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Abstract:
In the last years, nonparametric linear dynamical systems modeling has regained attention in the
system identification world. In particular, the application of regularization techniques that were
already widely used in statistics and machine learning, has proven beneficial for the estimation
of the impulse response of linear systems. The low-rank approximation of the impulse response
obtained by the truncated singular value decomposition (SVD) also leads to reduced complexity
estimates. In this paper, the link between regularization and SVD truncation for finite impulse
response (FIR) model estimation is made explicit. The SVD truncation is reformulated as a
regularization problem with a specific choice of the regularization matrix. Both approaches
(regularization and SVD truncation) are applied on a FIR modeling example and compared
with the classic prediction error method/maximum likelihood approach. The results show the
advantage of these techniques for impulse response estimation.

1. INTRODUCTION

The aim of system identification is to obtain a mathemat-
ical description (a model) of (non)linear systems starting
from a set of input-output observations.

For linear dynamic modeling in particular, a well-establi-
shed theoretical framework exists. Specific methods are
available to tackle this estimation problem (Ljung [1999],
Söderström and Stoica [1989], Pintelon and Schoukens
[2012]).

New possibilities and challenges are offered by the intro-
duction of regularization in system identification. See Sec-
tion IV in Ljung et al. [2011] for an overview of recent ad-
vances in the field. Regularization is of particular interest
in the bias-variance trade-off that characterizes model es-
timation from noisy observations (Ljung and Chen [2013]).

The key idea in regularization is the introduction of
a penalty term to the (least squares) cost function to
limit the model complexity (see e.g. Hastie et al. [2009]).
Several regularization schemes exist in the literature. They
differ in the definition of the norm used to define the
penalty term (e.g. AIC, Akaike [1974], Lasso, Tibshirani
[1994], ridge regression, Hoerl and Kennard [1970]). The
common feature in all these methods is to reduce the model
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complexity by pulling as many parameters as possible to
zero.

In the last years, the drive to remove noise sensitivity has
brought new attention to the nonparametric identification
of linear dynamical systems. The beneficial impact of
regularization schemes in these simple problems has been
pointed out in several papers.

In Chen et al. [2012], regularization is employed for the
estimation of finite impulse response (FIR) models to
address high variance issues of the estimates. For noisy and
short data records, the regularized least squares approach
turns out to be more robust and even slightly more accu-
rate than the standard prediction error method/maximum
likelihood (PEM/ML) approach. The underlying reason
for such behavior is that it may be beneficial to allow some
bias to reduce the variance. Based on a Bayesian interpre-
tation of the problem, one gets insight in the choice of the
regularization matrix. Prior knowledge about the distri-
bution of the parameters here boils down to imposing the
presence of an exponentially decaying impulse response.
More details about how to tune the hyperparameters that
steer the regularized FIR model estimation can be found
in Chen and Ljung [2013].

The approach discussed in Chen et al. [2012] is strongly
linked with the results presented in Pillonetto and De
Nicolao [2010]. In that work, the impulse response of a
stable linear system is estimated using a Gaussian process
model. A Bayesian framework is invoked to produce a
nonparametric estimate in an infinite-dimensional space;
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in a second step a low-order model can be obtained by
projecting this solution onto a finite-dimensional space.

In Hjalmarsson et al. [2012], the regularization for linear
model estimation is obtained including two additional
terms in the least squares cost function. A structured high-
order ARX model is obtained by including the nuclear
norm of two Hankel matrices derived from the noise and
the system models.

In Rojas and Hjalmarsson [2011], sparse solutions for lin-
ear regression problems are obtained by minimizing the `1-
norm of the parameter vector. The resulting performance
is similar to that of a validated least-squares estimate on
a separate set of validation data.

Another possible approach to reduce the intrinsic complex-
ity of a model has recently been discussed in Marconato
et al. [2013]. In that work, reduced rank solutions are
obtained based on the truncated singular value decom-
position (SVD) of the regressor matrix. This approach is
applied to both linear and nonlinear in the parameters
problems. By explicitly forcing the smallest singular values
to zero, a low-rank model is estimated that does not rely
on the parameterization of the model.

Note that in this last case the solution still lives in the
original space, but it lies in a lower dimensional subspace.
This subspace depends on the coloring of the excitation
signal. Following this approach, it becomes possible to
reduce the model complexity without pulling individual
parameters to zero.

This paper shows the link between regularization and low-
rank approaches to reduce the model complexity.

More specifically, the focus is put on a specific estimation
example: the FIR modeling problem. For the sake of
simplicity, only the single-input single-output (SISO) case
is considered.

The impulse response of an unknown linear dynamic sys-
tem is estimated with a FIR model. This representation
assumes that the impulse response is a finite length se-
quence bk:

ŷ(t) =

nb−1∑
k=0

bku(t− k) (1)

The nb parameters bk for k = 0, · · · , nb − 1 represent the
estimated impulse response.

A set of N input-output observations {(u(t), y(t))}Nt=1 is
assumed to be available to estimate the FIR model. Note
that the order nb needs to be selected by the user based
on some metric (e.g. based on cross-validation results). Its
choice is directly related to the bias-variance trade-off.

The regularization approach and the SVD truncation ideas
are applied to this FIR modeling example. Their relative
performance is compared with the result obtained using
a classic PEM/ML approach. Remember that this does
not use prior knowledge about the impulse response. To
show the usefulness of the compared techniques, a very
simple example was selected on purpose, as this stresses
the relevance of the methods even for a problem that is as
simple as the FIR model estimation.

The paper shows the link between the regularization
and the low-rank approximation via SVD truncation ap-
proaches explicitly. The two problem formulations are
proven to be equivalent, provided that the regularization
matrices are selected in a specific way.

Section 2 presents a summary of the regularization ideas
applied specifically to the FIR modeling problem. Section 3
applies the truncated SVD approach to the same problem.
In Section 4, the SVD truncation is reformulated as a
regularization problem. This requires one to define a
specific choice of the regularization matrix.

Despite this close connection between the two techniques,
there is an important distinction in their derivation. The
regularization approach exploits some assumptions about
the prior knowledge of the system to be modeled (expo-
nential decay and smoothness of the impulse response).
The truncated SVD method relies entirely on the nature
of the excitation signal (colored excitation). A comparison
of the different results obtained on a specific FIR model-
ing example is provided in Section 5. Final remarks and
considerations are summarized in Section 6.

2. REGULARIZATION FOR SYSTEM
IDENTIFICATION – FIR CASE

2.1 The LS Estimate

Consider the finite impulse response model (1). Introduce
the column vector Y for all the output measurements, and
the column vector θ for the impulse response coefficients
bk. Collect the input measurements in the Toeplitz matrix
K ∈ RN×nb (regressor matrix)

K =


u(1) u(0) · · · u(−nb + 2)
u(2) u(1) · · · u(−nb + 3)

...
...

. . .
...

u(N) u(N − 1) · · · u(N − nb + 1)

 (2)

Eq.(1) can be written compactly as the linear regression
model

Y = Kθ + E (3)

where the vector E denotes the additive errors in the
measurements of the output y. The well known least
squares estimate of the parameters is defined to be

θ̂ = arg min
θ
‖Y −Kθ‖2 = (KTK)−1KY (4)

This estimate could be troublesome (have high variance) if
the matrix KTK is ill-conditioned. This will happen e.g. if
the FIR order nb is large or the input u is poorly exciting.

2.2 The Regularized LS Estimate

A well known remedy for such bad conditioning is to use
regularization, i.e. to add a penalty to the criterion that
depends on the parameter size, see e.g. page 221 in Ljung
[1999]:

V (θ) = ‖Y −Kθ‖2 + λ(θ − θ∗)TR(θ − θ∗) (5)

This modifies the estimate to

θ̂reg = (KTK + λR)−1KTY (6)

if θ∗ = 0. This estimate for FIR models is discussed in
some detail in Chen et al. [2012]. We may note that the
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regularization only depends on the product λR, but it is
useful to think of the scalar λ as a simple tuning variable
for the “amount” of regularization.

It remains to decide how to choose the regularization λR.

It is useful to realize that the estimate θ̂reg equals the
Bayesian maximum a posteriori, MAP estimate, in case
the prior distribution of θ ∈ N(0,Π), that is, it is a zero
mean Gaussian with covariance matrix

Π = σ2R−1/λ or λR = σ2Π−1 (7)

where σ2 is the variance of the (white) measurement errors.

2.3 Parameterization of the Regularization Matrix and
Empirical Bayes

If we believe that θ ∈ N(0,Π) and the additive noise
E ∈ N(0, σ2I), then Y = Kθ + E ∈ N(0, Z(Π)) where
Z(Π) = KΠKT + σ2I. That means that the distribution
of Y is known up to (parameters present in) Π. So they
could be estimated by maximum likelihood:

Π̂ = arg max
Π

logP (Y |Π) (8)

= arg min
Π

Y TZ(Π)−1Y + log detZ(Π) (9)

This method is known as empirical Bayes. Supposing that
the impulse response of the system is exponentially stable
and smooth, it is natural to parameterize Π as so that its
k, r element is

Πk,r = Cαk+rρ|k−r|, C > 0, 0 < α < 1, |ρ| < 1 (10)

So, eqs.(6)-(10) give a complete algorithm to estimate an
FIR model for a stable linear system using a well tuned
regularization.

Note that here the added prior knowledge is the exponen-
tial decay and the smoothness of the impulse response.

3. LOW-RANK SOLUTION WITH SVD
TRUNCATION – FIR CASE

Consider the same linear least squares solution θ̂ given by
eq.(4):

θ̂ = (KTK)−1KY

Substitute the SVD of matrix K, K = UΣV T , herein:

θ̂ = V Σ−1UTY (11)

Starting from this expression, a low-rank solution is ob-
tained whenever the singular value spectrum of the matrix
Σ is truncated. The truncated matrix Σn is obtained by
keeping the first n singular values σ1, · · · , σn and setting
the remaining nb−n singular values σn+1, · · · , σnb

to zero.

To propagate the rank reduction to θ̂, the matrix Σ−1
n is

defined as:

Σ−1
n = diag

(
1

σ1
, · · · , 1

σn
, 0, · · · , 0

)
(12)

The resulting low-rank solution θ̂n becomes:

θ̂n = V Σ−1
n UTY (13)

Note that despite θ̂n is still in Rnb (all parameters are
non-zero), it lies in a n-dimensional subspace of Rnb , with
n < nb.

The tuning parameter here is the truncation level n which
is user selectable. This n can for example be determined us-
ing cross validation, that is generate a separate validation
data set with output y(t) and computing a model output
ŷ(t) using the tested model and the validation data input.
Then evaluate the validation cost function:

evalRMS =

√√√√ 1

Nval

Nval∑
t=1

(y(t)− ŷ(t))
2

(14)

The value of n corresponding to the lowest validation error
is then selected.

The quality of the truncated solution strictly depends on
the nature of the singular value spectrum of the input
dependent regressor matrix K.

If u(t) is a white noise sequence, the columns of K
are linearly independent. The magnitude of all singular
values is therefore asymptotically equal. A truncation of
Σ therefore becomes impossible without compromising the
quality of the estimates significantly.

If u(t) is a colored noise excitation, the magnitude of
the singular values will decrease. A high quality, low-
rank solution can then be obtained using the truncation
described above.

In the remainder of the paper the input signal will be
assumed to be a colored noise sequence.

Next, the SVD truncation is reformulated as a regulariza-
tion problem.

Note that here the prior is given by the coloring of the
input (which results in the truncation of the Σ matrix).

4. FORMULATING THE SVD TRUNCATION AS A
FORMAL REGULARIZATION TASK

Section 2 shows how the regularization approach includes
a penalty term in the cost function to constrain the model
complexity, eq.(5-6).

For a specific choice of the regularization matrix, we show
now that the regularized solution coincides with the low-
rank solution (13) obtained by SVD truncation.

Substituting the SVD of the full regressor matrix K =
UΣV T in eq.(6), one obtains:

θ̂reg = (V Σ2V T + λR)−1V ΣUTY (15)

Now define

D = diag(ε, · · · , ε︸ ︷︷ ︸
n

, 1, · · · , 1︸ ︷︷ ︸
nb−n

) (16)

λR = λV DV T (17)

with λ the regularization factor and ε ∼ O( 1
λ2 ).

The estimate boils down to

θ̂reg = (V (Σ2 + λD)V T )−1V ΣUTY (18)

= V (Σ2 + λD)−1ΣUTY

Note that

Σ2+λD = diag(σ2
1 +λε, · · · , σ2

n+λε, σ2
n+1+λ, · · · , σ2

nb
+λ)
(19)
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and consequently Σ−1
n becomes

Σ−1
n = lim

λ→∞
(Σ2 + λD)−1Σ (20)

= lim
λ→∞

diag(σ2
1 + λε, · · · , σ2

n + λε, (21)

σ2
n+1 + λ, · · · , σ2

nb
+ λ)−1Σ

= diag

(
1

σ1
, · · · , 1

σn
, 0, · · · , 0

)
(22)

Finally, one can write:

θ̂reg = V Σ−1
n UTY = θ̂n (23)

To interpret the SVD truncation as a regularization, one
needs to fix the truncation level to n, and subsequently
use the regularization matrix of eq.(17).

From a Bayesian point of view, this formulation corre-
sponds to a different prior assumption. A certain fixed
projection P of the parameter vector θ is made. This zeroes
the contribution of θ in the orthogonal complement P⊥ of
the projection space.

As λR = Π−1, with Π the covariance matrix of θ, eq.(17)
shows that D−1 is not of full column rank. In the P
space, this corresponds to parameters being set to zero.
Infinite values in D−1 correspond to zeros in D. This
means that no prior knowledge is available about the
corresponding elements of θ, and one has to rely upon the
data information to determine their values.

One can also understand this by considering eq.(17) and
the cost function in eq.(5). Elements of θ corresponding to
the one’s in the matrix D need to be equal to zero in order
to keep the cost function from tending to infinity, while
the other parameters are free.

5. RESULTS

The behavior of the two frameworks presented in the pre-
vious sections is now illustrated on a simulation example.

The goal is to estimate a FIR model that mimics the
behavior of a linear dynamical infinite impulse response
system, excited by a colored excitation. The system consid-
ered in this example is a second order Butterworth filter,
and all considered signals are defined as follows:

y(t) = G0u(t) + e(t) (24)

G0(z) =
0.0201 + 0.0402z−1 + 0.0201z−2

1− 1.5610z−1 + 0.6414z−2
(25)

u(t) = Fr(t) r(t) ∼ N (0, 1) (26)

F (z) =
0.0675 + 0.1349z−1 + 0.0675z−2

1− 1.1430z−1 + 0.4128z−2
(27)

e(t) ∼ N (0, σ2) (28)

The true impulse response of the system is shown in blue
(full line) in Figure 1.

The system is excited by a 1000 samples colored noise
sequence. A small white noise disturbance (with variance
σ2 = 0.0025) is added to the output. The coloring of
the excitation plays a fundamental role in the truncated
SVD approach, since it determines the decrease of the

magnitude of the singular values of the regressor matrix
K.

Following the standard PEM/ML approach, one has to
determine the order nb of the FIR model first. An order
estimation criterion combined with the evaluation of a
range of model orders is used to select the “best” order.
Note that since the FIR model order can grow with
the amount of data, this is a nonparametric approach.
The true impulse response visually reaches zero within
the measurement resolution after less than 50 samples
on Figure 1. All model orders nb = 1, · · · , 50 are hence
considered.

A validation cost function is chosen to evaluate the model
quality on a portion of the data that was not used to
identify the model. Here, a validation data set is generated,
using the same colored noise source. Nval = 1000 samples
are drawn and the output corrupted with white noise
(variance 0.0025) as in eqs.(24)-(28).

The root mean squared error on the validation set evalRMS as
in eq.(14) is computed to evaluate the model performance.

The PEM/ML approach based on evalRMS returns nb = 23
as the best model order. The estimated impulse response
is shown in Figure 1. evalRMS is equal to 0.0506 here. As the
standard deviation of the output noise is equal to 0.05, the
noise component clearly dominates the output variance.

To evaluate the theoretical quality of the considered
model, we consider the following performance measure:

eRMS =

√∫ π

−π

∣∣∣G0(ω)− Ĝ(ω, θ)
∣∣∣2 φu(ω) dω (29)

where G0(ω) is the true frequency response of the system,

Ĝ(ω, θ) is the estimated frequency response, and φu(ω)
is the power spectrum of the colored input signal. In a
simulation, G0(ω) is known.

To compute eRMS in practice, we generate a very large
noisefree validation output signal (100000 samples). In a
real measurement based situation such a validation data
set will not be available. Here eRMS in eq.(29) is used to
better understand the properties of the different models.
Note that the model order selection is still based on evalRMS,
using a short and noisy validation set. Only the final
comparison of the different estimated models uses eRMS.

For the PEM/ML solution eRMS = 0.0073. However,
Figure 1 clearly shows that the dashed line representing
the PEM/ML estimate is not satisfactory.

This poor result becomes clear looking at the power
spectral density (PSD): the low-pass input PSD does not
sufficiently excite the system in the measurement band.
This motivates the use of the SVD truncation instead.

For the SVD truncation, one needs to select the order
nb of the FIR model and the level of truncation n. The
“optimal” combination for nb and n is found here by
scanning evalRMS for each pair (nb, n) with nb = 1, · · · , 50
and n = 1, · · · , nb. The best value for evalRMS is obtained
for nb = 24 and n = 10. This means that the estimate
contains 24 non-zero parameters, but it has a lower rank of
only 10. The eRMS value is equal to 0.0049, which shows a
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Fig. 1. True impulse response of the linear system under
study (blue), and estimated impulse response for nb =
23 (red dashed).

Fig. 2. Estimated impulse response with the SVD trunca-
tion approach for nb = 24 and n = 10 (red dashed),
compared to the true impulse response (blue).

Fig. 3. Magnitude (in dB) of the singular values of matrix
K for nb = 24.

significant improvement when compared to the PEM/ML
estimate.

Figure 2 shows the impulse response obtained with the
truncated SVD. It approximates the true response of the
system much more accurately than the PEM/ML estimate.
Note that the eRMS of the PEM/ML estimate was less
than a factor 2 larger than for the SVD truncation. The
big difference in the impulse response estimates (Figures 1
and 2) is due to the fact that the validation cost does not
penalize errors in the poorly excited frequency band.

The magnitude of the singular values of the matrix K
is shown in Figure 3 for nb = 24. Only the first 10
singular values contribute to the low-rank solution. All the
remaining ones are set to zero (see eq.(12)).

Fig. 4. Estimated impulse response with the tuned regular-
ization approach for nb = 24 (red dashed), and with
increased regularization level with l = 14 (green dash-
dot), compared to the true impulse response (blue).

One obtains the same solution using the regularization
approach as above, by calculatingD, λ and R as in eqs.(16)
and (17) for nb = 24 and n = 10.

Next, the problem is solved by regularization using empiri-
cal Bayes like in eqs.(6)-(10). A well tuned regularized least
squares approach can significantly improve the results of
PEM/ML, since it improves the bias-variance trade-off
(see e.g. Chen et al. [2012] and Ljung and Chen [2013]).

Using the Bayesian interpretation of Section 2, the
smoothness assumption for the exponentially decaying
impulse response, one obtains the values of λ and R to
be used in eq.(6). This can be repeated for all possible
FIR orders nb = 1, · · · , 50. The best regularized solution
is then selected using evalRMS. All results presented below
are obtained running the R2013b version of the MATLAB
System Identification Toolbox, Ljung [2013].

The best regularized solution in the range nb = 1, · · · , 50
is obtained for nb = 24 (Figure 4), with a eRMS equal to
0.0045.

This solution can even be improved further by increasing
the “amount” of regularization, i.e. by multiplying λ with
a factor l > 0 that can be tuned by the user using the
validation criterion (14) (Figure 4). For l = 14 one obtains
a eRMS value of 0.0039.

Moreover, if one performs a double scan minimizing evalRMS
over all possible FIR orders nb = 1, · · · , 50, and with
increased regularization factors l = 1, · · · , 30, the best
solution (eRMS = 0.0027) is found for nb = 28 and l = 19.

Figure 5 shows the amplitude of the error between the
true impulse response and the estimated impulse response
for the three models obtained with the Bayesian regular-
ization. One can see that when the regularization level
is increased (green and black lines) the estimate gets
smoother.

These results show that, in a situation where one has
a colored excitation, both the SVD truncation and the
tuned regularization approach are useful tools to improve
the PEM/ML estimate significantly. A smoother approx-
imation of the impulse response results. In particular,
including prior knowledge about the system response in
the regularization approach, and increasing the amount of
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Fig. 5. Error between the true impulse response and the
estimated models for the regularization approach.
Tuned regularization approach for nb = 24 (red
dashed), increased regularization level with nb = 24
and l = 14 (green dash-dot), and best solution
obtained for nb = 28 and l = 19 (black).

regularization by further tuning the value of λ allows one
to obtain very accurate models.

6. CONCLUSION

In this paper we have considered the estimation of FIR
models to approximate the response of linear dynamical
systems, in the situation where the system is excited
with a colored noise input. For this problem, tools like
regularization and low-rank approximation methods based
on the truncated SVD prove successful.

The tuned Bayesian regularization approach uses the prior
knowledge that the system response is smooth and expo-
nentially decaying. For the SVD truncation method the
prior is instead given by the coloring of the noise input.
The link between these two approaches has been shown
by reformulating the SVD truncation as a regularization
problem given a specific choice of the regularization ma-
trix.

Both methods have been tested on a FIR modeling exam-
ple with colored excitation. The obtained results outper-
form significantly the PEM/ML estimate, with a decrease
of the validation error of more than 60%. In particular,
the regularization approach allows one to obtain a very
accurate solution, by incorporating prior knowledge about
the system impulse response to tune the regularization
matrix R and by further increasing the factor λ. As a
future research direction, the possibility of combining the
two approaches will be investigated, to include in the
prior both the assumptions about the system and the
information about the coloring of the input data.
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