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Abstract: This paper addresses the control and scheduling design for control systems
sharing a limited computation resource, especially embedded control systems (ECSs). The
complementary design of controller and scheduler is for improving the control performance
and achieving an efficient utilization of the limited computation resources. A novel PI control
design method as well as a novel output-based scheduling approach are introduced to achieve
setpoint-tracking for multiple plants. For verifying stability the whole system, namely all
plants with the scheduled controllers, is modeled as a discrete-time switched linear system.
The stability criteria is eventually formulated as a linear matrix inequality (LMI) feasibility
problem. The effectivenes of the proposed control and scheduling approach is illustrated by a
practical implementation where two DC motors are controlled by one processor.
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1. INTRODUCTION

In embedded control system, the computational resources
are generally limited. This usually means that several
control loops have to be implemented on one processor.
Therefore an efficient usage of the resources is essential
requiring an intelligent scheduling algorithm. In literature
this general problem is approached differently.

One class of publication on control task scheduling for
embedded control systems focuses on finding a tradeoff in
the distribution of the resources for the control tasks under
a constraint resource utilization, see Seto et al. [1996], Eker
et al. [2000], Cervin et al. [2002, 2011], Mart́ı et al. [2004,
2009], Henriksson and Cervin [2005], Castañé et al. [2006].
Thereby the control tasks are scheduled preemptively un-
der an assigned sampling period. The sampling periods are
determined in a frame of optimization which considers the
relationship between the sampling period and the quality
of control. In an early approach Seto et al. [1996] assume
that the controllers are designed in the continuous-time
domain and afterwards discretized. A performance index
quantifying the performance of the digitalized control law
of a given sampling period is introduced. The optimal sam-
pling periods result from an offline optimization problem
subject to some schedulability constraint and are used for
discretizing the controllers.

Later publications extend the work of Seto et al. [1996]
to an online sampling period assignment, see Eker et al.
[2000], Cervin et al. [2002, 2011], Mart́ı et al. [2004, 2009],
Henriksson and Cervin [2005], Castañé et al. [2006]. This is
often referred to as feedback scheduling. Eker et al. [2000]
propose an online optimization method for adjusting the
sampling period online based on the current processor

load. Therefore, a state feedback controller is considered
and the LQ cost function is expressed as a function of the
sampling period. This is extended by Cervin et al. [2002] to
general linear dynamic controllers. Thus, the approaches
by Eker et al. [2000] and Cervin et al. [2002] focus on the
resource allocation under a time-varying processor load.

In the approaches by Mart́ı et al. [2004, 2009], Henriksson
and Cervin [2005], Castañé et al. [2006], Cervin et al.
[2011] the current plant states are incorporated in the
online optimization, i.e. the sampling periods are adapted
online based on a state-based performance index. Mart́ı
et al. [2004, 2009] introduce a heuristic cost function
taking current states into account for the sampling period
assignment. Another approach by Henriksson and Cervin
[2005] makes use of a quadratic cost function related to the
sampling period and the current states for adjusting the
sampling period online. Thereby also the expected future
plant noise is taken into account. Henriksson and Cervin
[2005] assume a state feedback control law whereas the
approach in Castañé et al. [2006] generalizes for linear
dynamic controllers. Cervin et al. [2011] complements the
feedback scheduler from Castañé et al. [2006] by taking the
computational delay into account and by adding a noise
estimator as the evaluation of the cost function depends on
the noise intensity. Further a practical evaluation is given
in Cervin et al. [2011].

In a parallel line of research a complementary design
of scheduler and controller is investigated in Rehbinder
and Sanfridson [2000], Lincoln and Bernhardsson [2002],
Görges et al. [2007], Cervin and Alriksson [2006], Gaid
et al. [2009], Reimann et al. [2013], also referred to as
control and scheduling codesign. Those approaches can be
distinguished on the basis of offline and online schedul-
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ing. In the approaches Rehbinder and Sanfridson [2000],
Lincoln and Bernhardsson [2002], Görges et al. [2007] an
optimal state feedback controller is designed jointly with
a control task sequence in an offline optimization problem.
This means that the control tasks are scheduled non-
preemptively according to the offline determined sequence
which is repeated perpetually. The benefit of this codesign
approach is that the controller and scheduler are harmo-
nized with each other. This means that the jitter due to the
scheduling is incorporated in the model and thus taken into
account in the control design. In the work of Rehbinder
and Sanfridson [2000] a constant time slot size is assumed
where one control task is released at the beginning of a
time slot and completed before the end of the slot. By fix-
ing a task sequence with a defined periodicity the control
design is formulated as a periodic linear quadratic control
problem. The optimal control task sequence is then derived
by exhaustive search among all task sequence permuta-
tions. To make the problem computationally tractable a
maximum periodicity is introduce. The resulting sampling
period of each control task is then a multiple of the slot
size. The method by Lincoln and Bernhardsson [2002]
determines the control task sequence via dynamic pro-
gramming with tree pruning. Both approaches Rehbinder
and Sanfridson [2000], Lincoln and Bernhardsson [2002]
deal with the optimal control and scheduling codesign
problem in the sense of LQG. In Görges et al. [2007] the
lifting technique is applied to transform the control and
scheduling codesign problem to an optimal periodic control
problem in the sense of LQR. The optimal control task
sequence is then derived by exhaustive search. Additional
to Rehbinder and Sanfridson [2000], Lincoln and Bern-
hardsson [2002] the computational delay is included in the
modeling and codesign.

Opposite to the offline scheduling approaches Cervin and
Alriksson [2006], Gaid et al. [2009], Reimann et al. [2013]
propose an extension to online scheduling where the con-
trol task sequence is adapted online based on current
plant state information. In the approach by Cervin and
Alriksson [2006] the controller and scheduler are deter-
mined jointly by solving an infinite-horizon optimization
problem using relaxed dynamic programming. However
this approach involves a large scheduling overhead. Gaid
et al. [2009] decompose the control and scheduling problem
into two subproblems. In the first subproblem a periodic
control task sequence is determined using the branch and
bound method. Based on the derived control task sequence
the optimal control gains are derived in the second sub-
problem applying the lifting technique. Further a state
feedback scheduler is proposed to improve the control per-
formance with respect to the offline scheduling sequence.
The approach in Reimann et al. [2013] proposes a sub-
optimal control and scheduling design where the upper
bound of the LQR costs is optimized. Additional to the
other approaches an output-based scheduling is derived
which includes an observer design for the state estimation.
However in this research line only state feedback control is
considered. An extension to linear dynamic controllers is
still missing in literature to the authors’ knowledge which
is the main motivation for the proposed work.

In the proposed approach the idea of determining the con-
trol task sequence online will be investigated for a control

task scheduling problem with linear dynamic controllers.
Hereby we focus on proportional-integral (PI) control for
tracking a reference signal. This is also motivated by the
fact that PI control is still one of the most widely used
feedback control methods. Further, the online scheduling
allows to react on disturbances and reference changes.
For designing the scheduler and the controller ideas from
event-based PID control, see Årzén [1999], Durand and
Marchand [2009], Tiberi et al. [2012], Lehmann et al.
[2012], are adapted. The proposed approach can be also
extended to PID control with derivative action.

The rest of the paper is outlined as follows. Section 2
formulates the problem and explains the non-preemptive
online scheduling setup. In Section 3 the PI controller is
introduced which is adapted automatically with respect
to the time-varying sampling period. The time-varying
sampling period of the control loops results from the
scheduling which is introduced in Section 4. Section 5
discusses the stability under the introduced controller and
scheduler. Therefore, the holistic system is modeled as
discrete-time switched system. In Section 6 the results
from a practical implementation of the proposed control
and scheduling approach are presented. Thereby, two DC
motors are controlled to a reference speed by one embed-
ded processor. Section 7 concludes the paper and gives an
outlook for future work.

Throughout the paper diag(·) denotes a block-diagonal
matrix and ‖x‖2 denotes the Euclidean norm of a vector
x. Furthermore, a matrix

(
A ∗
B C

)
represents a symmetric

matrix
(
A BT

B C

)
.

2. PROBLEM FORMULATION

Consider a set of M independent linear time-invariant ni-
order SISO systems Pi, i ∈ {1, . . . ,M} controlled by a set
of control tasks Ti, i ∈ {1, . . . ,M} using a single embedded
processor. Each plant is described by a continuous-time
state equation

ẋpi(t) = Apixpi(t) + Bpiui(t)

yi(t) = Cpixpi(t)
(1)

where xpi(t) ∈ Rni is the plant’s state, ui(t) ∈ R is the
control signal and yi(t) ∈ R is the output.

The input-delay, i.e. the time delay from the measurement
of the output until the actuation is neglected in the model,
see Reimann et al. [2013] for a detailed discussion on the
input-delay.

Although the plants are independent, using a common pro-
cessing unit with a limited computation capacity leads to
an interconnected large-scale system. Hence, achieving the
main objective is a complex problem. In order to solve this
complex problem, an intelligent scheduling policy besides
an implementation-aware controller are indispensable. In
our approach the time line is partitioned into time slots of
a given length h similar to Gaid et al. [2009]. At the time
instant tk, the beginning of each time slot, the outputs of
all plants are sampled simultaneously and fed to the sched-
uler. Based on this information a scheduling law is applied
for making a decision about the control task Tj(k) to be
executed, with j(k) ∈ J = {1, . . . ,M}. The computed
control signal uj(k)(tk) is finally forwarded to the plant
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Fig. 1. General architecture of an embedded control system

Pj(k). For the other plants Pi 6= Pj(k), the control signal is
held constant until a new one is delivered. The length of
the time slot h = tk+1−tk is chosen larger than or equal to
the worst-case execution time of the scheduler S and the
control task Tj(k) such that the execution of the scheduler
and a control task can be finished within one time slot.
As each plant is controlled by a PI controller with an
equivalent structure and order the worst-case execution
time differs little with respect to the control task index
j(k). The remaining idle time can be devoted to executing
non-control tasks, see Fig. 2. Additionally, by choosing
the slot size h appropriately a certain percentage of the
processor resources can be reserved for non-control tasks.

Fig. 2. ECS timing diagram

Due to the discrete nature of the computation platform, a
discrete-time representation of the continuous-time state
equation (1) is crucial. The discretization is applied with
the discretization interval h equal to the length of a time
slot. Thus, discretizing (1) using zero-order hold leads to
the discrete-time model

xpi(k + 1) = Φixpi(k) + Γiui(k)

yi(k) = Cixpi(k)
(2)

with

Φi = eApih, Γi =

∫ h

0

eApisdsBpi, Ci = Cpi.

3. PI CONTROL DESIGN

As we focus on tracking a constant reference signal a PI
controller is applied which is given by its digital imple-
mentation. For defining the PI controller, we distinguish
whether the control signal is updated or not within the
discretization interval tk ≤ t < tk+1. If i = j(k), then the
integrator state and the control signal is updated, i.e.

xci(k) = xci(k − 1) + βi(k)
(
ri(k)− yi(k)

)
(3a)

ui(k) = KPi

(
ri(k)− yi(k)

)
+KIixci(k). (3b)

If i 6= j(k), then the integrator state and the control signal
is not updated at all, i.e.

xci(k) = xci(k − 1) (4a)

ui(k) = ui(k − 1) (4b)

where xci(k) ∈ R is the integrator state, KPi,KIi ∈ R
are the proportional and integrator gain respectively.
ri(k) ∈ R is the reference signal which is assumed to be
piecewise constant and βi(k) indicates the integrator up-
date rate. The parameter βi(k) needs to be chosen appro-
priately with respect to the control update interval which
is time-varying due to the scheduling.

There are different possibilities for defining βi(k), see Du-
rand and Marchand [2009] for a detailed discussion. The
intuitive choice for βi(k) would be the elapsed time since
the previous control update hacti(k), i.e. the effective con-
trol update interval. However, the control update interval
may become large for one plant due to the absence of
a control update for this plant, for instance in the case
that the plant is in the steady state and the resources
are used for the control tasks of the other plants. When
the reference signal changes the integral part explodes
which can result in a large overshoot. Therefore the control
update interval is saturated, i.e. the parameter βi(k) is
reset to h when the control update interval exceeds a
defined boundary hmaxi . Thus, βi(k) is defined as

βi(k) =

{
hacti(k) if hacti(k) ≤ hmaxi

h if hacti(k) > hmaxi .
(5)

Under the given assumption of a constant discretization
interval h the possible values of βi(k) are given by a set
βi(k) ∈ Hi = {h, 2h, ..., Nih} with hmaxi = Ni · h.

The logical variable

δij(k) =

{
0 if i 6= j(k)
1 if i = j(k)

is introduced to model the general control law with respect
to the task index j(k) which is later used for modeling the
closed loop system.

We introduce an error ei(k) defined as

ei(k) =
(
yi(k)− ri(k)

)
−
(
ŷi(k)− r̂i(k)

)
(6)

=
(
Cixpi(k)− ri(k)

)
−
(
Cix̂pi(k)− r̂i(k)

)
where ŷi(k) and r̂i(k) indicate the output and reference
respectively at the time instant of the previous control
update of the plant Pi before time instant k. This error
gives an indication if we are in the transient state or in the
steady state based on which we can deduce the necessity
for a control update. Assuming that the reference signal
is constant, i.e. ri(k) = r̂i(k), a large error indicates the
transient phase where a control update is necessary and
a small error indicates that we are in the steady state. If
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the reference signal changes the error increases such that
we can conclude that an increasing error ei(k) indicates
the requirement for a control update which is later used
for the scheduling law. This error is equivalent to the error
used by Årzén [1999] for the event generator.

Defining the error ei(k) allows to rewrite the control law
(4) for the case the control input is not updated as

xci(k) = xci(k − 1) (7a)

ui(k) = KPi

(
r̂i(k)−Cix̂pi(k)

)
+KIixci(k). (7b)

As r̂i(k)−Cix̂pi(k) = ri(k)−Cixpi(k)+ei(k) the control
law is then rewritten with respect to the task index j(k)

xci(k) = xci(k − 1) + δij(k)βi(k)
(
ri(k)−Cixpi(k)

)
(8a)

ui(k) = KPi

(
ri(k)−Cixpi(k) + (1− δij(k))ei(k)

)
+KIixci(k). (8b)

4. SCHEDULING CRITERIA

Consider the scheduling law

j(k) = arg max
i∈J

{
λei‖ei(k)‖22 + λri‖ri(k)− yi(k)‖22

}
(9)

with the design parameters λei > 0 and λri > 0. As
explained in Section 3 a large value of the first term
‖ei(k)‖22 in the argument indicates the necessity for an
update of the control input. However even if ‖ei(k)‖2 is
zero there still maybe a steady state control error such that
an update of the control input is required. This is incorpo-
rated in the second term ‖ri(k)− yi(k)‖22 which measures
the control error of the output to the reference signal. It
is worth emphasizing that from ‖ri(k)− yi(k)‖2 = 0 we
cannot conclude that the control error has converged to
zero. The control error can also be zero at certain time
instants in case of an oscillation around the reference
signal. A high value of each term indicates the necessity
of updating the control signal. Therefore both terms are
considered in the scheduling law. Including only one of the
terms may result in an unsatisfactory performance.

5. STABILITY ANALYSIS

5.1 Modeling of the closed-loop system

In order to derive a stability criterion which can guarantee
the asymptotic stability of all plants a model of the holistic
closed-loop system is built. Combining the discrete-time
plant (2) and the PI controller (8) leads to

xpi(k+1) = Φixpi(k)

+ ΓiKIi

(
xci(k − 1) + δij(k)βi(k)

(
ri(k)−Cixpi(k)

))
+ ΓiKPi

(
ri(k)−Cixpi(k) + (1− δij(k))ei(k)

)
(10)

xci(k) = xci(k−1) + δij(k)βi(k)
(
ri(k)−Cixpi(k)

)
(11)

Further the dynamic behavior of the error ei(k) is ana-
lyzed. Based on (6) the error prediction ei(k + 1) is given
by

ei(k + 1) =
(
yi(k + 1)− ri(k + 1)

)
−
(
yi(k)− ri(k)

)
+ (1− δij(k))ei(k) (12)

In the following we assume that the reference signal is
constant, i.e. ri(k+1) = ri(k). Thus, we have

ei(k + 1) = Ci

(
xpi(k+1)−xpi(k)

)
+(1−δij(k))ei(k).

(13)

Combining (13) and (10)-(11) the closed-loop system of
the plant Pi is given by

xi(k + 1) = Aij(k)(k)xi(k) + F ij(k)(k)ri(k) (14)

with xi(k) = (xpi(k) xci(k − 1) ei(k))
T

and the matrices
(15), (16).

We see that the time dependency of the matrices Aij(k)(k)
and F ij(k)(k) caused by the parameter βi(k) only appears
for the case δij(k) = 1, i.e. the control input of the plant
Pi is updated. If the control input of the plant Pi is not
updated, i.e. δij(k) = 0, at a time instant k the closed-loop
system matrix Aij(k) is time-invariant for given i and j(k).
In order to deal with the time-varying parameter βi(k) for
the case δij(k) = 1 another switching index ` is introduced
which subsumes the possibilities for the integrator update
rate βi(k) ∈ Hi. Substituting βi(k) = ` · h in (15) and
(16) with ` arbitrary from the set {1, ..., Nj(k)} (14) can
be rewritten as

xi(k + 1) = Ãij(k)`xi(k) + F̃ ij(k)`ri(k) (17)

Thus, the time dependency is modeled by the additional
switching index `. Even though the switching index ` is
only relevant for i = j(k) the closed-loop model given by
(17) is also valid for i 6= j(k).

The overall closed-loop system is then described by the
block-diagonal discrete-time switched linear system

x(k + 1) = Ãj(k)`x(k) + F̃ j(k)`r(k) (18)

with

x(k) =
(
xT
1 (k) · · · xT

M (k)
)T ∈ Rn

r(k) = (r1(k) · · · rM (k))
T ∈ RM

Ãj(k)`(k) = diag
(
Ã1j(k)`(k), . . . , ÃMj(k)`(k)

)
∈ Rn×n

F̃ j(k)`(k) = diag
(
F̃ 1j(k)`(k), . . . , F̃Mj(k)`(k)

)
∈ Rn×M

and n = n1 + ... + nM + 2M . In the model (18) the
index j(k) ∈ {1, ...,M} is determined by the scheduler
(9) whereas the index ` is assumed to be arbitrary from
the set {1, ..., Nj(k)} as it depends on the actual and the
previous scheduling indices of the controlled plant.

Aij(k) =

 Φi−Γi(KPi+δij(k)βi(k)KIi)Ci ΓiKIi (1−δij(k))ΓiKPi

−δij(k)βi(k)Ci 1 0
Ci

(
Φi−Γi(KPi+δij(k)βi(k)KIi)Ci−I

)
CiΓiKIi (1−δij(k))(CiΓiKPi+1)

 (15)

F ij(k) =

 Γi(KPi+δij(k)βi(k)KIi)
δij(k)βi(k)

CiΓi(KPi+δij(k)βi(k)KIi)

 (16)
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5.2 Stability criterion

Without loss of generality we assume that ri(k) = 0
in the following derivation. Further, we assume that the
control and scheduling parameters KPi, KIi, λri and λei
are given. For analyzing the stability the scheduling law
(9) is transformed to

j(k) = arg max
i∈J

{
λeie

T
i (k)ei(k) + λrixpi(k)TCT

i Cixpi(k)
}

= arg max
i∈J

xT
i (k)Qixi(k) (19)

with Qi = diag
(
λriC

T
i Ci, 0, λei

)
. Based on (19) we know

that for a given task index j(k) we have

xT
j(k)(k)Qj(k)xj(k)(k) > xT

i (k)Qixi(k) ∀i 6= j(k). (20)

Summing (20) over all i 6= j(k) yields

(M − 1)xT
j(k)(k)Qj(k)xj(k)(k) >

M∑
i=1,i6=j(k)

xT
i (k)Qixi(k)

which is equivalent to

xT (k)Q̃j(k)x(k) > 0. (21)

where Q̃j(k) = diag
(
−Q1, ..., (M − 1)Qj(k), ...,−QM

)
.

For the stability analysis consider the multiple Lyapunov
function, see e.g. Daafouz et al. [2002]

V (k) = xT (k)P j(k)x(k) (22)

with P j(k) ∈ Rn×n symmetric and positive definite and
j(k) ∈ J. In order to prove asymptotic stability the
inequality ∆V (k) = V (k+ 1)−V (k) < 0 must be satisfied
for all x(k) 6= 0 under the scheduling law (19).

For each task index j(k) ∈ {1, . . . ,M} the stability
condition is then rewritten as

∆V (k) = xT (k)
(
Ã

T

j(k)`P iÃj(k)`−P j(k)

)
x(k)< 0

for all x(k) such that xT (k)Q̃j(k)x(k) > 0
(23)

for all i ∈ {1, . . . ,M} and ` ∈ {1, ..., Nj(k)}. Applying the
lossless S-procedure to (23), see e.g. [Boyd et al., 1994, Sec.
2.6.3] for details, the following Theorem is deduced.

Theorem 1. If there exist a set of symmetric and positive
definite matrices P j(k) and non-negative scalars µj(k),
j(k) = {1, ...,M} satisfying

P j(k) − Ã
T

j(k)`P iÃj(k)` − µj(k)Q̃j(k) > 0 (24)

for all (j(k), i, `) ∈ J × J × {1, ..., Nj(k)} then the closed-
loop system (18) is globally asymptotically stabilized by
the scheduling law (9).

In the case of a constant reference signal ri(k) 6= 0 the
equilibrium point of the controlled system (14) is not the

origin but xeqi = (xpi(∞) xci(∞) 0)
T
. The output

converges to the reference value, i.e. ri(∞) = Cpixpi(∞).
In the equilibrium point we have 0 = Apixpi(∞) +
Bpiui(∞) with ui(∞) = KIixci(∞) such that(

0
ri(∞)

)
=

(
Api BpiKIi

Cpi 0

)(
xpi(∞)
xci(∞)

)
. (25)

Therefore(
xpi(∞)
xci(∞)

)
=

(
Api BpiKIi

Cpi 0

)−1(
0

ri(∞)

)
. (26)

As the reference signal is constant in the equilibrium point
we have ei(∞) = 0. By a coordinate change that shifts
the equilibrium point into the origin the stability can be
analyzed with the Lyapunov function

V (k) =
(
x(k)− xeq

)T
P j(k)

(
x(k)− xeq

)
(27)

with xeq =
(
xT
eq1 · · · xT

eqM

)T
.

For a general piecewise constant reference signal changing
in a stepwise way based on the Lyapunov function (27)
the stability is still guaranteed by shifting the origin to
the new equilibrium point.

6. EXPERIMENTAL IMPLEMENTATION

Given two equivalent DC motors (Maxon RE-max29) with
the model

ṅ(t) = − km
2πJRke

n(t) +
km

2πJR
ua(t),

where ua(t) is the armature voltage and n(t) is the
motor speed in rounds per second which is controlled
to a piecewise constant reference speed. The parameter
km = 0.0258 Nm

A is the torque constant, ke = 6.1667 1
Vs

is the motor velocity constant, R = 3.26 Ω is the to-
tal resistance and J = 8.79 ·10−6 kgm2 is the moment of
inertia. The initial motor speed of both DC motors is
zero, i.e. n(0) = 0 s−1. This leads to the model (1) with
Api = −23.237, Bpi = 143.296 and Cpi = 1 for all
i = {1, 2}.
The discretization interval is set to h = 0.01 s such that
the effective control update interval is h or a multiple of h
depending on the scheduling decision. The control param-
eters for the control law (8b) are chosen KPi = 0.0233 and
KIi = 1 and the factor βi(k) is saturated by hmaxi

= 4 · h
for all i = {1, 2}. The scheduling parameters of the
scheduling law (9) are λei = 1.0 and λri = 0.1 for
i = {1, 2}.
Before implementing the controller and scheduler in the
processor the stability is verified by Theorem 1. The
feasibility of the LMI problem (24) is successfully verified
using YALMIP Löfberg [2004] with the SeDuMi solver
Sturm [1999].
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Fig. 3. Implementation results
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For the practical implementation a microcontroller NXP
LPC2294 is used as the processor. Fig. 3 shows the refer-
ence speed and the controlled motor speed for both motors
as well es the scheduling index j(k). At the beginning
of the experiment both outputs are controlled to a refer-
ence speed ri(k) = 30 s−1. Therefore the scheduling index
switches constantly between 1 and 2. At the time instant
t = 2 s and t = 3 s we can see how the scheduler reacts on
the reference change and gives all computation resources
to the control task T2 and T1, respectively. When both
plants are again in the steady state the scheduling index
again switches constantly between 1 and 2. Obviously the
scheduling is also affected by the measurement noise. This
can be seen after 0.5 seconds where more computation
resources are given to control task T2 due to the noise.

7. CONCLUSION AND FUTURE WORK

In this paper we propose an output-based control and
scheduling method to achieve set-point tracking using PI
control for embedded control systems. A novel PI control
design and scheduling method is introduced to realize an
efficient usage of the limited resources. For investigating
the stability the holistic closed-loop system is modeled
as a switched system. Based on a multiple Lyapunov
function approach stability can be proven by solving an
LMI feasibility problem.

An open question for the proposed approach is the deter-
mination of the control and scheduling parameters. There-
fore, a codesign method for determining those parameters
simultaneously will be investigated in future work. It is
also interesting to introduce a performance criterion which
is then optimized. Further, integrator windup caused by
actuator saturation will be analyzed.
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K.-E. Årzén. A simple event-based PID controller. In 14th
World Congress of IFAC, pages 423–428, 1999.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Lin-
ear Matrix Inequalities in System and Control Theory,
volume 15 of Studies in Applied Mathematics. SIAM,
Philadelphia, PA, 1994.
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