on the system stability
and whether the bounded input can result in bounded
state and bounded output. This is because when there
exists an input, if the state/output is unbounded, it may
cause great damage or even collapse of the system, which
will bring beyond recall loss. Therefore, we would like to
study the bounded-input bounded-state (BIBS) and the
bounded-input bounded-output (BIBO) stabilities. So far,
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there have been many researches published on this topic
Jayawardhana et al. [2011], Sun et al. [2012], Moran and
Labastida [2011].

2. DATA-BASED METHODS FOR ANALYZING
LINEAR DISCRETE-TIME SYSTEMS

In this paper, we study linear discrete-time systems in the
following form{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) (k ≥ 0),

(1)

where x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rq are the
state, the input, and the output of system (1), respectively.
Matrices A, B, and C are unknown, which do not have
random variables as their elements. Assume that we can
set the value of the initial state x(0). In the following of
this section, we will show that, one can directly verify the
system properties only by using the measured state and
output data, while does not need to identify the above
matrices. We will also show that our data-based methods
have lower computational complexity than the traditional
model-based system analysis approaches.

2.1 Data-Based Output Controllability Analysis

In this subsection, we analyze the output controllability of
system (1) using data-based methods.

Lemma 1. Mohandas [2006] System (1) is completely out-
put controllable if and only if

Rank{WOC} = Rank
{[

CB,CAB, . . . , CAn−1B
]}

= q.

In traditional model-based methods, to verify the output
controllability of system (1), people need to identify A, B,
and C, calculate CAlB (0 ≤ l ≤ n − 1), and then check
Rank{WOC}. The identification process usually introduces
identification errors, and the calculation of CAlB, which
involves lots of multiplications and summations especially
for high-dimensional systems, is quite complex.

In contrast, our data-based analysis method neither iden-
tifies the unknown matrices A, B, and C, nor calculates
CAlB (0 ≤ l ≤ n − 1). To begin with, we do m groups
of tests on system (1). Let all the state trajectories start
from the same initial state x[i](0) = 0 (1 ≤ i ≤ m), while
setting the corresponding inputs as

u[i](k) ≡ u[i] = [0, . . . , 0, 1, 0, . . . , 0]T (1 ≤ i ≤ m), (2)

whose ith element is 1 and all other elements are zeros.
Therefore, y[i](0) = 0. Measure and record y[i](1), y[i](2),
. . . , y[i](n), . . .. Define

Z(k) =
[
y[1](k), y[2](k), . . . , y[m](k)

]
(0 ≤ k ≤ n),

Vj = Z(j)− Z(j − 1) (1 ≤ j ≤ n), V = [V1, V2, . . . , Vn] ,
(3)

where Z(k) ∈ Rq×m. Note that Z(0) = 0. With the above
preparations, we present the following theorem on the
output controllability of system (1).

Theorem 1. System (1) is completely output controllable
if and only if Rank{V } = q, where V is defined in (3).

Proof. Since x[i](0) = 0 (1 ≤ i ≤ m), when the inputs
u[i](k) are set as in (2), the outputs of system (1) will be

y[i](1) = CBu[i]

y[i](2) = CABu[i] + CBu[i]

...

y[i](n) = CAn−1Bu[i] + · · ·+ CABu[i] + CBu[i].

(4)

From (3) and (4), we shall have
Z(0) = 0
Z(1) = CB
Z(2) = CAB + CB

...
Z(n) = CAn−1B + · · ·+ CAB + CB.

Such that

Vj = CAj−1B (1 ≤ j ≤ n),

V = [CB,CAB, . . . , CAn−1B] = WOC .
(5)

By Lemma 1, system (1) is completely output controllable
if and only if Rank{V } = q.

Corollary 1. Suppose that q = n. System (1) is completely
state controllable if Rank{V } = n, where matrix V is
defined in (3).

Proof. Let WC =
[
B,AB, . . . , An−1B

]
, which is the

state controllability matrix. The necessary and sufficient
condition for system (1) to be completely state controllable
is Rank{WC} = n. Since q = n and V = WOC = CWC ,

Rank{V } ≤ min
{
Rank{C}, Rank{WC}

}
≤ n.

If Rank{V } = n, then Rank{WC} = n. But, the inverse
may not be true because Rank{C} ≤ n.

Therefore, when q = n, the sufficient condition for system
(1) to be completely state controllable is Rank{V } = n.

2.2 Data-Based Stability Analysis

In this subsection, we will present some data-based meth-
ods to analyze the stabilities of system (1), which in-
clude the asymptotic stability of the equilibrium point, the
input-to-state stability, and the input-to-output stability.
Before that, we provide the following definitions.

Definition 1. Antsaklis and Michel [2006] If every bound-
ed input of a system results in a bounded state, then
that system is called bounded-input bounded-state (BIBS)
stable. More specifically, system (1) is BIBS stable if there
are two constants 0 < Lu, Lx < ∞ such that the conditions

x(0) = 0, ∥u(k)∥ ≤ Lu, k ≥ 0,

imply that ∥x(k)∥ ≤ Lx for all k ≥ 0.

Definition 2. Antsaklis and Michel [2006] If every bound-
ed input of a system results in a bounded output, then that
system is called bounded-input bounded-output (BIBO)
stable. More specifically, system (1) is BIBO stable if there
are two constants 0 < Lu, Ly < ∞ such that the conditions

x(0) = 0, ∥u(k)∥ ≤ Lu, k ≥ 0,
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imply that ∥y(k)∥ ≤ Ly for all k ≥ 0.

Recall the m groups of tests on system (1) and measured
data y[i](1), y[i](2), . . . , y[i](n), . . . (1 ≤ i ≤ m) introduced
in Subsection 2.1, we have the following theorem.

Theorem 2. If
∥∥y[i](∞)

∥∥ = Mi < ∞ (1 ≤ i ≤ m), then
system (1) is BIBO stable.

Proof. By (1) and (2), with x[i](0) = 0, we shall have

y[i](k + 1) = C

k∑
j=0

Ak−jBu[i] (1 ≤ i ≤ m). (6)

Suppose that the different eigenvalues of A are λ1, . . . , λs

(1 ≤ s ≤ n), and the multiplicity of λh (1 ≤ h ≤ s) is
mh. Then,

∑s
h=1 mh = n. Assume that J ∈ Rn×n is the

Jordan canonical form of A. There exists a nonsingular
matrix P ∈ Rn×n, such that A = PJP−1, Aj = PJjP−1

(0 ≤ j ≤ k), where Jj = diag
[
Jj
1 (λ1), . . . , J

j
s (λs)

]
and

Jj
h(λh) =


λj
h C1

j λ
j−1
h · · · Cmh−1

j λj−mh+1
h

0 λj
h

. . .
...

...
...

. . . C1
j λ

j−1
h

0 0 · · · λj
h

 . (7)

Any nonzero element of Jj
h(λh) can be denoted by Cl

jλ
j−l
h ,

where Cl
j =

j!

l!(j − l)!

(
0 ≤ l ≤ mh − 1, l ≤ j

)
.

Let H [i](k − j) = Jk−jP−1Bu[i]. Then,

y[i](k + 1) = CP
k∑

j=0

H [i](k − j).

Since P−1Bu[i] is a constant vector, each element of

H [i](k − j) is in the form of βh
k−j−lλ

k−j−l
h (0 ≤ l ≤

mh − 1 and l ≤ k − j), where βh
k−j−l is a real num-

ber. Because
∥∥y[i](∞)

∥∥ = Mi < ∞, by Abel’s Theo-

rem, lim
k→∞

∑k
j=0 β

h
k−j−lλ

k−j−l
h absolutely converges, and

lim
k→∞

∑k
j=0 H

[i](k−j) absolutely converges too. This means

that lim
k→∞

∑k
j=0 H

[i]
p (k − j)Lu absolutely converges, where

H
[i]
p (k − j) is the pth (1 ≤ p ≤ n) element of H [i](k − j),

and
∥∥u(k)∥∥ ≤ Lu < ∞ for all k ≥ 0.

Next, we study the case that the input is u
[i]
α (k) = αi(k)u

[i]

(1 ≤ i ≤ m), where αi(k) is a real number. Thus, the
output is

y[i]α (k + 1) = CP
k∑

j=0

H [i](k − j)αi(j).

Let η
[i]
α (k + 1) =

∑k
j=0 H

[i](k − j)αi(j), so y
[i]
α (k + 1) =

CPη
[i]
α (k + 1). Let y

[i]
α,r(k) and η

[i]
α,p(k) denote the rth

(1 ≤ r ≤ q) and the pth (1 ≤ p ≤ n) elements of y
[i]
α (k)

and η
[i]
α (k), respectively. Then, we have

η[i]α,p(k + 1) =
k∑

j=0

H [i]
p (k − j)αi(j).

Because lim
k→∞

∑k
j=0 H

[i]
p (k − j)Lu =

∑∞
j=0 H

[i]
p (j)Lu abso-

lutely converges,
∞∑
j=0

H [i]
p (j)Lu =

∞∑
j1=0

H [i]
p (j1)Lu −

∞∑
j2=0

∣∣∣H [i]
p (j2)

∣∣∣Lu,

whereH
[i]
p (j1) ≥ 0 andH

[i]
p (j2) < 0;

∑∞
j1=0 H

[i]
p (j1)Lu and∑∞

j2=0

∣∣∣H [i]
p (j2)

∣∣∣Lu both converge. Because
∣∣αi(k)

∣∣ ≤ Lu,∣∣∣H [i]
p (j1)αi(j1)

∣∣∣ ≤ H [i]
p (j1)Lu,∣∣∣H [i]

p (j2)αi(j2)
∣∣∣ ≤ ∣∣∣H [i]

p (j2)
∣∣∣Lu.

According to Weierstrass Theorem,
∑∞

j1=0 H
[i]
p (j1)αi(j1)

and
∑∞

j2=0 H
[i]
p (j2)αi(j2) both converge. In summary,

lim
k→∞

η[i]α,p(k + 1) = lim
k→∞

∑k
j=0 H

[i]
p (k − j)αi(j) converges.

So, lim
k→∞

η[i]α (k) converges, i.e. lim
k→∞

y[i]α (k) = CP lim
k→∞

η[i]α (k)

converges. This indicates that any bounded input u
[i]
α (k) =

αi(k)u
[i] will result in a bounded output y

[i]
α (k).

More generally, any input u(k) can be expressed as u(k) =∑m
i=1 αi(k)u

[i]. Without loss of generality, we let x(0) = 0.
Then, we can obtain

y(k + 1) = C
m∑
i=1

k∑
j=0

Ak−jBu[i]αi(j)

=
m∑
i=1

y[i]α (k + 1).

Since y
[i]
α (k) (1 ≤ i ≤ m) are bounded with

∥∥u(k)∥∥ ≤ Lu

(k ≥ 0), then any bounded u(k) will result in bounded
y(k). By Definition 2, the system is BIBO stable.

Lemma 2. Huang [2003] If system (1) is completely state
observable, the BIBS stability and the BIBO stability of
the system are equivalent.

Lemma 2 implies that as long as system (1) is completely
state observable, we can verify the BIBS stability using
the data-based analysis method introduced in Theorem 2.

To verify the state observability of system (1), the tradi-
tional model-based methods need to identify A and C first,
and construct the observability matrix

WO =


C
CA
...

CAn−1

 , (8)

then check whether Rank{WO} = n.

In Wang and Liu [2011], they developed a data-based anal-
ysis method, which can directly verify the state observabil-
ity without identifying A and C. This data-based analysis
method also starts with some tests and measurements. Set
n linearly independent nonzero initial states as

x̄[i](0) = [0, . . . , 0, 1, 0, . . . , 0]T (1 ≤ i ≤ n), (9)
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where the ith element of x̄[i](0) is 1, and all oth-
er elements are zeros. Set the corresponding inputs as
ū[i](k) ≡ 0. Measure and record the corresponding outputs
ȳ[i](0), ȳ[i](1), . . . , ȳ[i](n− 1).

Define

Ŷ (k) =
[
ȳ[1](k), ȳ[2](k), . . . , ȳ[n](k)

]
(0 ≤ k ≤ n− 1),

Q =


Ŷ (0)

Ŷ (1)
...

Ŷ (n− 1)

 ,
(10)

where Ŷ (k) ∈ Rq×n, and actually Q = WO. We then have
the following state observability criterion.

Lemma 3. Wang and Liu [2011] Assume that under no
input condition, the initial states of system (1) can be set
as in (9). Then, the system is completely state observable,
if and only if Rank

{
Q
}
= n, where Q is defined in (10).

Theorem 3. For system (1), if

1)
∥∥y[j](∞)

∥∥ = Mj < ∞ (1 ≤ j ≤ m), where measured

data y[j](1), y[j](2), . . . , y[j](n), . . . are introduced in
Subsection 2.1;

2) under no input condition, the initial states of system
(1) can be set as in (9) and Rank

{
Q
}
= n, where Q

is defined in (10);

then

1) the system is both BIBS and BIBO stable;
2) the equilibrium point x = 0 is stable.

Proof. With Condition 1), by Theorem 2, system (1) is
BIBO stable. According to Condition 2) and Lemmas 2
and 3, the system is completely state observable, and thus
it is also BIBS stable.

If we set u(k) ≡ 0, by Definition 1,
∥∥u(k)∥∥ < Lu and∥∥x(k)∥∥ ≤ Lx for all k ≥ 0, where 0 < Lu, Lx < ∞ are two

constants. Then, the equilibrium point x = 0 is stable.

Lemma 4. Antsaklis and Michel [2006] The following s-
tatements are equivalent:

• The equilibrium point x = 0 is asymptotically stable.
• The equilibrium point x = 0 is asymptotically stable
in the large.

• lim
k→∞

∥∥Ak
∥∥ = 0.

Theorem 4. Set n linearly independent initial states x̄[1](0),
x̄[2](0), . . . , x̄[n](0) as in (9). Assume that Rank

{
Q
}
= n,

where Q is defined in (10). Measure and record x̄[1](1),
x̄[2](1), . . . , x̄[n](1). If∥∥∥∥[x̄[1](1), . . . , x̄[n](1)

] [
x̄[1](0), . . . , x̄[n](0)

]−1
∥∥∥∥ < 1,

then

(1) the equilibrium point x = 0 is asymptotically stable
(in the large);

(2) system (1) is both BIBS and BIBO stable.

Proof. By Lemma 3, because Rank
{
Q
}
= n, the system

is completely state observable. Therefore, we can measure
and record the values of x̄[1](1), x̄[2](1), . . . , x̄[n](1).

With ū[i](k) ≡ 0 (1 ≤ i ≤ n), we shall have

x̄[i](1) = Ax̄[i](0) (1 ≤ i ≤ n). (11)

Such that
[
x̄[1](1), . . . , x̄[n](1)

]
= A

[
x̄[1](0), . . . , x̄[n](0)

]
.

Since x̄[1](0), x̄[2](0), . . . , x̄[n](0) are linearly independent,
then

[
x̄[1](0), . . . , x̄[n](0)

]
is invertible. As a consequence,

A =
[
x̄[1](1), . . . , x̄[n](1)

] [
x̄[1](0), . . . , x̄[n](0)

]−1

,

∥A∥ =

∥∥∥∥[x̄[1](1), . . . , x̄[n](1)
] [

x̄[1](0), . . . , x̄[n](0)
]−1

∥∥∥∥ . (12)
Under the given condition, ∥A∥ < 1. Thus,

lim
k→∞

∥A∥k = 0. (13)

Because 0 ≤
∥∥Ak

∥∥ ≤ ∥A∥k (k ≥ 0), we can obtain

lim
k→∞

∥∥Ak
∥∥ = 0. (14)

By Lemma 4, the equilibrium point x = 0 is asymptotically
stable (in the large). For system (1), we have

y(k + 1) = CAk+1x(0) +
k∑

j=0

CAjBu(k − j).∥∥y(k + 1)
∥∥

=

∥∥∥∥CAk+1x(0) +

k∑
j=0

CAjBu(k − j)

∥∥∥∥
≤ ∥C∥

[
∥A∥k+1

∥∥x(0)∥∥+

k∑
j=0

∥A∥j∥B∥
∥∥u(k − j)

∥∥]

≤ ∥C∥
[
∥A∥k+1

∥∥x(0)∥∥+
∞∑
j=0

∥A∥j∥B∥
∥∥u(k − j)

∥∥].

(15)

Since ∥A∥ < 1,
∑∞

j=0 ∥A∥j will uniformly converge to
1

1− ∥A∥
Bromwich [2010]. If we let x(0) = 0 and there

exists a constant 0 < Lu < ∞, such that for all k ≥ 0,
∥u(k)∥ ≤ Lu, then∥∥y(k + 1)

∥∥ ≤ ∥C∥
( ∞∑

j=0

∥A∥j
)
∥B∥Lu

=
∥C∥∥B∥
1− ∥A∥

Lu.

(16)

Let Ly =
∥C∥∥B∥
1− ∥A∥

Lu, which is also a constant. For given

A, B, C, and Lu < ∞, we will have Ly < ∞. By Definition
2, system (1) is BIBO stable.

Then, by Lemma 2, system (1) is also BIBS stable.

From the above theorems, we can see that the asymptotic
stability of the equilibrium point, the BIBS stability, and
the BIBO stability of system (1) are related and can be ver-
ified by some tests and measurements. To check whether
the condition given in Theorem 4 is satisfied, we first set
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n linearly independent initial states, measure and record
the following states, and then do some simple calculations.
This data-based method requires the system state to be
completely observable, which is a high demand that is not
always satisfied. But, Theorem 4 has an advantage that
we do not need to measure and record a large amount of
output data as we do in Theorems 2 and 3. Besides, The-
orem 4 can verify the BIBS stability and the asymptotic
stability of the equilibrium point, while Theorem 2 cannot,
which shows another advantage of Theorem 4.

Lemma 5. Huang [2003] Assume that system (1) is com-
pletely state controllable. Then, the system is BIBS stable
if and only if the equilibrium point x = 0 is asymptotically
stable.

Corollary 2. Suppose q = n. For system (1), if

1) Rank{V } = n, where V is defined in (3);
2)

∥∥y[j](∞)
∥∥ = Mj < ∞ (1 ≤ j ≤ m), where measured

data y[j](1), y[j](2), . . . , y[j](n), . . . are introduced in
Subsection 2.1;

3) under no input condition, the initial states of system
(1) can be set as in (9) and rank

{
Q
}
= n, where Q

is defined in (10);

then the equilibrium point x = 0 is asymptotically stable.

Proof. Since q = n, then by Condition 1) and Corollary
1, system (1) is completely state controllable. According
to Conditions 2), 3), and Theorem 3, system (1) is BIBS
stable. From Lemma 5, the equilibrium point x = 0 is
asymptotically stable.

From the above discussions, we can see that our data-
based methods can analyze the system characteristics only
by using measured state and output data, and by doing
some simple data arrangements. They neither identify the
unknown matrices A, B, and C, nor calculate CAlB or
CAl (0 ≤ l ≤ n − 1). Therefore, our methods can avoid
the corresponding identification errors and have lower
computational complexity than traditional model-based
system analysis methods.

3. NUMERICAL EXAMPLE

In this section, we use the following system as an example
to illustrate our data-based system analysis methods. x(k + 1)=

[
0.4 0.5 −0.3
0.3 −0.2 0.1
0.5 −0.2 0.6

]
x(k) +

[
0.7 1

−0.4 0
0.5 −1

]
u(k),

y(k) = [−1, 0, 0.5]x(k) (k ≥ 0).

(17)

Here, n = 3, m = 2, and q = 1. Set u[1](k) ≡ [1, 0]T ,
u[2](k) ≡ [0, 1]T , and x[1](0) = x[2](0) = [0, 0, 0]T . Then,

Values of y[1](k) and y[2](k) (0 ≤ k ≤ n)
Items k = 0 k = 1 k = 2 k = 3

y[1](k) 0 -0.45 -0.015 0.2295

y[2](k) 0 -1.5 -2.25 -2.535

As a result,

V = [−0.45, − 1.5, 0.435, − 0.75, 0.2445, − 0.285] ,

and Rank{V } = 1 = q. By Theorem 1, system (17) is
completely output controllable. This conclusion accords
with the real case, since Rank{WOC} = 1 = q.

We then use Matlab programs to simulate the output and
the state trajectories of system (17), which are shown
below. In Fig. 1, the output trajectories starting from
y[1](0) = y[2](0) = 0, converge to two constants 0.569 and
−2.1883, respectively. Then, the condition of Theorem 2
and Condition 1) of Theorem 3 are both satisfied, and the
system is BIBO stable. This can be confirmed by another
two output trajectories, which start from y[3](0) = −1.5
and y[4](0) = 0.55. The corresponding inputs are u[3](k) =[
e(−0.2k), 0.3

]T
and u[4](k) = [sin(0.1kπ), − cos(0.2kπ)]

T

(k ≥ 0), respectively, which are both bounded control
inputs. We can see that the trajectories of y[3](k) and
y[4](k) are both bounded.

20 30 40 50 60 70 80 90 100
Time

Fig. 1. Output trajectories of system (17)

Next, we set x̄[1](0) = [1, 0, 0]T , x̄[2](0) = [0, 1, 0]T ,
x̄[3](0) = [0, 0, 1]T , and ū[i](k) ≡ [0, 0]T (i = 1, 2, 3).

Values of ȳ[1](k), ȳ[2](k), and ȳ[3](k) (0 ≤ k ≤ n− 1)
Items k = 0 k = 1 k = 2

ȳ[1](k) -1 -0.15 0.06

ȳ[2](k) 0 -0.6 -0.075

ȳ[3](k) 0.5 0.6 0.345

As a result,Q =

[ − 1 0 0.5
−0.15 − 0.6 0.6
0.06 −0.075 0.345

]
, and Rank{Q} =

3 = n. Thus, Condition 2) of Theorem 3 is satisfied. By
Theorem 3, system (17) is BIBS stable. By Lemma 3, the
system is completely state observable. Such that we can
measure the values of x̄[1](1), x̄[2](1), and x̄[3](1).

Values of x̄[1](1), x̄[2](1), and x̄[3](1)

x̄[1](1) x̄[2](1) x̄[3](1)
[0.4, 0.3, 0.5]T [0.5,−0.2,−0.2]T [−0.3, 0.1, 0.6]T

Then,∥∥∥∥[x̄[1](1), x̄[2](1), x̄[3](1)
] [

x̄[1](0), x̄[2](0), x̄[3](0)
]−1

∥∥∥∥
= 0.8799 < 1.

Therefore, the condition of Theorem 4 is satisfied, and
the equilibrium point x = 0 is asymptotically stable.
This conclusion can be confirmed by one state trajectory
starting from [1, 1, 1]T with u(k) ≡ [0, 0]T shown in Fig.
2. We can see that this trajectory converges to the origin
as stated in Theorem 4.

Moreover, the other four state trajectories start from
x[1](0) = x[2](0) = [0, 0, 0]T , x[3](0) = [0.5, 1, − 2]T ,
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and x[4](0) = [0, − 0.6, 1.1]T , whose inputs are u[1](k) ≡
[1, 0]T , u[2](k) ≡ [0, 1]T , u[3](k) =

[
e(−0.2k), 0.3

]T
, and

u[4](k) = [sin(0.1kπ), − cos(0.2kπ)]
T

(k ≥ 0), respec-
tively. As shown in Fig. 2, these state trajectories are all
bounded, as stated in Theorem 3.

−3 −2 −1 0 1 2 3

−0.5
0

−0.7
−0.25 x

1
(k)x

2
(k)

Fig. 2. State trajectories of system (17)

4. CONCLUSIONS

In this paper, we developed some data-based methods to
analyze the characteristics of linear discrete-time systems.
These data-based methods present a new perspective on
system characteristics analysis.

Among our data-based analysis methods, Theorem 1 and
Corollary 1 study the output controllability and the state
controllability of the system, respectively, while Corollary
1 requires the system to have a special form. Theorem 2
concerns the BIBO stability, while Theorems 3 and 4 not
only study the BIBO stability, but also study the BIBS
stability and the stability of the equilibrium point. Then,
Corollary 2 discusses a special case of Theorem 3.

Unlike the traditional model-based methods, which need
to perform system identification, our methods only utilize
measured state and output data to directly verify the
system properties without identifying the unknown param-
eter matrices. They thus have the advantage of lower com-
putational complexity and can avoid the corresponding
identification errors. But, the assumption that we can set
the value of the initial state, actually requires the complete
state controllability, which is a little high.

However, letting a system run in open loop for a long
period of time to check its stabilities will be dangerous
sometimes. Thus, at this stage, our work remains more
academic than practical.

In the future, we hope to continue the study of the data-
based analysis methods for linear/nonlinear discrete-time
systems, which do not need the priori assumptions and are
more practical in application.
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