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Abstract: We propose a stability analysis method for sampled-data switched linear systems
with quantization. The available information to the controller is limited: the quantized state
and switching signal at each sampling time. Switching between sampling times can produce
the mismatch of the modes between the plant and the controller. Moreover, the coarseness of
quantization makes the trajectory wander around, not approach, the origin. Hence the trajectory
may leave the desired neighborhood if the mismatch leads to instability of the closed-loop system.
For the stability of the switched systems, we develop a sufficient condition characterized by the
total mismatch time. The relationship between the mismatch time and the dwell time of the
switching signal is also discussed.
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1. INTRODUCTION

In this paper, we consider a sampled-data switched linear
system with a memoryless quantizer in Fig. 1. The avail-
able information to the controller is only the quantized
state and switching signal at each sampling time. We then
raise the questions: What conditions are needed for the
stability of the closed-loop system under such imcomplete
information? If the system is stable, how close can the
trajectories get to the origin?

Switched systems and quantized control have been studied
extensively but separately; see, e.g., Liberzon (2003b); Lin
and Antsaklis (2009) for switched systems and Ishii and
Francis (2002); Nair et al. (2007) for quantized control.
Few works examine the state behavior of a switched system
with quantization and the effect of switching between
sampling times. Recently, Liberzon (2014) has proposed
an encoding and control strategy that achieves sampled-
data quantized state feedback stabilization of switched
systems. This strategy is rooted in the non-switched case in
Liberzon (2003a). In Liberzon (2014), the input of the con-
troller is a discrete-valued and discrete-time signal, but the
controller generates a continuous-valued and continuous-
time output signal. In contrast, here we consider a con-
troller whose output as well as input are discrete-valued
and discrete-time signals.

Ishii et al. (2004); Ishii and Francis (2002) have stud-
ied the stability analysis of a sampled-data non-switched
system with a memoryless quantizer. Since a memoryless
quantizer does not give an accurate value of the state
near the origin, asymptotic stability cannot be generally
achieved. However, such a quantizer is useful because of
the simplicity in implementation. Ishii et al. (2004) have
developed a sufficient condition for a non-switched system
to be quadratic attractive. The authors have also provided
a randomized algorithm to verify this stability property

in a computationally efficient way. In the present paper,
we use this algorithm and a scheduling function with the
revisitation property introduced in Liberzon and Tempo
(2004). The combined method constructs a common Lya-
punov function guaranteeing the quadratic attractiveness
of each subsystem.

We face two challenges in the stability analysis of the
switched system in Fig. 1. First, since only at sampling
times we know which subsystem is active, we do not always
use the feedback gain designed for the subsystem active at
the present time. The closed-loop system may therefore
become unstable when switching occurs between sampling
times. Second, after arriving at a certain neighborhood of
the origin, the trajectory may not approach the origin any-
more due to the coarseness of quantization. This implies
that the trajectory can leave the desired neighborhood if
switching makes the system unstable.

This paper is organized as follows. In Section 2, we state
the switched system and the information structure to-
gether with basic assumptions. In Section 3, we first inves-
tigate the growth rate of the common Lyapunov function
when switching occurs in a sampling interval. Next we
develop a stability analysis method for the sampled-data
switched system by using the total mismatch time, the

  

  

Fig. 1. Sampled-data switched system with quantization,
where Ts is a sampling period
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total time when the modes mismatch between the plant
and the controller. In Section 4, we briefly discuss the
relationship between the mismatch time and the dwell time
of the switching signal. Section 5 concludes this paper.

Notation
We denote by Z+ the set of non-negative integers {k ∈
Z : k ≥ 0}. For a set Ω ⊂ Rn, Cl (Ω), Int (Ω), and ∂Ω are
its closure, interior, and boundary, respectively.

Let M⊤ denote the transpose of M ∈ Rn×m. The Eu-
clidean norm of v ∈ Rn is defined by ∥v∥ = (v⊤v)1/2.
For M ∈ Rm×n, its Euclidean induced norm is defined
by ∥M∥ = sup{∥Mv∥ : v ∈ Rn, ∥v∥ = 1} and equals
the largest singular value of M . Let λmax(P ) and λmin(P )
denote the largest and the smallest eigenvalue of P ∈ Rn×n.

Let Ts be a sampling period. For t ≥ 0, we define [t]− by

[t]− = kTs if kTs ≤ t < (k + 1)Ts (k ∈ Z+).

2. SAMPLED-DATA SWITCHED SYSTEMS WITH
QUANTIZATION

2.1 Switched systems

Consider the continuous-time switched linear system

ẋ = Aσx+Bσu, (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control
input. For a finite index set P, the mapping σ : [0,∞) →
P is right-continuous and piecewise constant. We call σ
switching signal and the discontinuities of σ switching
times.

We assume that all subsystems are stabilizable and that
only finitely many switches occur on any finite interval:

Assumption 1. For every p ∈ P, (Ap, Bp) is stabilizable,
i.e., there exists Kp ∈ Rm×n such that Ap + BpKp is
Hurwitz. Furthermore, σ has finitely many switching times
on every finite interval.

2.2 Quantized sampled-data system

Let Ts > 0 be a sampling period. The sampler STs is given
by

STs : (x, σ) 7→ (x(kTs), σ(kTs)) (k ∈ Z+)

and the zero-th hold HTs by

HTs : ud 7→ u(t) = ud(k), t ∈ [kTs, (k + 1)Ts) (k ∈ Z+).

We now state the definition of a memoryless quantizer
Q given in Ishii et al. (2004). For an index set S, the
partition {Qj}j∈S of Rn is said to be finite if for every
bounded set B, there exists a finite subset Sf of S such
that B ⊂

∪
j∈Sf

Qj . We define the quantizer Q with

respect to the finite partition {Qj}j∈Sf
by

Q : Rn → {qj}j∈Sf
⊂ Rn

x 7→ qj if x ∈ Qj (j ∈ Sf ).

The second assumption is that Q(x) = 0 if x is close to
the origin.

Assumption 2. If Cl (Qj) contains the origin, then qj =
0.

Let qx be the output of the zero-th hold whose input is the
quantized state at sampling times, i.e., qx(t) = Q(x([t]−)).
Note that in Fig. 1, the control input u is given by

u(t) = Kσ([t]−)qx(t). (2)

Let P ∈ Rn×n be positive-definite and define the quadratic
Lyapunov function V (x) = x⊤Px for x ∈ Rn. Its time

derivative V̇ along the trajectory of (1) with (2) is given
by

V̇ (x(t), qx(t), σ(t))

= (Aσ(t)x(t) +Bσ(t)Kσ([t]−)qx(t))
⊤Px(t) (3)

+ x(t)⊤P (Aσ(t)x(t) +Bσ(t)Kσ([t]−)qx(t))

if t is not a switching time or a sampling time.

For p, q ∈ P with p ̸= q, we also define V̇p and V̇p,q by

V̇p(x(t), qx(t)) = (Apx(t) +BpKpqx(t))
⊤Px(t)

+ x(t)⊤P (Apx(t) +BpKpqx(t))

V̇p,q(x(t), qx(t)) = (Apx(t) +BpKqqx(t))
⊤Px(t)

+ x(t)⊤P (Apx(t) +BpKqqx(t)). (4)

Then V̇p and V̇p,q are the time derivatives of V along the
trajectories of the systems (Ap, BpKp) and (Ap, BpKq),
respectively.

Every individual mode is assumed to be stable in the
following sense with a common Lyapunov function:

Assumption 3. Consider the following sampled-data non-
switched systems with quantization:

ẋ = Apx+Bpu, u = Kpqx (p ∈ P). (5)

Let C be a positive number and suppose that R and r
satisfy R > r > 0. Then there exists a positive-definite
matrix P ∈ Rn×n such that for all p ∈ P, every trajectory
x of the system (5) with x(0) ∈ EP (R) satisfies

V̇p(x(t), qx(t)) ≤ −C∥x(t)∥2 (6)

or x(t) ∈ EP (r) for t ≥ 0, where EP (R) and EP (r) are
given by

EP (R) = {x ∈ Rn : V (x) ≤ R2λmax(P )}
EP (r) = {x ∈ Rn : V (x) ≤ r2λmin(P )}.

Assumption 3 implies the followings: If we have no
switches, then the common Lyapunov function V decreases
at a certain rate until V ≤ r2λmin(P ). Furthermore, EP (r)
as well as EP (R) are invariant sets.

The objective of the present paper is to find switching
conditions for the switched system in Fig. 1 to arrive at
some neighborhood of the origin and remain there. We also
determine how small the neighborhood is.

Remark 4. (a) In the non-sampled case, the existence
of common Lyapunov functions is a sufficient condition
for stability under arbitrary switching; see, e.g., Liber-
zon (2003b); Lin and Antsaklis (2009). For sampled-data
switched systems, however, such functions do not guar-
antees the stability because switching between sampling
times may make the closed-loop system unstable.

(b) For plants with a single mode, Ishii et al. (2004)
proposed a randomized algorithm for the computation
of P in Assumption 3. Combining the algorithm with a
scheduling function that has the revisitation property in
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Liberzon and Tempo (2004), we can efficiently compute
the desired common Lyapunov function. Since this is an
immediate consequence of the above two works, we omit
the details.

3. STABILIZATION WITH LIMITED INFORMATION

3.1 Upper bounds of V̇p,q

Assumption 3 gives an upper bound (6) of V̇p, i.e., V̇ when
we use the feedback gain designed for the currently active
subsystem. In this subsection, we will find an upper bound
of V̇p,q, i.e., V̇ when intersample switching leads to the
mismatch of the modes between the plant and the feedback
gain. To this end, we investigate the state behavior in
sampling intervals.

Let us first examine the relationship among the original
state x(t), the sampled state x([t]−), and the sampled
quantized state qx(t).

The partition {Qj}j∈Sf
is finite. Moreover, Assumption

2 shows that if ξk → 0 (k → ∞) for some sequence
{ξk} ⊂ Qj , then Q(x) = 0 for all x ∈ Qj . Hence there
exists α0 > 0 such that

∥BpKqQ(x)∥ ≤ α0∥x∥, (7)

for p, q ∈ P and x ∈ EP (R). We also define Λ by

Λ = max
p∈P

∥Ap∥.

The next result gives an upper bound on the norm of the
sampled state x([t]−) with the original state x(t).

Lemma 5. Consider the swithced system (1) with (2),
where σ has finitely many switching times on every finite
interval. Suppose that

η := α0
eΛTs − 1

Λ
< 1, (8)

and define α1 by

α1 =
eΛTs

1− η
.

Then we have

∥x([t]−)∥ < α1∥x(t)∥ (9)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof. It suffices to prove (9) for x(0) ∈ EP (R) and
t ∈ [0, Ts).

Let Φ(τ1, τ2) denote the state-transition matrix of (1) for
τ1 ≥ τ2. If switching does not occur, Φ(τ1, τ2) is given
by Φ(τ1, τ2) = e(τ1−τ2)Aσ(0) . If t1, t2, . . . , tm are switching
times on an interval [τ2, τ1), then we have

Φ(τ1, τ2) = e(τ1−tm)Aσ(tm)

×
m−1∏
k=1

e(tk+1−tk)Aσ(tk) · e(t1−τ2)Aσ(τ2) .

Since

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ (10)

and since Φ(τ, 0)−1 = Φ(t, 0)−1Φ(t, τ), it follows that

x(0) = Φ(t, 0)−1x(t) +

∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ.

This leads to

∥x(0)∥ ≤∥Φ(t, 0)−1∥ · ∥x(t)∥

+

∥∥∥∥∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ . (11)

Let t1, t2, . . . , tm be switching times on the interval [0, t).
Since ∥eτA∥ ≤ eτ∥A∥ for τ ≥ 0, we obtain

∥Φ(t, 0)−1∥

≤ et1∥Aσ(0)∥ ·
m−1∏
k=1

e(tk+1−tk)∥Aσ(tk)∥ · e(t−tm)∥Aσ(tm)∥

≤ eΛt < eΛTs . (12)

It is obvious that the equation above holds in the non-
switched case. Since qx(τ) = qx(0) = Q(x(0)) when
0 ≤ τ ≤ t (< Ts), if follows from (7) that∥∥∥∥∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥
≤
∫ t

0

∥Φ(τ, 0)−1∥ · ∥Bσ(τ)Kσ(0)qx(τ)∥dτ

≤ α0

∫ t

0

eΛτdτ∥x(0)∥

≤ α0
eΛTs − 1

Λ
∥x(0)∥ = η∥x(0)∥. (13)

Substituting (12) and (13) into (11), we obtain

∥x(0)∥ < eΛTs∥x(t)∥+ η∥x(0)∥.
Thus if (8) holds, we derive (9). �

Let us next develop an upper bound on the norm of the
error x(t)− x([t]−) due to sampling. To this end, we show
the following proposition:

Proposition 6. Let Φ(t, 0) be the state-transition map of
(1) as above. Then

∥Φ(t, 0)− I∥ ≤ eΛt − 1. (14)

Proof. Let us first show the case without switching, i.e.,

∥etAσ(0) − I∥ ≤ eΛt − 1. (15)

Define the partial sum SN of etAσ(0) − I by

SN (t) =
N∑

k=0

1

k!
(tAσ(0))

k − I =
N∑

k=1

1

k!
(tAσ(0))

k

Then for t ≥ 0

∥SN (t)∥ ≤
N∑

k=1

1

k!

(
t∥Aσ(0)∥

)k
=

N∑
k=0

1

k!

(
t∥Aσ(0)∥

)k − 1

≤
∞∑
k=0

1

k!

(
t∥Aσ(0)∥

)k − 1

= et∥Aσ(0)∥ − 1 ≤ eΛt − 1.

If we let N → ∞, we obtain (15).

We now prove (14) in the switched case. Let t1, t2, . . . , tm
be the switching times in the interval [0, t). Let t0 = 0 and
tm+1 = t. Then (14) is equivalent to∥∥∥∥∥

m∏
l=0

e(tl+1−tl)Aσ(tl) − I

∥∥∥∥∥ ≤ eΛt − 1. (16)
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We have already shown the case m = 0, i.e., the non-
switched case. The general case follows by induction. For
m ≥ 1,∥∥∥∥∥

m∏
l=0

e(tl+1−tl)Aσ(tl) − I

∥∥∥∥∥
≤

∥∥∥∥∥e(tm+1−tm)Aσ(tm)

(
m−1∏
l=0

e(tl+1−tl)Aσ(tl) − I

)∥∥∥∥∥
+ ∥e(tm+1−tm)Aσ(tm) − I∥

≤ ∥e(tm+1−tm)Aσ(tm)∥ ·

∥∥∥∥∥
m−1∏
l=0

e(tl+1−tl)Aσ(tl) − I

∥∥∥∥∥
+ ∥e(tm+1−tm)Aσ(tm) − I∥.

Hence if (16) holds with m− 1 in place of m, then

∥e(tm+1−tm)Aσ(tm)∥ ·

∥∥∥∥∥
m−1∏
l=0

e(tl+1−tl)Aσ(tl) − I

∥∥∥∥∥
+ ∥e(tm+1−tm)Aσ(tm) − I∥

≤ eΛ(tm+1−tm)(eΛtm − 1) + (eΛ(tm+1−tm) − 1)

= eΛt − 1.

Thus we obtain (16). �
Lemma 7. Consider the switched system (1) with (2),
where σ has finitely many switching times on every finite
interval. Define β1 by

β1 = (eΛTs − 1)
(
1 +

α0

Λ

)
Then we have

∥x(t)− x([t]−)∥ < β1∥x([t]−)∥ (17)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof. As in the proof of Lemma 5, it suffices to prove
(17) for all x(0) ∈ EP (R) and t ∈ [0, Ts).

By (10), we obtain

x(t)− x(0) =(Φ(t, 0)− I)x(0)

+

∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ.

This leads to

∥x(t)− x(0)∥ ≤∥Φ(t, 0)− I∥ · ∥x(0)∥

+

∥∥∥∥∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ .
(18)

Proposition 6 provides the following upper bound on the
first term of the right side of (18):

∥Φ(t, 0)− I∥ ≤ eΛt − 1 < eΛTs − 1. (19)

Since a calculation similar to (12) shows that ∥Φ(t, τ)∥ ≤
eΛ(t−τ). Hence as in (13),∥∥∥∥∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ ≤ α0
eΛTs − 1

Λ
∥x(0)∥.

(20)

We obtain (17) by combining (19) with (20). �

Similarly to (7), to each p, q ∈ P with p ̸= q, there
correspond positive numbers α2(p, q) and β2(p, q) such
that

∥PBp(Kq −Kp)Q(x)∥ ≤ α2(p, q)∥x∥ (21)

∥PBpKq(Q(x)− x)∥ ≤ β2(p, q)∥x∥ (22)

for x ∈ EP (R).

Finally we derive upper bounds on the norm of the
sampled quantized state qx(t) and that of the error qx(t)−
x(t) due to sampling and quantization from the original
state x(t).

Theorem 8. Consider the switched system (1) with (2),
where σ has finitely many switching times on every finite
interval. Define α1 and β1 as in Lemmas 5 and 7. If α(p, q)
and β(p, q) are defined by

α(p, q) = α1α2(p, q)

β(p, q) = α1(β1∥PBpKq∥+ β2(p, q)),

then α(p, q) and β(p, q) satisfy

∥PBp(Kq −Kp)qx(t)∥ < α(p, q)∥x(t)∥ (23)

∥PBpKq(qx(t)− x(t))∥ < β(p, q)∥x(t)∥ (24)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof. We obtain the first inequality (23) by (9) and (21).
Also (17) and (22) show that

∥PBpKq(qx(t)− x(t))∥
≤ ∥PBpKq(qx(t)− x([t]−))∥

+ ∥PBpKq∥ · ∥x([t]−)− x(t)∥
< (β1∥PBpKq∥+ β2(p, q))∥x([t]−)∥
< α1(β1∥PBpKq∥+ β2(p, q))∥x(t)∥.

Thus the second inequality (24) holds. �

An upper bound on V̇p,q can be obtained as follows.

First, since Vp,q satisfies

V̇p,q(x(t), qx(t)) = V̇p(x(t), qx(t))

+ 2x(t)⊤PBp(Kq −Kp)qx(t),

it follows from (6) and Theorem 8 that

V̇p,q(x(t), qx(t)) ≤ (2α(p, q)− C)∥x(t)∥2 (25)

for all t ≥ 0 with x(t) ∈ EP (R) \ EP (r). Here we used

{x(t) : t ≥ 0} ⊃ {x([t]−) : t ≥ 0}. (26)

The first bound (25) can be negative if the sampling period
Ts and the gain difference ∥Kp−Kq∥ are sufficiently small.

Second, since V̇p,q also satisfies

V̇p,q(x(t), qx(t)) = 2x(t)⊤P (Ap +BpKq)x(t)

+ 2x(t)⊤PBpKq(qx(t)− x(t)),

we see from (24) that

V̇p,q(x(t), qx(t)) ≤ 2(∥P (Ap +BpKq)∥+ β(p, q))∥x(t)∥2
(27)

for all t ≥ 0 with x([t]−) ∈ EP (R). Fast sampling and fine
quantization make the second bound (27) small.

Define D by

D = max
p ̸=q

min
{
2α(p, q)− C,

2(∥P (Ap +BpKq)∥+ β(p, q))
}
. (28)

Using (26) again, we obtain

V̇p,q(x(t), qx(t)) ≤ D∥x(t)∥2 (29)

for p, q ∈ P with p ̸= q and for t ≥ 0 with x(t) ∈
EP (R) \ EP (r),
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We assume that D in (28) satisfies D ≥ 0. This as-
sumption involves no loss of generality. In fact, if D < 0,
then V̇ in (3) is negative for all σ. This implies that every
trajectory with its initial state in EP (R) goes into EP (r)
and remains there for all switching signals. Hence the
stabilization of the system (1) with (2) can be achieved
without any information about switching signals. Thus the
problem to be posed is trivial.

3.2 Stability analysis with total mismatch time

We are now in position to analyze the stability of the
switched system (1) with (2) by the two upper bounds

(6) and (29) of V̇ . Note that the former bound (6) is for
the case σ(t) = σ([t]−), while the latter (29) for the case
σ(t) ̸= σ([t]−).

Definition 9. For τ1 > τ2 ≥ 0, we define the total
mismatch time µ(τ1, τ2) by

µ(τ1, τ2) = the length of {τ ∈ [τ2, τ1) : σ(τ) ̸= σ([τ ]−)}
(30)

More explicitly, the length of an interval means its
Lebesgue measure. We shall not, however, use any measure
theory because σ has only finitely many discontinuities.

Define CP and DP by

CP =
C

λmax(P )
, DP =

D

λmin(P )
.

First we study the state behavior when it is outside of
EP (r). The following lemma suggests that every trajectory
with its initial state in Int (EP (R)) goes into EP (r) if the
total mismatch time µ is sufficiently small.

Lemma 10. Let Assumptions 1, 2, and 3 hold, and let
L ≥ 0 satisfy

L <
CP

CP +DP
. (31)

If µ(t, 0) achieves
µ(t, 0) ≤ Lt (32)

for t > 0, then there exists Tr ≥ 0 such that for every
x(0) ∈ Int (EP (R)) and σ(0) ∈ P, x(Tr) ∈ EP (r) and
x(t) ∈ Int (EP (R)) for all t ∈ [0, Tr].

Proof. First we show that the trajectory x does not leave
Int (EP (R)) without belonging to EP (r). That is, there
does not exist TR > 0 such that

x(TR) ∈ ∂EP (R) (33)

x(t) ∈ Int (EP (R)) \ EP (r) (0 ≤ t < TR). (34)

Assume, to reach a contradiction, (33) and (34) hold for
some TR > 0. Recall that

λmin(P )∥x∥2 ≤ V (x) = x⊤Px ≤ λmax(P )∥x∥2

for x ∈ Rn. It follows from (6) and (29) that

V̇p(x(t), qx(t)) ≤ −CPV (x(t))

V̇p,q(x(t), qx(t)) ≤ DPV (x(t)).
(35)

By (35), a successive calculation at each switching time
shows that

V (x(TR))

≤ exp
(
DPµ(TR, 0)− CP (TR − µ(TR, 0))

)
V (x(0)). (36)

Since (32) gives

DPµ(t, 0)− CP (t− µ(t, 0)) ≤ ((CP +DP )L− CP ) t (37)

for t > 0, it follows from (31) and x(0) ∈ Int (EP (R)) that

V (x(TR)) < V (x(0)) < R2λmax(P ).

However, (33) shows that V (x(TR)) = R2λmax(P ), and we
have a contradiction.

Let us next prove that x(Tr) ∈ EP (r) for some Tr ≥ 0.

Suppose x(t) ̸∈ EP (r) for all t ≥ 0. Then since the
discussion above shows that x(t) ∈ Int (EP (R)) \ EP (r)
for t ≥ 0, we obtain (36) with arbitrary t ≥ 0 in place
of TR. Hence (31) and (37) show that V (x(t)) → 0 as
t → ∞. However this contradicts x(t) ̸∈ EP (r), i.e.,
V (x(t)) > r2λmin(P ). Thus there exists Tr ≥ 0 such that
x(Tr) ∈ EP (r). �

From the next result, we see that the trajectory leaves
EP (r) only if switching occurs between sampling times.

Lemma 11. Let Assumptions 1, 2, and 3 hold. Let the
trajectory x(t) leave EP (r) when t = T0. More precisely,
there exists δ > 0 such that

x(T0) ∈ ∂EP (r), x(T0 + ε) ̸∈ EP (r) (0 < ε < δ). (38)

Then σ(T0) ̸= σ([T0]
−).

Proof. Suppose σ(T0) = σ([T0]
−). Assume that σ(T ) ̸=

σ([T ]−) for some T > T0. Let T1 be the smallest number
of such T . Define an interval Iδ by

Iδ = (0,min{δ, T1 − T0}).
If there does not exist T > T0 with σ(T ) ̸= σ([T ]−), then
we define Iδ by Iδ = (0, δ). Since σ(T0 + ε) = σ([T0 + ε]−)
for ε ∈ Iδ, it follows from (6) that

V̇ (x(T0 + ε)) ≤ −C∥x((T0 + ε))∥2 ≤ 0 (ε ∈ Iδ).

However, (38) gives

V (x(T0 + ε)) > r2λmin(P ) = V (x(T0)) (ε ∈ Iδ).

Hence we have a contradiction by the mean value theorem.
Thus σ(T0) ̸= σ([T0]

−). �

The next result shows that if the trajectory enters into
EP (r), it keeps roaming a little larger ellipsoid than EP (r).

Lemma 12. Let Assumptions 1, 2, and 3 hold. Suppose
that there exist T0 ≥ 0 and δ > 0 satisfying (38). Let a > 1
satisfy

a2r2λmin(P ) < R2λmax(P ) (39)

and define b(a) by

b(a) =
2 log a

CP +DP
. (40)

Pick L ≥ 0 with (31) and suppose that µ(t, T0) satisfies

µ(t, T0) ≤ b(a) + L(t− T0) (41)

for all t > T0. Then there exists T1 > T0 such that for
every σ(T0) ∈ P, x(T1) ∈ EP (r) and x(t) ∈ Int (EP (ar))
for t ∈ [T0, T1].

Proof. By (38), x(t) ̸∈ EP (r) for t ∈ (T0, T0 + δ). More-
over, (41) shows that as long as x(t) ∈ EP (R) \ EP (r),
V (x(t)) satisfies

V (x(t)) ≤ exp
(
((CP +DP )L− CP ) (t− T0)

)
× exp

(
(CP +DP ) b(a)

)
V (x(T0)). (42)
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On the other hand, since x(T0) ∈ ∂EP (r), it follows from
(40) that

exp
(
(CP +DP ) b(a)

)
V (x(T0)) = a2r2λmin(P ). (43)

Note that (39) is equivalent to

EP (ar) = {x ∈ Rn : V (x) ≤ a2r2λmin(P )} ⊂ Int (EP (R)).

As in the proof of Lemma 10, we see from (42) that
x(T1) ∈ EP (r) for some T1 > T0. Substituting (43)
into (42), we also obtain V (x(t)) < a2r2λmin(P ). Thus
x(t) ∈ Int (EP (ar)) for t ∈ [T0, T1]. �

Referring to Lemmas 10, 11, and 12, we immediately derive
the following result:

Theorem 13. Let Assumptions 1, 2, and 3 hold. Let L,
a, and b(a) be as in Lemmas 10 and 12. Suppose that µ in
(30) satisfies (32) for t > 0 and (41) for t > T0 ≥ 0 with
σ(T0) ̸= σ([T0]

−).

If x(0) ∈ Int (EP (R)), then every trajectory x of the
switched system (1) with (2) satisfies x(t) ∈ Int (EP (R))
for t ≥ 0, and furthermore there exists Tr ≥ 0 such that
x(t) ∈ Int (EP (ar)) for t ≥ Tr.

Remark 14. In this section, we have studied the sta-
bility analysis of the switched system by using the total
mismatch time of the modes between the plant and the
feedback gain. If the mismatch does occur, the closed-loop
system may be unstable, If not, it is stable. Our proposed
method is therefore similar to that in Zhai et al. (2001),
where the stability analysis of switched systems with stable
and unstable subsystems is discussed with the aid of the
total activation time ratio between stable subsystems and
unstable ones. In Zhai et al. (2001), the average dwell time
introduced by Hespanha and Morse (1999) is also required
to be sufficiently large. However, such a requirement is
not necessary here because we use a common Lyapunov
function.

4. REDUCTION TO A DWELL-TIME CONDITION

In the preceding section, we have derived a sufficient con-
dition on the total mismatch time µ for the stabilization of
the switched system with limited information. However it
may be difficult to check whether µ satisfies (32) and (41).
In this section, we will briefly show that these conditions
(32) and (41) can be achieved for switching signals with a
certain dwell time property.

The proofs of theorems in this section are omitted for space
reason.

To proceed, we recall the definition of dwell time. If the
switching signal σ has an interval between consecutive
discontinuities no smaller than Td > 0, and further if σ
has no discontinuities in [0, Td), then we call σ a switching
signal with dwell time Td.

Theorem 15. Fix n ∈ N. For every σ with dwell time
nTs, µ in (30) satisfies

µ(t, 0) <
1

n
t (t > 0).

Furthermore, if σ(T0) ̸= σ([T0]
−), then

µ(t, T0) < Ts +
1

n
(t− T0) (t > T0).

Theorems 13 and 15 can be combined in the following way:

Theorem 16. Let Assumptions 1, 2, and 3 hold. Let
n ∈ N satisfy n ≥ 1 +DP /CP . Define

a = exp

(
Ts(CP +DP )

2

)
,

and suppose that

a ≤ R

r

√
λmax(P )

λmin(P )
. (44)

If x(0) ∈ Int (EP (R)) and if the dwell time of σ is nTs,
then every trajectory x(t) of the switched system (1) with
(2) satisfies x(t) ∈ Int (EP (R)) for t ≥ 0, and furthermore
there exists Tr ≥ 0 such that x(t) ∈ Int (EP (ar)) for
t ≥ Tr.

5. CONCLUDING REMARKS

We have analyzed the stability of a sampled-data switched
systems with a memoryless quantizer. The proposed
method uses a common Lyapunov function computed ef-
ficiently by a randomized algorithm. The common Lya-
punov function leads to the switching conditions on the
total mismatch time for quantized state feedback stabi-
lization. We have also examined the relationship between
the mismatch time and the dwell time of the switching
signal. Future works will focus on stability analysis by
multiple Lyapunov functions and an average dwell time
property, which can reduce conservativeness in our pro-
posed method.
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