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Abstract: In this paper, a new generalized value iteration algorithm is developed to solve
infinite horizon optimal control problems for discrete-time nonlinear systems. The idea is to use
iterative adaptive dynamic programming (ADP) to obtain the iterative control law which makes
the iterative performance index function reach the optimum. The generalized value iteration
algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes
the disadvantage of traditional value iteration algorithms. When the iterative control law and
iterative performance index function in each iteration cannot be accurately obtained, a new
design method of the convergence criterion for the generalized value iteration algorithm with
finite approximation errors is established to make the iterative performance index functions
converge to a finite neighborhood of the lowest bound of all performance index functions.
Simulation results are given to illustrate the performance of the developed algorithm.
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1. INTRODUCTION

Dynamic programming is an important technique in han-
dling optimal control problems. However, due to the
“curse of dimensionality”, the optimal solutions cannot
be obtained directly by dynamic programming (Bellman
[1957]). Adaptive dynamic programming (ADP), proposed
by Werbos [1977] and [1991], has demonstrated the ca-
pability to find the optimal control policy and solve the
HJB equation in a principled way. Iterative methods are
primary tools in ADP to obtain the solution of HJB e-
quation indirectly and have attracted increasing attention
(Heydari and Balakrishnan [2013]; Liu et al. [2013]; Liu
and Wei [2014]; Zhang et al. [2011]).

Value iteration algorithms are one class of the most pri-
mary and important iterative ADP algorithms (Wei et al.
[2009]; Wei and Liu [2012]; Yang and Jagannathan [2012]).
Value iteration algorithms of ADP are given in Bertsekas
and Tsitsiklis [1996]. In 2008, Al-Tamimi et al. studied a
value iteration algorithm for discrete-time affine nonlinear
systems (Al-Tamimi et al. [2008]). Starting from a zero
initial performance index function, it is proven that the
iterative performance index function is a non-decreasing
sequence and bounded, which makes the iterative perfor-
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mance index function converge to the optimum as the
iteration index increases to infinity. In recent years, value
iteration algorithms have attracted more and more re-
searchers (Liu et al. [2012]; Wei and Liu [2013a]; Wei and
Liu [2013b]; Zhang et al. [2008]). But it is known that the
previous value iteration algorithms, i.e., traditional value
iteration algorithms in brief, are required to start from a
zero initial condition. Other initial conditions are seldom
discussed. On the other hand, most previous discussions
on ADP required that the approximation structure could
approximate the iterative performance index function ac-
curately. But for most real-world control systems, the
accurate performance index function cannot be achieved.
Hence, ADP algorithms with approximation errors are
important to discuss. Although in several papers (Liu and
Wei [2013a]; Wei and Liu [2014]), the convergence prop-
erties of ADP algorithm were discussed, in these papers a
uniform approximation error was required to build these
convergence criteria. However, the uniform approximation
error is generally difficult to obtain. To the best of our
knowledge, all the convergence criteria in the previous
papers were difficult to obtain and there are no discussions
on how to design a convergence criterion that makes the
iterative ADP algorithms converge. This motivates our
research.

In this paper, a new discrete-time generalized value iter-
ation algorithm with finite approximation errors will be
constructed. First, the detailed generalized value iteration
algorithm is described. It permits an arbitrary positive
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semi-positive function to initialize the developed algorith-
m, which overcomes the disadvantage of traditional value
iteration algorithms. Second, the convergence properties
for the finite-approximation-error based generalized value
iteration algorithm are analyzed. We emphasized that for
the first time a new “design method of the convergence
criterion” for the generalized value iteration algorithm
with finite approximation errors is established. It permits
that the developed generalized value iteration algorith-
m designs a suitable approximation error adaptively to
make the iterative performance index function converge
to a finite neighborhood of the optimal performance index
function. Finally, simulation results are given to show the
effectiveness of the developed iterative ADP algorithm.

2. PROBLEM FORMULATION

In this paper, the following discrete-time nonlinear system
is considered

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (1)

where xk ∈ Rn, uk ∈ Rm and x0 is the initial state.

Let uk = (uk, uk+1, . . . ) be a sequence of controls from k
to ∞. The performance index function is defined as

J(x0, u0) =

∞∑
k=0

U(xk, uk), (2)

where U(xk, uk) > 0, for ∀xk, uk ̸= 0, is the utility
function. In this paper, we aim to find an optimal control
scheme that minimizes the performance index function (2).
The following assumption is necessary for the analysis of
the developed ADP algorithm.

Assumption 1. The system (1) is controllable; xk = 0 is a
unique equilibrium state, i.e., F (0, 0) = 0; u(xk) = 0 for
xk = 0; U(xk, uk) is positive definite.

Define the control sequence set as Uk =
{
uk : uk =

(uk, uk+1, . . .), ∀uk+i ∈ Rm, i = 0, 1, . . .
}
. Then, for arbi-

trary control sequence uk ∈ Uk, the optimal performance
index function can be defined as

J∗(xk) = inf
uk

{
J(xk, uk) : uk ∈ Uk

}
. (3)

According to Bellman’s principle of optimality, J∗(xk)
satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB)
equation

J∗(xk) = inf
uk

{
U(xk, uk) + J∗(F (xk, uk))

}
. (4)

Then, the law of optimal single control can be expressed
as

u∗(xk) = arg inf
uk

{
U(xk, uk) + J∗(F (xk, uk))

}
. (5)

Hence, the HJB equation (4) can be written as

J∗(xk) = U(xk, u
∗(xk)) + J∗(F (xk, u

∗(xk))). (6)

3. GENERALIZED VALUE ITERATION
ALGORITHM WITH FINITE APPROXIMATION

ERRORS

In this section, a new generalized value iteration algorithm
is developed to obtain the optimal control law for nonlinear
systems (1). Approximation errors of the iterative perfor-
mance index functions and iterative control laws are con-
sidered. New convergence property analysis methods will

be established. The new design method of the convergence
criterion will be developed.

3.1 Derivation of the Generalized Value Iteration
Algorithm With Finite Approximation Errors

The developed generalized value iteration algorithm is
updated by iterations, with the iteration index i increasing
from 0 to ∞. For ∀xk, let the initial function V̂0(xk) =
Ψ(xk), where Ψ(xk) ≥ 0 is a positive semi-definite func-
tion. The iterative control law v̂0(xk) can be computed as
follows:

v̂0(xk) = argmin
uk

{
U(xk, uk) + V̂0(xk+1)

}
+ ρ0(xk) (7)

where V̂0(xk+1) = Ψ(xk+1) and the performance index
function can be updated as

V̂1(xk) = U(xk, v̂0(xk)) + V̂0(F (xk, v̂0(xk))) + π0(xk),
(8)

where ρ0(xk) and π0(xk) are finite approximation error
functions. For i = 1, 2, . . ., the iterative ADP algorithm
will iterate between

v̂i(xk) = argmin
uk

{
U(xk, uk) + V̂i(xk+1)

}
+ ρi(xk)

= argmin
uk

{
U(xk, uk) + V̂i(F (xk, uk))

}
+ ρi(xk)

(9)

and

V̂i+1(xk) = U(xk, v̂i(xk)) + V̂i(F (xk, v̂i(xk))) + πi(xk),
(10)

where ρi(xk) and πi(xk) are finite approximation error
functions of the iterative control and iterative performance
index function, respectively. In next subsection, it will
be proven that for i → ∞, the iterative performance
index function Vi(xk) and the iterative control law vi(xk)
converge to the optimal ones.

3.2 Properties of the Generalized Value Iteration
Algorithm With Finite Approximation Errors

For the generalized value iteration algorithm (7)–(10), if
for ∀ i = 0, 1, . . ., the iterative performance index function
and the iterative control law can accurately be obtained,
then the algorithm is reduced to the following equations

vi(xk) = argmin
uk

{
U(xk, uk) + Vi(F (xk, uk))

}
,

Vi+1(xk) = min
uk

{
U(xk, uk) + Vi(F (xk, uk))

}
= U(xk, vi(xk)) + Vi(F (xk, vi(xk))), (11)

where V0(xk) = Ψ(xk) is an arbitrary positive semi-
definite function. In Liu and Wei [2013b], it is shown
that iterative performance index function converges to the
optimum. As the existence of the approximation errors,
the convergence may not hold. The following lemma will
show this property.

Lemma 1. For i = 1, 2, . . ., Let Υi(xk) be the target
iterative performance index function, which is expressed
as

Υi(xk) =min
uk

{
U(xk, uk) + V̂i−1(xk+1)

}
, (12)

where V̂i(xk) is defined in (10). If the initial iterative per-

formance index function V̂0(xk) = Υ0(xk) = Ψ(xk) and for
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∀ i = 1, 2, . . ., there exists a uniform finite approximation
error ζ that satisfies

V̂i(xk)−Υi(xk) ≤ ζ, (13)

then we have

V̂i(xk)− Vi(xk) ≤ iζ. (14)

Proof. The details of the proof can be seen in Liu and
Wei [2013a] and omitted here.

Thus, a new analysis method will be developed. To facil-
itate analysis, the expressions of the approximation error
are transformed. For ∀ i = 1, 2, . . ., there exists a finite
constant ϑi > 0 that makes

V̂i(xk) ≤ ϑiΥi(xk) (15)

hold. From (15), it can be seen that the iterative per-

formance index function V̂i(xk) is upper bounded by
ϑiΥi(xk). If the convergence properties of Υi(xk) are ana-

lyzed for different ϑi, then the convergence of V̂i(xk) can be
justified. Thus, in the following, the convergence properties
of the upper bound will be discussed.

Theorem 1. For ∀ i = 1, 2, . . ., let Υi(xk) be expressed

as in (12) and V̂i(xk) be expressed as in (10). If for
∀ i = 1, 2, . . ., there exists 0 < ϑi < 1 that makes (15)
hold, then we have that the iterative performance index
function is convergent.

Proof. If 0 < ϑi < 1, according to (15), we have 0 ≤
V̂i(xk) < Υi(xk). Using mathematical induction, we can
prove that for ∀ i = 1, 2, . . ., the following inequality

0 < V̂i(xk) < Vi(xk) (16)

holds. According to Liu andWei [2013b], we have Vi(xk) →
J∗(xk). Then for ∀ i = 0, 1, . . ., V̂i(xk) is upper bounded
and

0 < lim
i→∞

V̂i(xk) < lim
i→∞

Vi(xk) = J∗(xk). (17)

The proof is completed.

Next, we will analyze the situation of 1 ≤ ϑi < ∞.

Theorem 2. For ∀ i = 1, 2, . . ., let Υi(xk) be expressed as

(12) and V̂i(xk) be expressed as (10). Let 0 < φi < ∞ be
a constant that makes

Vi(F (xk, uk)) ≤ φiU(xk, uk) (18)

hold. If Assumption 1 holds and for ∀ i = 1, 2, . . ., there
exists 1 ≤ ϑi < ∞ that makes (15) hold, then we have

V̂i(xk) ≤ϑi

(
1+

i−1∑
j=1

(
ϑi−1ϑi−2 · · ·ϑi−j+1(ϑi−j − 1)

× φi−1φi−2 · · ·φi−j

(φi−1 + 1)(φi−2 + 1) · · · (φi−j + 1)

))
Vi(xk),

(19)

where we define
i∑
j

(·) = 0, for ∀j > i, i, j = 0, 1, . . ., and

ϑi−1ϑi−2 · · ·ϑi−j+1(ϑi−j − 1) = (ϑi−1 − 1), for j = 1.

Proof. The theorem can be proven by mathematical
induction. First, let i = 1 and then (12) becomes

Υ1(xk) = min
uk

{
U(xk, uk) + V̂0(xk+1)

}
= V1(xk). (20)

According to (15), we have V̂1(xk) ≤ ϑ1V1(xk). Thus, the
conclusion holds for i = 1. Assume that (19) holds for
i = l−1, where l = 2, 3, . . .. Then, for i = l, we can obtain
(19).

Then, according to (15), we can obtain (19). The mathe-
matical induction is completed.

From (19), we can see that for ∀ i = 0, 1, . . ., there exists an

error between the V̂i(xk) and Vi(xk). As i → ∞, the bound
of the approximation errors may increase to infinity. Thus,
in the following, we will give the convergence properties
of the iterative ADP algorithm (7)–(10) using error bound
method. Before presenting the next theorem, the following
lemma is necessary.

Lemma 2. Let {bi}, i = 1, 2, . . . be a sequence of positive
number. Let 0 < λi < ∞ be a bounded positive constant

for ∀i = 1, 2, . . . and let ai = λibi. If
∞∑
i=1

bi is finite, then

we have that
∞∑
i=1

ai is finite.

Proof. As for ∀ i = 1, 2, . . ., λi is finite, if we let λ̄ =
sup{λ1, λ2, . . .}, then we have that

∞∑
i=1

ai =
∞∑
i=1

λibi ≤ λ̄
∞∑
i=1

bi (20)

is finite.

Theorem 3. Let V̂i(xk) be expressed as (19). If for ∀ i =
1, 2, . . ., the inequality

1 ≤ ϑi+1 ≤ qi
φi + 1

φi
(21)

holds, where qi is an arbitrary constant which satisfies
φi

φi + 1
< qi < 1, then as i → ∞, the iterative performance

index function V̂i(xk) of the generalized value iteration
algorithm converges to a finite neighborhood of J∗(xk).

Proof. For (19) in Theorem 2, if we let

∆i =

i−1∑
j=1

(
ϑi−1ϑi−2 · · ·ϑi−j+1(ϑi−j − 1)

× φi−1φi−2 · · ·φi−j

(φi−1 + 1)(φi−2 + 1) · · · (φi−j + 1)

)
, (22)

aij =
ϑi−1ϑi−2 · · ·ϑi−jφi−1φi−2 · · ·φi−j

(φi−1 + 1)(φi−2 + 1) · · · (φi−j + 1)
, (23)

and

bij =
ϑi−1ϑi−2 · · ·ϑi−j+1φi−1φi−2 · · ·φi−j

(φi−1 + 1)(φi−2 + 1) · · · (φi−j + 1)
, (24)

where i = 1, 2, . . ., and j = 1, 2, . . . , i − 1, then we have

∆i =
i−1∑
j=1

aij −
i−1∑
j=1

bij . We know that if
i−1∑
j=1

aij and
i−1∑
j=1

bij

are both finite as i → ∞, then lim
i→∞

∆i is finite. According

to (24), we have
bij

bi(j−1)
=

ϑi−j+1φi−j

(φi−j + 1)
. If

bij
bi(j−1)

≤ qi−j <

1, then we can get ϑi−j+1 ≤ qi−j
φi−j + 1

φi−j
. Let ℓ = i − j

and then we can obtain

ϑℓ+1 ≤ qℓ
φℓ + 1

φℓ
, (25)
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Υl(xk) =min
uk

{
U(xk, uk) + V̂l−1(F (xk, uk))

}
≤min

uk

{
U(xk, uk) + ϑl−1

(
1 +

l−2∑
j=1

(
ϑl−2ϑl−3 · · ·ϑl−j(ϑl−j−1 − 1)

φl−2φl−3 · · ·φl−j−1

(φl−2 + 1)(φl−3 + 1) · · · (φl−j−1 + 1)

))

× Vl−1(xk)

}

≤min
uk

{(
1 + φl−1

( l−1∑
j=1

(ϑl−1ϑl−2 · · ·ϑl−j+1(ϑl−j − 1)
φl−2φl−3 · · ·φl−j

(φl−1 + 1)(φl−2 + 1) · · · (φl−j + 1)

))
U(xk, uk)

+

(
φl−1ϑl−1

φl−1 + 1

(
1 +

l−2∑
j=1

(ϑl−2ϑl−3 · · ·ϑl−j(ϑl−j−1 − 1))
φl−2φl−3 · · ·φl−j−1

(φl−2 + 1)(φl−3 + 1) · · · (φl−j−1 + 1)

)

+
1

φl−1 + 1

)
Vl−1(xk)

}

=

1 +

l−1∑
j=1

(ϑl−1ϑl−2 · · ·ϑl−j+1(ϑl−j − 1))
φl−1φl−2 · · ·φl−j

(φl−1 + 1)(φl−2 + 1) · · · (φl−j + 1)

min
uk

{
U(xk, uk) + Vl−1(xk)

}

=

1 +
l−1∑
j=1

(ϑl−1ϑl−2 · · ·ϑl−j+1(ϑl−j − 1))
φl−1φl−2 · · ·φl−j

(φl−1 + 1)(φl−2 + 1) · · · (φl−j + 1)

Vl(xk) (19)

where ℓ = 1, 2, . . . , i − 1. Let i → ∞ and we can obtain
(21). Let q = sup{q1, q2, . . .} and we have 0 < q < 1. We
can obtain

i−1∑
j=1

bij ≤
i−1∑
j=1

(
φi−1 + 1

φi−1

)
qj−1. (26)

As
φi

φi + 1
< q < 1 and φi−1 is finite for ∀ i = 1, 2, . . ., let

i → ∞ and we have lim
i→∞

i−1∑
j=1

bij is finite.

On the other hand, for ∀ i = 1, 2, . . . and for ∀j =
1, 2, . . . , i − 1, we have aij = ϑi−jbij . As for ∀ i = 1, 2, . . .
and for ∀j = 1, 2, . . . , i − 1, 1 ≤ ϑi−j < ∞ is finite,

according to Lemma 2, we have lim
i→∞

i−1∑
j=1

aij must be finite.

Therefore, we can obtain lim
i→∞

∆i is finite. According to Liu

and Wei [2013b], we have lim
i→∞

Vi(xk) = J∗(xk). Hence, the

iterative performance index function V̂i(xk) is convergent
to a bounded neighborhood of the optimal performance
index function J∗(xk). The proof is completed.

Combining Theorems 1 and 3, the convergence criterion
of the generalized value iteration algorithm with finite
approximation errors can be established.

Theorem 4. If Assumption 1 holds and for ∀ i = 0, 1, . . .,
the inequality

0 < ϑi+1 ≤ qi
φi + 1

φi
(27)

holds, where 0 < qi < 1 is an arbitrary constant, then
the iterative performance index function V̂i(xk) in the
generalized value iteration algorithm converges to a finite
neighborhood of the optimal performance index function
J∗(xk), as i → ∞.

We can see that if we can obtain φi, then we can design
the approximation error to make V̂i(xk) converge. The
following theorem will give an effective way to obtain φi.
Define Ωφi as

Ωφi =
{
φi|φiU(xk, uk) ≥ Vi(F (xk, uk))

}
. (28)

Theorem 5. Let µ(xk) be an arbitrary admissible control
law of the nonlinear system (1), i.e.,

Pi+1(xk) = U(xk, µ(xk)) + Pi(xk+1) (29)

where P0(xk) = V0(xk) = Ψ(xk). If there exists a constant
φ̃i that satisfies

φ̃iU(xk, uk) ≥ Pi(F (xk, uk)), (30)

then we have φ̃i ∈ Ωφi
.

Proof. As µ(xk) is an arbitrary admissible control law,
we have Pi(xk) ≥ Vi(xk). If φ̃i satisfies (30), then can get

φ̃iU(xk, uk) ≥ Pi(F (xk, uk)) ≥ Vi(F (xk, uk)). (31)

The proof is completed.

From Theorem 5, we know that if we obtain an admissible
control law µ(xk), then φi can be estimated. The method
to obtain the admissible control law can be seen in Liu
and Wei [2014] and omitted here.

Remark 1. One property should be pointed out. First,
the developed value iteration algorithm of ADP in this
paper is different from the traditional value iteration
algorithms (Al-Tamimi et al. [2008] and Wei et al. [2009]).
For the traditional value iteration algorithms, the initial
performance index function is required to be zero. In
this paper, the initial performance index function can
be an arbitrary positive semi-definite function. On the
other hand, the developed value iteration algorithm in
this paper is also different from Liu and Wei [2013a] and
Wei and Liu [2014]. In Liu and Wei [2013a] and Wei and
Liu [2014], it requires a uniform approximation error to
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construct the convergence criterion. In this paper, the
approximation error ϑi can be different for different i. This
makes the convergence analysis in this paper different from
our previous papers.

3.1 Summary of the Generalized Value Iteration Algorithm
With Finite Approximation Errors

Now, we summarize the generalized value iteration algo-
rithm with finite approximation errors in Algorithm 1.

Algorithm 1 Generalized value iteration algorithm
with finite approximation errors

Initialization:
Choose randomly an array of initial states x0;
Choose a semi-positive definite function Ψ(xk) ≥ 0;
Choose a convergence precision ζ;
Choose an admissible control law µ(xk);
Give a sequence {qi}, i = 0, 1, . . ., where 0 < qi < 1;
Give two constants 0 < ς < 1, 0 < ϱ < 1.

Iteration:
1: Let the iteration index i = 0;
2: Let V0(xk) = Ψ(xk) and obtain φ0 by (30);

3: Compute v̂i(xk) by (9) and obtain V̂i+1(xk) by (10);
4: Obtain ϑi+1 by (15). If ϑi+1 satisfies (27), then es-

timate φi+1 by (30), and goto next step. Otherwise,
decrease ρi(xk) and πi(xk), i.e., ρi(xk) = ςρi(xk) and
πi(xk) = ϱπi(xk), respectively. Goto Step 3;

5: If |V̂i+1(xk) − V̂i(xk)| ≤ ζ, then the optimal perfor-
mance index function is obtained and goto Step 6; else
let i = i+ 1 and goto Step 3;

6: return v̂i(xk) and V̂i(xk).

Remark 2. Generally, in iterative ADP algorithms, the
difference between V̂i(xk) and Γi(xk) is obtained, i.e.,

V̂i(xk)− Γi(xk) = ζi(xk). (32)

where ζi(xk) is the approximation error function. Accord-
ing to the definition of ϑi in (15) and the convergence cri-
terion (27), we can easily obtain the following convergence
criterion

ζi(xk) ≤
1

φi−1 + 1
V̂i(xk). (33)

4. SIMULATION STUDIES

We now examine the performance of the developed al-
gorithm in a torsional pendulum system in Liu and Wei
[2014]. The dynamics of the pendulum is as follows[

x1(k+1)

x2(k+1)

]
=

[
0.1x2k + x1k

−0.49 sin(x1k) + 0.98x2k

]
+

[
0
0.1

]
uk,

(34)

where x1k = θk and x2k = ωk. Let the initial state be
x0 = [1,−1]T . We choose the p = 10000 states. Let
the structures of the critic and action networks be 2–
12–1 and 2–12–1. The neural network training method
can be seen in Liu and Wei [2014] and omitted here.
To illustrate the effectiveness of the algorithm, we al-
so choose four different initial performance index func-
tions which are expressed by Ψj(xk) = xT

k Pjxk, j =
1, . . . , 4. Let P1 = 0. Let P2–P4 be initialized by ar-
bitrary positive definite matrices with the forms P2 =
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Fig. 1. The trajectories of φ’s with Ψ1(xk)–Ψ
4(xk). (a)

Ψ1(xk). (b) Ψ
2(xk). (c) Ψ

3(xk). (d) Ψ
4(xk).

Fig. 2. The curves of the admissible errors and the iterative
performance index functions with Ψ1(xk)–Ψ

4(xk). (a)
Admissible errors with Ψ1(xk). (b) Admissible errors
with Ψ2(xk). (c) Admissible errors with Ψ3(xk). (d)
Admissible errors with Ψ4(xk). (e) Performance index
function with Ψ1(xk). (f) Ψ2(xk). (g) Performance
index function with Ψ3(xk). (h) Performance index
function with Ψ4(xk).

[2.35, 3.31; 3.31, 9.28], P3 = [5.13, −5.72;−5.72, 15.13],
P4 = [100.78, 5.96; 5.96, 20.51], respectively. Let qi =
0.9999 for ∀ i = 0, 1, . . ., and let ς = ϱ = 0.5. Initialized by
Ψj(xk), j = 1, . . . , 4, the developed algorithm with finite
approximation errors is implemented. The trajectories of
φ’s with Ψ1(xk)–Ψ

4(xk) are presented in Figs. 1(a)–(d),
respectively.

According to φ’s, the curved surfaces of the admissible
errors with Ψ1(xk)–Ψ

4(xk) are shown in Figs. 2(a)–(d),
and the iterative performance index functions are shown
in Figs. 2(e)–(h) where “In” denotes initial iteration and
“Lm” denotes limiting iteration.

From Figs. 1–2, it can be seen that for different initial
performance index functions Ψ1(xk)–Ψ

4(xk), the iterative
performance index functions by the generalized value it-
eration algorithm can converge to a finite neighborhood
of the optimal one. The corresponding iterative controls

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4138



0 50 100
−10

−5

0

5

10

Time steps
(a)

Sy
ste

m
 st

at
es

0 50 100
−2

−1

0

1

2

3

Time steps
(e)

Co
nt

ro
l

0 50 100
−3

−2

−1

0

1

2

Time steps
(b)

Sy
ste

m
 st

at
es

0 50 100
−2

−1

0

1

2

3

Time steps
(f)

Co
nt

ro
l

0 50 100
−3

−2

−1

0

1

2

Time steps
(c)

Sy
ste

m
 st

at
es

0 50 100
−2

−1

0

1

2

3

Time steps
(g)

Co
nt

ro
l

0 50 100
−2

−1.5

−1

−0.5

0

0.5

1

Time steps
(d)

Sy
ste

m
 st

at
es

0 50 100
−1

0

1

2

3

Time steps
(h)

Co
nt

ro
l

In x
2

Lm x
2

In x
1

Lm x
1

In

Lm

In x
2

Lm x
2

In x
1

Lm x
1

In

Lm

Lm x
2

Lm x
1

In

Lm

In

Lm

In x
1

In x
2

Lm x
1

In x
2

Lm x
2

In x
1

Fig. 3. Iterative trajectories of states and controls with
Ψ1(xk)–Ψ

4(xk). (a) States with Ψ1(xk). (b) States
with Ψ2(xk). (c) States with Ψ3(xk). (d) States with
Ψ4(xk). (e) Controls with Ψ1(xk). (f) Controls with
Ψ2(xk). (g) Controls with Ψ3(xk). (h) Controls with
Ψ4(xk).

and iterative states are shown in Figs. 3, which are also
convergent. Therefore, the effectiveness of the developed
generalized value iteration algorithm with finite approxi-
mation errors can be proven.

5. CONCLUSION

In this paper, a new generalized value iteration algorithm
is developed to solve infinite horizon optimal control prob-
lems for discrete-time nonlinear systems. The developed
generalized value iteration algorithm of ADP permits an
arbitrary positive semi-definite function to initialize the al-
gorithm, which overcomes the disadvantage of traditional
value iteration algorithms. Considering the approximation
errors, for the first time a new “design method of the
convergence criterion” for the generalized value iteration
algorithm with finite approximation errors is established
to make the iterative performance index function converge
to a finite neighborhood of the optimal performance index
function. Finally, simulation results are given to illustrate
the performance of the developed algorithm.
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