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Abstract: Two relay systems with SISO plants, the first with sliding mode control and the
second with parallel compensator, are considered. The influence of measurement noise, under
presence of excitations in the form of the reference value and plant output disturbance, on the
quality of control is considered. First, it is shown that in the case of the system with sliding
mode control the measurement noise may destroy the operation of the system and thus may
lead to the loss of its robustness. Second, it is shown that in the case of no measurement
noise and under appropriate choice of the parameters, both systems have comparable dynamics.
Finally, it is shown that contrary to the system with sliding mode control, the system with
parallel compensator copes quite well with measurement noise, also in the case of the plants
with nonminimum phase zeros.
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1. INTRODUCTION

The control systems which use sliding mode technique have
now good theoretical elaborations (see classical books (Slo-
tine and Lee, 1991), (Utkin, 1992)), as well as successful
practical applications (e.g. commonly used voltage regula-
tion of car alternators). This kind of systems operates well
both with linear and nonlinear plants.

It is a common view that the systems with sliding mode
control are very robust, so they operate well even in the
case of large and rapid parameter changes, as well as for
significant plant output disturbances. However with the
switching action of the relay, there is connected the so
called chattering effect, which sometimes is not accepted
by users and/or actuators. Therefore chattering decrease
is interesting from application point of view.

In the present paper, not the problem of chattering de-
crease, but the influence of measurement noise on the
quality of control is researched. Only the classical relay
systems with sliding mode control are considered, with-
out accounting the continuous time part of the control
resulting from the model of the plant. This is caused by
the fact that the control generated by the relay system is
responsible for the robustness of the system (by the way,
only the relay with hysteresis used in the place of the sign
function, is accurate; the sign function, used by most of the
authors, cannot operate with the continuous-time plant
which has the relative degree equal to one).

Really, these systems without measurement noise are very
robust. But it is shown here, that existence of the mea-
surement noise may completely destroy their operation.

⋆ The research was partially granted from the funds for science in
Poland, project BK 214/RAU1/2014.

To show the possibility of improvement of operation next,
the relay system with parallel compensator, introduced in
(Gessing, 2004), (Gessing, 2007) and based on the idea of
Smith predictor (Smith, 1958) is considered.

One can note that there are several modifications of the
parallel compensator approach. One of them is parallel
feedforward (Bar-kana, 1987), (Kaufman et al., 1998), used
also to adaptive control systems. Another approach was
presented in (Deng et al., 1999) and in its references, where
the minimum phase plants with structured uncertainty
were considered.

In the present paper it is shown, that under appropriate
design of the parallel compensator both the systems: with
sliding mode control and with parallel compensator, for
the same plant without noise, have comparable dynamics.
Additionally, it becomes that in contrary to the system
with sliding mode control, the system with parallel com-
pensator copes quite well with measurement noise.

2. SLIDING MODE CONTROL

The block diagram of the system with sliding mode control
and the characteristic of the relay is shown in Fig. 1a and
1b, respectively. Here the signals u, y, r, e = r − y, d,
mn are the input, output of the SISO plant, reference
value, error, output disturbance and measurement noise,
respectively. In this section it will be assumed that the
sliding mode control is based on fast switching of the relay,
so that the generated high frequency harmonics appearing
in the signal u are filtered by the dynamics of the plant and
the output y depends mainly on the averaged value of the
input u. The fast switching is obtained owing to the small
hysteresis of the relay and usage of appropriate derivatives
resulting from an polynomial C(s). The derivatives cause
the rapid change of the slope of the signal e∗ at the instant
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of stepwise change of the signal u. The choice of C(s) will
be described in details further on.

In this section we assume that d = 0 and mn = 0.

Fig. 1. a) The system with sliding mode control; b)
characteristic of the relay.

Consider the linear SISO plant described by the transfer
function (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
(1)

where Y (s) and U(s) are the Laplace transforms of the
plant output y(t) and input u(t), respectively, while L(s)
and M(s) are known polynomials of m-th and n-th degree,
respectively, m < n; l = n − m is the relative degree of
the TF G(s). Assume that the TF G(s) has the minimum
phase zeros.

Block C(s) from Fig. 1a is determined by the following
Hurwitz polynomial

C(s) = c0s
l−1 + c1s

l−2 + ... + cl−2s + 1, (2)

Note that, under slowly varying r (and in an appropriate
region), for the hysteresis of the relay h → 0 there appears
fast switching and we have e∗ → 0. Since then, the relay
operates on the vertical segments of its characteristic, it
may be replaced by the linear amplifier with high gain
k (k → ∞). Additionally, under d(t) = 0, mn(t) = 0
and stable system, from the fulfilled then dependencies
e∗ ≈ 0, E∗(s) = R(s) − C(s)Y (s), (where E∗(s) and R(s)
are the Laplace transforms of the functions e∗(t) and r(t))
it results that

Y (s) ≈
1

C(s)
R(s). (3)

Then it looks that Y (s) is independent upon parameters
of the plant. Therefore the system is very robust. Ad-
ditionally, for appropriately chosen C(s) the system has
transients of a good quality. It may be chosen for instance
C(s) = (Ts + 1)l−1, with multiple root s1 = −1/T ,
where T > 0 is possibly small time constant, which gives
fast decay of the transient. However, one can note that
the choice of C(s) must assure stability of the system,
therefore C(s) and Y (s) are dependent, in some degree,
upon plant parameters.

Because high frequency harmonics resulting from switch-
ing are filtered by the dynamics of the plant, in further
description the signals like y(t), e∗(t), u(t, ), etc. will take
into account only the slower changes resulting from filter-
ing, without higher harmonics.

The stability of the resulting closed loop (CL) system may
be easy analyzed and results from the following

Lemma 1. The characteristic equation of the CL system
shown in Fig. 1, described by

M(s) + kC(s)L(s) = 0 (4)

for k → ∞ takes the form

C(s)L(s) = 0, (5)

while one root sn of the equation (4) tends to −∞. If
the zeros of the polynomial L(s) are minimum phase and
C(s) = (Ts + 1)l−1, with multiple root s1 = −1/T , where
T > 0, then the system is stable. 2

Proof is obvious. The one root sn → −∞ because: first
- the finite roots si fulfill the equation (5) and second -
for great values of |sn| → ∞ only the two terms of the
equation (4) with highest powers n and (n − 1) of s play
the dominant role. Since both these terms have positive
coefficients then only the great, negative value of sn may
fulfill the equation (4). 2

From Lemma 1 it results that the linear system with
high gain k (and the analyzed system with sliding mode
control), may be stable then and only then, when the plant
TF G(s) has minimum phase zeros.

In implementation, the higher order derivatives resulting
from (2) may be approximated by substituting s/(1+ sτ),
in the place of the operator s, in (2). Here τ > 0 denotes
a very small time constant (significantly smaller than T ).

There is common view about great robustness of the
systems with sliding mode control. But it should be
stressed that this view is valid when measurement noise
mn disappears. Further on, it will be shown that these
systems are very sensitive to measurement noise mn and
under presence of mn 6= 0 their robustness collapses .

3. THE SYSTEM WITH MEASUREMENT NOISE

In the relay system with sliding mode control usually
the hysteresis h of the relay is very small, to decrease
the output fluctuations resulting from the relay switching.
Therefore it may be a great influence of the measurement
noise on the quality of control. In the literature usually
this view is not sufficiently exactly noted, thought there
are some exceptions e.g. (Yeh and Chen, 2011). This view
will be illustrated in the two following examples.

3.1 Example 1

Consider the system with sliding mode control shown in
Fig. 1 with linear plant described by the transfer function
(TF)

G(s) =
0.4s + 1

s3 + 2.7657s2 + 3.9691s + 4.0854
(6)

and the sliding surface described by

C(s) = 0.3s + 1 (7)

Additionally it is H = 10, h = 0.03. Simulations were
performed for r(t) = 1(t), d(t) = 0.5 ·1(t−5) (1(t) = 1, for
t ≥ 1 and 1(t) = 0, for t < 0) and for two different cases:
1. mn = 0 and 2. mn 6= 0. For the second case, the noise
mn was obtained from MATLAB Uniform in the interval
[−1, 1] Random Number Generator, with sampling period
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0.001, the output signal of which was passed through the
filter described by the TF 1/(s + 1). The plot of the
measurement noise is shown in Fig. 2b. The results of
simulations for the cases mn = 0 and mn 6= 0 are shown
in Fig. 2a by solid line and dotted line, respectively. It is
seen that the measurement noise decreases the accuracy of
the control system.

Fig. 2. a) Step responses for the system from Example 1,
in the case: without noise (solid line) and with noise
(dotted line); b) measurement noise.

One may suppose that if in the TF C(s) it appears
the second order derivative the decrease of the control
quality will be significantly larger. This is confirmed by
the following example.

3.2 Example 2

Now, consider the system shown in Fig. 1 with linear plant
described by the transfer function (TF)

G(s) =
0.5s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
(8)

and the sliding surface described by

C(s) = 0.09s2 + 0.6s + 1 (9)

The relay has the parameters H = 15, h = 0.03. Simula-
tions were performed for r(t) = 1(t), d(t) = 0.5 · 1(t − 5)
and as previously, for two different cases: 1. mn = 0 and
2. mn 6= 0. where the nonzero noise was the same as in
the Example 1. The results of simulations for the cases
mn = 0 and mn 6= 0 are shown in Fig. 3 with solid and
dotted line, respectively. It is seen that the system does
not operate under appearance of the measurement noise.

From both the examples it is seen that in the case of no
noise the step responses are very good with short settling
time. Additionally in accordance with the common view
both the systems are very robust, i.e. they are not sensitive
even to the large plant parameter changes as well as to
some disturbances. However if the measurement noise is
present then the good properties of both the systems
disappear. Especially it is exactly seen in the case of the
system from Example 2.

Fig. 3. a) Step responses for the system from Example 2,
in the case: without noise (solid line) and with noise
(dotted line).

4. RELAY SYSTEM WITH PARALLEL
COMPENSATOR

In this section the idea of the system with parallel com-
pensator introduced in (Gessing, 2007) will be remained.
Notation applied here is the same as in the previous sec-
tions. In this section, during description of the system, it
will be assumed that d = 0 and mn = 0.

Consider the linear plant described by the TF (1) Assume
now that the plant is stable, that is its poles pi, i =
1, 2, ..., n have negative real parts i.e. Repi < 0.

In the case of difficult plant (e.g nonminimum phase,
and/or with higher order dynamics, as well as with pure
time delay), when it is difficult to design the regulator
assuring an appropriate accuracy, the relay system with
parallel compensator shown in Fig. 4a may give good
results.

Characteristic of the relay is shown in Fig. 1b. Further
on, it will be shown that this system significantly better
copes with the measurement noise than the systems with
sliding mode control. Of course the same properties has the
equivalent continuous system in which the relay is replaced
by the amplifier with high gain and appropriate saturation
(Gessing, 2007).

The parallel compensator is described by the TF

Gc(s) =
Yc(s)

U(s)
= G1(s) − G(s) (10)

and its idea, as it was noted in (Gessing, 2007) is similar
to that of the Smith predictor. Here Yc(s) is the Laplace
transform of the output yc of the compensator, while G1(s)
is the TF which will be appropriately chosen.

Fig. 4. The equivalent block diagrams of the system with
parallel compensator.
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Note that in the proposed structure shown in Fig. 4a the
TF Gr(s) of the replacement plant outlined by the dashed
line is described by

Gr(s) =
Y1(s)

U(s)
= G(s) + Gc(s) =

= G(s) + G1(s) − G(s) = G1(s) (11)

Of course, to implement a closed loop (CL) stable system
with the reference signal r determining the demanded
output y the TF G1(s) should fulfill some demands.

In the case of regulation when r = const the error in a
constant steady state is mainly interesting, therefore for
some constant steady state values it should be

yc = 0, y1 = y, e∗ = r − y1 = r − y (12)

The latter condition will be fulfilled if

G1(0) = G(0) (13)

In the case of tracking of the varying reference signal r with
the frequencies ω belonging to some working frequency
band

ω ∈ [0, ωmx] (14)

the demand (12) should be at least approximately fulfilled
for frequencies (14), which gives (Gessing, 2004)

G1(jω) ≈ G(ω) for ω ∈ [0, ωmx] (15)

The further considerations are limited to the case of
regulation.

Similarly as for the system with sliding mode control,
the relay appearing in the CL system shown in Fig. 4a,
with appropriately chosen H and h → 0 may be treated
approximately as the linear amplifier with high gain k.

The CL system should be stable and should have an
appropriate quality of the transients. Let as choose the
TF

G1(s) =
L1(s)

M1(s)
, (16)

where L1(s) and M1(s) are polynomials of n − 1 and n
degree, respectively, i.e. the relative degree l of the TF
G1(s) is equal to one. Then the stability of the CL system
results from the following

Lemma 2. The characteristic equation of the CL system
shown in Fig. 4, described by

M1(s) + kL1(s) = 0 (17)

for k → ∞ takes the form

L1(s) = 0 (18)

and one root sn of the equation (17) tends to −∞. If the
zeros of the polynomial L1(s) are minimum phase then the
system is stable. 2

The proof results directly from (11) and Lemma 1. Of
course the Lemma 2 is strictly valid if in the place of the
relay the linear amplifier with k → ∞ appears.

4.1 Approximate Description of the CL System

The equivalent block diagram of the system from Fig. 4a is
shown in Fig. 4b. Note that the part of the system outlined

by the dashed line contains the elements of the regulator
based on the parallel compensator. For the relay replaced
by the linear amplifier with high gain k → ∞, the regulator
in the system is described by the following TF

C(s) =
U(s)

E(s)
=

k

1 + kGc(s)
≈

1

Gc(s)
(19)

Note that if the TF G1(s) has the relative degree equal to
one, then the TF (19) of the regulator has usually the
degree of denominator polynomial smaller by one from
that of the numerator. Strictly speaking this is valid when
k → ∞ i.e. when the fast switching of the relay with small
hysteresis appear.

Accounting (19) we obtain the following formula describ-
ing the CL system

Y (s)

U(s)
≈

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

G(s)

Gc(s) + G(s)
=

G(s)

G1(s)
(20)

The formula (20) may be used for designing the TF
G1(s). One such a possibility will be discussed in the next
subsection.

4.2 Design of the Replacement Plant Transfer Function

One way of designing G1(s) is to choose

M1(s) = M(s) (21)

L1(s) = l(1 + sT )n−1, l = L(0) (22)

so the condition (13) is fulfilled.

For choosing the parameter T the design based on the
linear approach, e.g on frequency response, may be utilized
(Gessing, 2007).

Accounting (1), (16), (21) in (20) we obtain for the CL
system

Y (s)

R(s)
≈

L(s)

L1(s)
(23)

Thus the numerator of TF (23) contains the polynomial
appearing in the numerator of (1), while the denominator
of (23) contains the polynomial appearing in the numera-
tor of (16). From these considerations it results that in the
considered case the choice of L1(s) influences the dynamics
of the researched CL system, essentially.

Really, the characteristic equation of the CL system is
determined by (18) and its roots influence the velocity
of decay of the transient response. Therefore we try to
choose L1(s) in the form (22) containing the multiple root
si = −1/T, i = 1, 2, ...n − 1. Of course, to obtain fast
transient, we should choose a possibly small time constant
T , for which the equation (18) and the whole system have
good transients.

From the previous considerations it results the following

Corollary 1. If the polynomial L1(s) is chosen such that

L1(s) = C(s)L(s) (24)

then, under mn = 0, the time responses for the same
excitations r(t) and d(t) of the system with sliding mode
control and with parallel compensator should be very close
one to other. If additionally d(t) = 0 then both the systems
are described by the dependence
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Y (s)

R(s)
≈

1

C(s)
(25)

2

Really, both the systems have the same characteristic
equation which results from (5) and (18), therefore the
dynamics of their transients is comparable. If mn = 0 and
d(t) = 0 then the dependence (25) for the system with
sliding mode control results from (3), while for the system
with parallel compensator – from dependencies (23) and
(24).

If the formula (24) is fulfilled and mn = 0 then we will say
that both the systems have comparable dynamics.

5. ILLUSTRATING EXAMPLES

5.1 Example 3

Consider the system with parallel compensator shown in
Fig.4. Assume that the plant described by (6) and the relay
is the same as in the Example 1. Assume that mn = 0,
and also r(t) and d(t) are the same as in Example 1.
In accordance with the Corollary 1, accounting (6) and
(7) assume that L1(s) = (0.3s + 1)(0.4s + 1). Then both
the systems: with sliding mode control with parameters
described in Example 1 and with parallel compensator
considered here have comparable dynamics. The time
responses of both the systems are shown in Fig. 5.

Fig. 5. The time responses of the system with parallel com-
pensator (solid line) and of the system with sliding
mode control (dotted line) (data from Examples 1,
3).

It is seen, that in accordance with the Corollary 1 the time
responses of both the systems cover.

In the Fig. 6 there are shown the results of simulations for
the system with parallel compensator and the plant (6).
The time responses y(t) for the same excitations in the
case mn = 0 (solid line) and mn 6= 0 (dotted line) are
shown.

It is shown that the system with parallel compensator
copes well with measurement noise. The difference between
the case when mn = 0 and mn 6= 0 is insignificant.

5.2 Example 4

Consider now the system with parallel compensator shown
in Fig.4. Assume that the plant described by the TF
(8) and also the relay as well as r(t) and d(t) are the
same as in Example 2. Assume that mn = 0. Accounting
(8), (9) and Corollary 1 assume that L1(s) = (0.09s2 +

Fig. 6. The time responses of the system with parallel
compensator and plant (6) with mn = 0 (solid line)
and mn 6= 0 (dotted line) (data from Example 3).

0.6s + 1)(0.5s + 1). The time responses of the system
with sliding mode control with parameters described in
Example 2 and of the system with parallel compensator
and comparable dynamics are shown in Fig. 7. It is shown,
that in accordance with the Corollary 1 the time responses
for both the systems almost cover.

Fig. 7. The time responses of the system with parallel com-
pensator (solid line) and of the system with sliding
mode control (dotted line) (data from Examples 2,
4).

In the Fig. 8 there are shown the results of simulations for
the system with parallel compensator and plant (8). The
time responses y(t) for the same excitations in the case
mn = 0 (solid line) and mn 6= 0 (dotted line) are shown.

Fig. 8. The time responses of the system with parallel
compensator and plant (8) with mn = 0 (solid line)
and mn 6= 0 (dotted line) (data from Example 4).

Also now, the difference between the case when mn = 0
and mn 6= 0 is insignificant.
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5.3 Example 5

Consider now the plant with nonminimum phase zero
described by the TF

G(s) =
−0.5s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
. (26)

Assume that the parallel compensator polynomial L1(s) is
now described by

L1(s) = 0.027s3 + 0.27s2 + 0.9s + 1 (27)

then T = 0.3 and the transients will be somewhat faster
than in Example 4. The remaining data applied in simu-
lations are the same as in Example 4.

The results of simulations in the form of the time responses
of the plant outputs y, for the same excitations (r(t) and
d(t)) are shown in Fig. 9. By the solid line the time
responses y(t) of the plant output are shown for the case
mn = 0, while by the dotted line - for the case mn 6= 0.

Fig. 9. The time responses of the system with parallel
compensator and nonminimum phase plant (26) for
mn = 0 (solid line) and mn 6= 0 (dotted line) (data
from Example 5).

It is seen that both the time responses of y(t) are close one
to other, which means that the system well operates under
existence of measurement noise. As the result of existence
of the one nonminimum phase zero both the time responses
have undershot which is characteristic for the systems with
nonminimum phase plant. Because the system is rather
fast the undershot is relatively high. For smaller speed of
the transients (e.g. when T=0.5) the undershot would be
smaller.

Of course the system with sliding mode control cannot
operate with this nonminimum phase plant.

6. FINAL CONCLUSIONS

It is a common view that the relay systems with sliding
mode control are very robust, i. e. they are insensitive to
large and relatively fast parameter changes, as well as to
the output disturbances. However usually, it is not stressed
that this view is valid only then, when in the system the
measurement noise disappear. In the present paper it is
noted that appearance of measurement noise completely
changes the properties of these systems, i.e. they stop to
be robust. Due to small hysteresis of the relay, applied to
decrease the output oscillations resulting from switching,
even small measurement noise may destroy robustness,
especially then when the higher than first order derivatives

are used in sliding surface description. This observation
has been confirmed by the performed simulations.

It is shown that the relay systems with parallel compen-
sator, designed in accordance with (Gessing, 2007), ap-
plied to the stable plants with minimum phase zeros, may
have almost the same dynamic properties as the systems
with sliding mode control. This means that for the same
reference value and output disturbance both the systems
have almost the same time responses of the plant output.
We may say that both the systems have comparable dy-
namics. However one must remember that generally the
different assumptions must be made for the plants in both
the systems. Namely, for the system with sliding mode
control, the plant should have minimum phase zeros, but
may be stable or non-stable, while for the system with
parallel compensator the plant must be stable, but may
have minimum or nonminimum phase zeros. Then, both
the systems with comparable dynamics may be created
only for the stable plants with minimum phase zeros.

It becomes that the systems with parallel compensator and
comparable dynamics to that with sliding mode control,
cope very well with measurement noise. This is caused by
the fact that no derivatives are used in parallel compen-
sator, while the plant plays the role of the law-pass filter.
The relay systems with parallel compensator, with differ-
ent difficult (e.g. with nonminimum phase zeros, or with
delay) but stable plants, also cope well with measurement
noise.
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