
Event-Triggered Control for Linear Systems

Subject to Actuator Saturation

Wei Wu
∗
Sven Reimann

∗
Steven Liu

∗

∗ Institute of Control Systems, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

(e-mail: wu@eit.uni-kl.de, reimann@eit.uni-kl.de, sliu@eit.uni-kl.de).

Abstract: Event-triggered control is developed to reduce the communication load in networked
control systems. This means that output or actuator signals are only transmitted over the
network when an event-triggering condition is violated which is designed such that a certain
control performance can be guaranteed. This paper considers event-triggered control subject to
actuator saturation for linear systems. Therefore we present a method to estimate the domain of
attraction which represents a contractive invariant set. The contractive invariant set is estimated
by an ellipsoid which is determined by solving a linear matrix inequality (LMI) optimization
problem. Further a controller synthesis design considering the event-triggering condition in our
criterion is given to maximize the contractive ellipsoid. Simulations are given to illustrate the
results.

Keywords: Event-triggered control; Linear matrix inequalities (LMIs); Actuator Saturation;
Stability analysis; Optimization problems

1. INTRODUCTION

Event-triggered control has attracted much focus in re-
cent years due to the promising advantage of less re-
source utilization compared to traditional periodic control,
see Åström and Wittenmark [1990], Åström [2008], Årzn
[1999], Lunze and Lehmann [2010], Wang and Lemmon
[2011], Heemels et al. [2013], Tabuada [2007], Cogill [2009],
Antunes et al. [2012]. The basic idea of event-triggered
control is that when a certain control performance is still
satisfactory then the execution of control tasks can be
skipped and the transmission of the measured outputs or
actuator signals can be saved. The saving of the resource is
especially important for battery-powered wireless devices
or for bandwidth-limited communication networks. Peri-
odic event-triggered control is introduced by Heemels et al.
[2013], where the plant states only need to be measured
periodically. The measured data is processed by the so-
called event generator to determine whether the actual
control input is updated. The periodic event-triggered
control strategy fits well the practical implementations for
the standard time-sliced embedded software architectures.

One of the fundamental challenges for the design of event-
triggered control systems lies in the design of approaches
that can offer satisfactory control performance while re-
ducing the control task executions and the data transmis-
sions. In Lunze and Lehmann [2010] the performance of the
event-based control system is evaluated by comparing this
loop with the continuous-time state-feedback loop. The
event generator utilizes a fixed threshold parameter. In
Tabuada [2007], Anta and Tabuada [2010], Heemels et al.
[2013], Wang and Lemmon [2011] the event-triggering con-
ditions are designed to guarantee a certain decay rate of
the Lyapunov function. In Eqtami et al. [2010], Li and Xu
[2011] input-to-state stability is considered as the control

performance based on which the event-triggering condi-
tion is determined. In Li and Xu [2011] additionally the
controller is co-designed simultaneously with the event-
triggering condition. In an optimal control framework the
design of transmission sequences is studied in Cogill [2009],
Antunes et al. [2012] for stochastic systems. The transmis-
sions of actuator signals are included in the optimization
process.

Basically in all practical systems the control input is con-
strained. This nonlinear characteristic demands further
stability analysis. Concerning actuators subject to input
saturation the stability and performance analysis are in-
vestigated in Lehmann et al. [2012], Kiener et al. [2012],
Seuret et al. [2013]. In Lehmann et al. [2012], Kiener et al.
[2012] the stability region under a constant threshold based
event-triggered PI control is studied. In Seuret et al. [2013]
a local exponentially stability is guaranteed by a designed
event-triggering condition concerning an LQ cost function.

This paper first presents a criterion to analyse if a given el-
lipsoid is contractively invariant under an event-triggering
condition. Then by introducing an auxiliary feedback ma-
trix a novel event-triggering condition and controller co-
design approach is presented aiming to maximize the
contractive invariant set, see also Hu et al. [2002]. The
control design approach generates a unique control gain
after solving an LMI optimization problem. The simulation
results show that the selected design parameter of the
event-triggering condition has large influence on the size
of the contractive invariant ellipsoid.

The remainder of the paper is organized into four sections.
Section 2 introduces the linear system model and the
necessary definitions and lemmas. In Section 3 the main
approaches are given meanwhile the simulations for the
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derived results are accompanied. In Section 4 a conclusion
is made.

Throughout the paper, the following notation is used:
diag(·) denotes a block-diagonal matrix and tr(·) denotes
the trace of a matrix. ‖x‖ denotes the Euclidean norm
and ‖x‖∞:=maxi |xi| denotes the infinity norm of a vector
x. Furthermore, a matrix

(

A ∗

B C

)

represents a symmetric

matrix
(

A B
T

B C

)

.

2. PROBLEM FORMULATION

In this paper the considered plant is described by the
continuous-time state equation subject to actuator satu-
ration

ẋ(t) = Ax(t) +Bsat(u(t)) (1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is the sys-
tem matrix,B ∈ Rn×m is the input matrix, and u(t) ∈ Rm

is the control signal. sat(·) is the standard saturation func-

tion, sat: Rm → Rm and sat(u) = (sat(u1) · · · sat(um))
T
,

where sat(uj) = sgn(uj)min{1, |uj|}. The plant will be
controlled in a periodic event-triggered way as in Heemels
et al. [2013]. The measurement is made periodically with
the time interval h at the time instances tk, k ∈ N0 with
h = tk+1 − tk. The control input is updated using zero-
order-hold (ZOH).

Remark 2.1. If the control input is not saturated by one
but another value, i.e. sat∗(uj) = sgn(uj)min{ujmax, |uj|},
the model can be transformed to the form of (1) with an
input saturation of one for all inputs. Assume the model
is given by

ẋ(t) = Ax(t) +B
∗sat∗(u(t)) (2)

with sat∗(u) = (sat∗(u1) · · · sat∗(um))
T
which is equiva-

lent to

ẋ(t) = Ax(t) + b
∗

1sat
∗(u1) + ...+ b

∗

msat∗(um) (3)

where B
∗ = (b∗1 · · · b

∗

m). The model (3) can also be
written as

ẋ(t) = Ax(t) +

m
∑

j=1

(

b
∗

jujmax

) sat∗(uj)

ujmax
. (4)

Obviously
sat∗(uj)
ujmax

is saturated by one, i.e. sat(uj) =
sat∗(uj)
ujmax

. Therefore, the model (1) and (2) are equivalent

by defining B = (b1 · · · bm) with bj = b
∗

juimax for all
j = {1, ...,m}. Consequently, any linear plant (2) with
arbitrary saturation bounds can be transformed into a
model (1) with saturation bounds equal one.

We are interested in obtaining the estimate of the domain
of attraction of the system (1) under periodic event-
triggered control. To maximize the domain of attraction
an event-generator and controller synthesis is investigated.
We first discretize the model (1) using ZOH to a sampled-
data system model with respect to the measurement
interval h, yielding

x(k + 1) = Φx(k) + Γsat (u(k)) (5)

with

Φ = eAh, Γ =

∫ h

0

eAsdsB

where x(k) is the measured state vector at the time
instant tk. In this paper a full state-feedback control law
is considered

u(k) = Kx̂
+(k), (6)

where x̂
+(k) is a signal defined in the time interval

(tk, tk+1] with

x̂
+(k) =

{

x(k) if u(k) is updated
x̂
+(k − 1) if u(k) is not updated.

(7)

and x̂
+(k) = 0 for k ≤ 0 with the initial time k0 = 0. The

decision for control updates is made by the event generator
which is

‖x̂+(k − 1)− x(k)‖ > σ‖x(k)‖ (8)

where σ ∈ R+, i.e. the control input u(k) is updated
if condition (8) holds. This event-triggering condition is
an important class of event-triggering conditions already
applied in Heemels et al. [2013], Tabuada [2007], Wang
and Lemmon [2011]. The state error based condition is
motivated from the fact that the previous control input
can be also effective if the states of the systems only have
a minor change. Based on the event-triggering condition
(8), (7) can be rewritten as

x̂
+(k) =

{

x(k) if ‖x̂+(k−1)− x(k)‖ > σ‖x(k)‖

x̂
+(k−1) if ‖x̂+(k−1)− x(k)‖ ≤ σ‖x(k)‖

(9)

To investigate the attraction domain of system (5) the
following definitions and Lemmas are introduced.

Notation 2.1. Given a matrix H ∈ Rm×n, denote the j-th
row of H as hj and a symmetric polyhedron is defined

L(H) :=
{

x ∈ R
n : |hjx| ≤ 1, j ∈ J = {1, ...,m}

}

. (10)

Notation 2.2. Given a symmetric and positive definite
matrix P and a positive scalar ρ, E(P , ρ) represents the
following ellipsoid

E(P , ρ) =
{

x ∈ R
n : xT

Px ≤ ρ
}

. (11)

Definition 2.1. A set M is said to be an invariant set with
respect to a dynamic system if all the trajectories starting
from it will remain in it, i.e.

x(0) ∈ M ⇒ x(k) ∈ M ∀k > 0.

Definition 2.2. Given a Lyapunov function

V (k) = x
T (k)Px(k)

with P symmetric and positive definite the set E(P , ρ)
is called to be contractively invariant with respect to a
dynamic system if

∆V (k) = x
T (k + 1)Px(k + 1)− x

T (k)Px(k) < 0 (12)

for all x ∈ E(P , ρ)\{0}, i.e. the trajectories starting in the
set E(P , ρ) converge to the origin.

Notation 2.3. LetD be the set of all combinations ofm×m
diagonal matrices whose diagonal elements are either 1 or
0. Then there are 2m elements inD. Denote each element of
D as Di, i = 1, 2, ..., 2m. Then D =

{

Di : i ∈ {1, ..., 2m}
}

.

Denote D
−

i = I −Di and define the set I = {1, ..., 2m}.

Lemma 2.1. Hu et al. [2002] Let u, ν ∈ Rm. Suppose
‖ν‖∞ ≤ 1. Then

sat(u) ∈ co
{

Diu+D
−

i ν : i ∈ I
}

,

where co{·} denotes the convex hull of a set.
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Lemma 2.2. Given an ellipsoid E(P , ρ) and a polyhedron
L(H), if

(

1 ∗

h
T
j P /ρ

)

≥ 0, j ∈ J, (13)

then E(P , ρ) ⊂ L(H).

Proof. The proof can be found in [Boyd and Vanden-
berghe, 2004, pp. 414].

3. MAIN RESULT

Let’s define the error variable

e
+(k) = x̂

+(k)− x(k) (14)

in the time interval (tk, tk+1]. Based on the definition (9)
the inequality

‖e+(k)‖ ≤ σ‖x(k)‖ (15)

is always satisfied in the time interval (tk, tk+1]. With the
control input u(k) = Kx̂

+(k) the closed-loop system of
(5) is given by

x(k + 1) = Φx(k) + Γsat
(

Kx̂
+(k)

)

. (16)

3.1 Contractive invariant set

In the first part of this section we propose a method for
proving that a given ellipsoid is a contractively invariant
set for a linear system with actuator saturation (5) which
is controlled by the event-triggered control method (6),(9).

Theorem 3.1. Given an ellipsoid E(P , ρ), a control gainK

and a positive scalar σ, if there exist a matrix H ∈ Rm×n

and a scalar κ > 0 such that
(

P − Φ̂
T

i P Φ̂i − κσ2
I ∗

−Θ
T
i Γ

T
P Φ̂i κI −Θ

T
i Γ

T
PΓΘi

)

> 0 (17)

for all i ∈ I with Φ̂i = Φ+Γ(DiK+D
−

i H), Θi = DiK+
D

−

i H and E(P , ρ) ⊂ L(H) i.e.
(

1 ∗

h
T
j P /ρ

)

≥ 0 ∀j ∈ J, (18)

then E(P , ρ) is a contractively invariant set for the closed-
loop system (16).

Proof. For a given ellipsoid E(P , ρ), a corresponding
quadratic Lyapunov function can be constructed by

V (k) = x
T (k)Px(k). (19)

Assume that the difference of the Lyapunov function
∆V (k) = V (k + 1) − V (k) along the trajectories of the
closed-loop system (16) satisfies

x
T (k + 1)Px(k + 1)− x

T (k)Px(k) < 0. (20)

Substituting (16) in (20) results in
(

Φx(k)+Γsat
(

Kx̂
+(k)

))T
P
(

Φx(k)+Γsat
(

Kx̂
+(k)

))

− x
T (k)Px(k) < 0, (21)

∀x(k) ∈ E(P , ρ) \ {0}. According to the constraint
E(P , ρ) ⊂ L(H) it yields

|hjx(k)| ≤ 1, ∀x(k) ∈ E(P , ρ), j ∈ J. (22)

The definition of the variable x̂
+(k) in (7) yields

x̂
+(k) ∈ E(P , ρ), ∀x(k) ∈ E(P , ρ).

Thus ‖Hx̂
+(k)‖∞ ≤ 1. Based on Lemma 2.1

sat
(

Kx̂
+(k)

)

∈ co
{

DiKx̂
+(k) +D

−

i Hx̂
+(k) : i ∈ I

}

.
(23)

It follows that

Φx(k)+Γsat
(

Kx̂
+(k)

)

∈ co
{

Φx(k)+ΓΘix̂
+(k) : i ∈ I

}

.
(24)

with Θi = (DiK+D
−

i H). The convexity of the quadratic
function (19) gives
(

Φx(k)+Γsat
(

Kx̂
+(k)

))T
P
(

Φx(k)+Γsat
(

Kx̂
+(k)

))

≤ max
i∈I

(

Φx(k) + ΓΘix̂
+(k)

)T
P
(

Φx(k) + ΓΘix̂
+(k)

)

.

(25)

Therefore a sufficient condition satisfying (21) is
(

Φx(k) +Θix̂
+(k)

)T
P
(

Φx(k) +Θix̂
+(k)

)

− x(k)TPx(k) < 0, ∀i ∈ I. (26)

By substituting (14) into (26) we have

Φx(k) + ΓΘix̂
+(k) = (Φ+ ΓΘi)x(k) + ΓΘie

+(k).
(27)

Defining Φ̂i = Φ+Γ(DiK+D
−

i H) and substituting (27)
into (26) yields

(

x(k)
e
+(k)

)T

P̂ 1

(

x(k)
e
+(k)

)

> 0 (28)

with

P̂ 1 =

(

P − Φ̂
T

i P Φ̂i ∗

−Θ
T
i Γ

T
P Φ̂i −Θ

T
i Γ

T
PΓΘi

)

. (29)

The constraint (15) can be rewritten as
(

x(k)
e
+(k)

)T (

σ2
I 0

0 −I

)(

x(k)
e
+(k)

)

≥ 0 (30)

Applying the lossless S-procedure allows to combine
the inequalities (28) and (30) to (17). The constraint
E(P , ρ) ⊂ L(H) can be expressed as the LMI (18) via
Lemma 2.2. This completes the proof.

Theorem 3.1 can be extended to maximize the volume of
the ellipsoid by maximizing the level value ρ for a given
matrix P .

Corollary 3.1. A maximization of the level value ρ is
obtained for a given σ > 0 by the LMI optimization
problem

max ρ subject to (17) and (18) (31)

with the LMI variables H ∈ Rm×n and κ ≥ 0.

Example 3.1. Considering the inverted pendulum as shown
in Fig. 1 we investigate the relationship between σ in event-
triggering condition (8) and the level value ρ of the ellip-
soidal contractive invariant set. The linearized dynamic
model of each inverted pendulum is given by

Fig. 1. An inverted pendulum
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(

φ̇(t)

φ̈(t)

)

=

(

0 1
(m+M)g

Mℓ 0

)(

φ(t)

φ̇(t)

)

+

(

0
−1
Mℓ

)

sat(u(t)).

where φ is the pendulum angle, u is the force acting on
the cart with the pendulum mass m = 0.1 kg, the cart
mass M = 0.1 kg, and the pendulum lengths ℓ = 0.136m.
Gravitational acceleration is considered here equal to
g = 9.81m/s2. The saturation bound is umax = 1 and the
discretization interval is h = 10ms such that the sampled-
data system is

x(k + 1) =

(

1.0018 0.01
0.36 1.0018

)

x(k) +

(

−0.001
−0.184

)

sat(u(k)).

(32)

Further consider the given matrix

P =

(

68.341 2.785
2.785 3.12

)

, K = (5.394 5.024) .

The numerical results applying Corollary 3.1 are shown in
Table 1 for a set of values of σ. In the last column we see
the resulting update rate of a simulation lasting 10 seconds

with an initial value x(0) = (0.2 0.8)
T
for each case. The

update rate is defined as ratio of number of events and
number of samples in the simulation time.

σ maximal ρ H update rate

0.1 7.53
(

2.638 0.413
)

15.2%

0.06 8.92
(

2.55 0.33
)

17.9%

0.02 10.32
(

2.443 0.269
)

37.0%

Table 1.

The visualization of the invariant ellipsoids and polyhe-
drons is shown in Fig. 2 for the linear system (32). The
nonlinear behaviour of the pendulum system for large
angles is not taken into account as the approach only
considers linear systems. The results show an inverse re-
lationship between σ and ρ, i.e. increasing σ in the event-
triggering condition (8) decreases the volume of the con-
tractive invariant set of system (16). This also shows that
the size of contractive invariant set and the update rate are
correlated, i.e. for achieving a smaller update rate the size
of the contractive invariant set is reduced. In applications
a compromise between the size of the contractive invariant
set and the update rate needs to be found.

In Fig. 3-4 the simulation results are shown for the event-
triggered control approach with σ = 0.1. Fig. 3 shows the
performance of the states and Fig. 4 shows the control
input, the force on the cart in Newton. Especially in
Fig. 4 we see that in the beginning the control input is
saturated and at every time instant tk an event occurs.
From t = 0.09 s the control input is not saturated anymore
as the state vector approaches the origin and events only
occur sparsely.

3.2 Controller synthesis

In Corollary 3.1 we proposed a method to maximize the
level of a given contractive invariant set for a controlled
linear system with the event-triggered mechanism. How-
ever an open problem is how to find the control matrix
K and invariant set matrix P . Therefore a controller syn-
thesis is to be presented to design the invariant set jointly

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5
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−0.5
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0.5

1

1.5

2

φ (rad)

φ̇
(r

a
d
/
s)

 

 

σ = 0.1
σ = 0.06
σ = 0.02

Fig. 2. Invariant ellipsoids determined with different σ in
the event-triggering condition (15)

0

0.1

0.2

φ
(r

a
d
)

0 1 2 3 4 5 6 7

−0.4

0

0.4

0.8

Time (s)

φ̇
(r

a
d
/
s)

Fig. 3. Simulation results for σ = 0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

u
(N

)

Time (s)

Fig. 4. Control input for the simulation with σ = 0.1 where
a circles indicate the appearance of an event

with the control matrix under the event-triggered control
method. Thereby the aim is to maximize the size of the
invariant ellipsoid for a given event-triggering parameter
σ. One alternative to measure the geometrical size of the
invariant ellipsoid is the volume, which is proportional to
(det(P−1))1/2. The problem can be stated as

Problem 3.1. For the closed-loop system (16) find an
event-triggered controller (6) such that for a given σ the
volume of the invariant ellipsoid E(P , 1) is maximized
subject to condition (15) i.e.
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min
K,P

logdet (P ) subject to (16), (15) and (33)

x
T (k+1)Px(k+1)−x

T (k)Px(k)< 0 ∀x ∈ E(P , ρ)\{0}.

Theorem 3.2. The solution to Problem 3.1 is obtained
from the LMI optimization problem

min
P ,K

−logdet(S) subject to (34a)
(

1 ∗
w

T
j G

T +G− S

)

≥ 0, (34b)









G
T +G− S ∗ ∗ ∗

0 G
T +G−κ−1

I ∗ ∗
ΦG + Γ(ΘiG) Γ(ΘiG) S ∗

G 0 0
1

κσ2 I









> 0 (34c)

for all (i, j) ∈ I × J with ΘiG = (DiK + D
−

i H)G =
(DiY + D

−

i W ) and the LMI variables S ∈ Rn×n sym-
metric and positive definite, W ∈ Rm×n, Y ∈ Rm×n

unrestricted, wj being the j-th row of W , G ∈ Rn×n

invertible and κ ≥ 0. The control gain and the Lyapunov
matrix result from

K = Y G
−1, P = S

−1.

Proof. Consider a quadratic Lyapunov function

V (k) = x
T (k)Px(k). (35)

Following the same lines as the proof of Theorem 3.1 it
can be shown based on the inequality
(

P − Φ̂
T

i P Φ̂i − κσ2
I ∗

−Θ
T
i Γ

T
P Φ̂i κI −Θ

T
i Γ

T
PΓΘi

)

> 0 (36)

that ∆V (k) = V (k + 1)− V (k) < 0 along the trajectories
of the closed-loop system (16) for all x(k) ∈ L(H)\{0}.
Applying the Schur complement (36) is equivalent to





P − κσ2
I ∗ ∗

0 κI ∗

Φ̂i ΓΘi P
−1



 > 0. (37)

Using Schur-Complement again (37) is transformed to






P ∗ ∗ ∗
0 κI ∗ ∗

Φ̂i ΓΘi P
−1 ∗

I 0 0
1

κσ2 I






> 0. (38)

Pre-/post-multiplying (38) by diag
(

G
T ,GT , I, I

)

and

diag
(

G,G, I, I
)

respectively yields








G
T
PG ∗ ∗ ∗
0 κGT

G ∗ ∗

Φ̂iG ΓΘiG P
−1 ∗

G 0 0
1

κσ2 I









> 0. (39)

Since the identity matrix I and P are symmetric and
positive definite and κ ≥ 0, also

(

κ−1
I −G

)T
κI
(

κ−1
I −G

)

≥ 0 (40)
(

P
−1 −G

)T
P
(

P
−1 −G

)

≥ 0 (41)

hold as inversion and congruence transformation do not
affect definiteness. The inequalities (40) and (41) are
equivalent to

κGT
G ≥ G

T +G− κ−1
I (42)

G
T
PG ≥ G

T +G− P
−1 (43)

Therefore, a sufficient condition for (39) is








G
T +G− P

−1 ∗ ∗ ∗

0 G
T +G− κ−1

I ∗ ∗

Φ̂iG ΓΘiG P
−1 ∗

G 0 0
1

κσ2 I









> 0.

(44)

Substituting S = P
−1, K = Y G

−1 and H = WG
−1 the

inequalities (44) and (34c) are equivalent. Furthermore the
constraint E(P , 1) ⊂ L(H) can be written as

(

1 ∗

h
T
j P

)

≥ 0, j ∈ J. (45)

Pre-/post-multiplying (45) diag
(

I,GT
)

and diag
(

I,G
)

respectively yields
(

1 ∗

G
T
h
T
j G

T
PG

)

≥ 0, j ∈ J. (46)

Using (43) and substituting wT
j = G

T
h
T
j it is shown that

(34b) is a sufficient condition for (46).

For inspecting the objective function Problem 3.1 we
substitute P = S

−1. Since −logdet(S) is already defined
in the MATLAB toolbox YALMIP Löfberg [2004] it can
be solved directly using the SeDuMi solver Sturm [1999].
This completes the proof.

Example 3.2. Consider the second order inverted pendu-
lum system (32) in Example 3.1 again. Table 2 gives the

σ K H update rate

0.1
(

6.3717 2.6619
) (

2.2412 0.4264
)

21.8%

0.06
(

8.9800 2.3006
) (

2.1490 0.3805
)

50.6%

0.02
(

11.2366 1.9868
) (

2.1132 0.3549
)

99.9%

Table 2.

results from the application of Theorem 3.2 and from

the simulation with the initial state x(0) = (0.2 0.8)
T

and a simulation time of 10 seconds. Meanwhile Fig. 5
shows the corresponding contractive invariant ellipsoids.
The obtained ellipsoids are always bigger than the ones
from Example 3.1 with the random selected control gain
and ellipsoidal estimate.

Fig. 6 shows the contractive invariant ellipsoids for σ =
0.06 from Corollary 3.1 with the ellipsoid and control gain
parameters from Example 3.1 and Theorem 3.2 as well as
the path under the initial state x(0) = (−0.6303 1.426)
(red). The initial state is chosen inside the estimated
ellipsoid derived from Theorem 3.2 but outside the one
obtained from Corollary 3.1. The path under the random
controller (dashed) is obviously diverging and the con-
troller synthesis allows to realize a larger ellipsoid such
that the path (solid) is converging to the origin, which
shows the effectiveness of the proposed controller synthesis
approach.

4. CONCLUSION

In this paper a novel event-triggering condition and con-
troller synthesis approach is studied for the linear sys-
tem subject to actuator saturation. By synthesizing the
feedback control gain and the event-triggering conditions
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Fig. 5. Invariant ellipsoids determined by controller syn-
thesis for different σ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

φ (rad)

φ̇
(r

a
d
/
s)

 

 
Corollary 3.1
Theorem 3.2

Fig. 6. Comparison of Corollary 3.1 (dashed) and Theorem
3.2 (solid)

in LMIs an optimization for obtaining the maximal con-
tractive invariant set is achieved. The results can also
easily be extended to cover the case with constant delay
in the system model. Compared with the existing results
in Lehmann et al. [2012], Kiener et al. [2012], Seuret
et al. [2013] our results allow the controller design in an
optimization problem by the presented criteria, which is a
new contribution to the event-triggered control.
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