
Stabilization of Time-Delay Markovian
Jump Systems via Probability Rate

Synthesis and State Feedback ?

Shan Ma ∗ Junlin Xiong ∗

∗ CAS Key Laboratory of Technology in Geo-spatial Information
Processing and Application System, University of Science and

Technology of China, Hefei 230026, China (e-mail:
junlin.xiong@gmail.com)

Abstract: This paper considers the stabilization problem for Markovian jump systems with
time delays. Both the probability rate matrix and the state feedback control law are to be
designed. A sufficient condition is established for such designs such that the resulting closed-
loop Markovian jump system is stochastically stable. This condition is given in terms of a
system of linear matrix inequalities with rank constraints, and can be solved using some existing
algorithms. When the system has polytopic uncertainties, the robust stabilization problem is
studied as well. Finally, a numerical example is given to show the validity of the proposed
method.
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1. INTRODUCTION

Markovian jump systems are widely used to model those
dynamic systems subject to abrupt changes in their struc-
tures and parameters. Examples of such systems include
power systems, economic systems and production systems.
During the past decades, many useful results have been
obtained for Markovian jump systems, such as stability
and stabilization (Feng et al. [2010], de Souza [2006]),
model reduction (Zhang et al. [2003]), filtering (Shi et al.
[1999a], Wu et al. [2008]), H2 and H∞ control (Dong and
Yang [2008], Xu and Chen [2002]).

On the other hand, time delays are often inevitable in
practice and exist in many practical systems such as
communication systems and network systems. It is also
well known that time delays are an important source of
instability of control systems. Therefore there has been
considerable interest in the study of time-delay systems in
recent years; e.g., see Fridman and Shaked [2002] and Xu
and Lam [2005]. For Markovian jump systems, the time
delay issue is also widely investigated; e.g., see Boukas
et al. [2002], Fei et al. [2009], Shi et al. [1999b], Sun et al.
[2007] and Xu and Chen [2002].

In this paper, we consider the stabilization problem for
a class of Markovian jump systems with time delays.
Unlike previous techniques in the literature, our technique
involves choosing appropriate probability rate matrices
and state feedback control laws to guarantee the stability
of closed-loop systems. This technique is motivated by
the fact that sometimes engineers may have freedom in
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selecting the value of the probability rate matrix of a
Markovian jump system (Feng et al. [2010], Shu et al.
[2012]). For example, suppose we have a plant which is a
linear time invariant system. If we design a Markovian type
controller (with different control gains) for such a plant,
an appropriate switching rule between these gains may be
selected to help stabilize the system. In fact, the stabilizing
technique developed here can be seen as an extension of
the result in Feng et al. [2010] and Shu et al. [2012] to the
class of Markovian jump systems with time delays.

Notation: Rm, Rm×n denote the sets of real m× 1 vectors
and real m×n matrices, respectively. The superscript “T”
denotes the transpose for real matrices or real vectors.
diag[M1, . . . ,MN ] denotes a block diagonal matrix with
M1, . . . ,MN on its main diagonal. For real symmetric
matrices X and Y , X ≥ Y (respectively, X > Y ) means
that X − Y is positive semi-definite (respectively, positive
definite). E(·) stands for the mathematical expectation
operator with respect to the complete probability space
(Ω,F , P ).

2. PROBLEM FORMULATION

Consider a time-delay Markovian jump system S of the
following form:

S :

{
ẋ(t) = A(η(t))x(t) +Ad(η(t))x(t− τ) +B(η(t))u(t),

x(t) = %(t), ∀t ∈ [−τ, 0],
(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input. {η(t), t ≥ 0} describes the mode switching of the
system S and is a continuous-time Markov process taking
values in a finite set M , {1, 2, . . . ,M}. The probability
rate matrix of η(t) is Q = [qµν ] ∈ RM×M , in which
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P (η(t+4) = ν | η(t) = µ) =

{
qµν4+ o(4), ν 6= µ,

1 + qµµ4+ o(4), ν = µ,
(2)

where 4 > 0 and o(4)/4 → 0 as 4 approaches to zero.

qµν ≥ 0, ∀ν 6= µ, and qµµ = −
∑M
ν=1,ν 6=µ qµν ≤ 0. The

constant τ > 0 represents the system’s time delay. The
initial condition of the system S is (η0, %(t)) where η0 is the
initial mode of η(t) at time t = 0 and %(t) is a continuous
vector-valued function defined on the interval [−τ, 0]. We

assume that
∫ 0

−τ ‖%(t)‖2 dt <∞.

Definition 1. A square matrix W = [wµν ] is called Metzler
if it satisfies

wµν ≥ 0, if µ 6= ν.

Remark 2. The probability rate matrix Q is a Metzler
matrix because its off-diagonal entries are nonnegative.

In the sequel, we will use the following stability definition
for the system (1).

Definition 3. (Boukas et al. [2002]). The system (1) is said
to be stochastically stable if there exists a constant
λ(η0, %(·)), such that

E

(∫ ∞
0

‖x(t)‖2 dt | η0, x(s) = %(s), s ∈ [−τ, 0]

)
≤ λ(η0, %(·)). (3)

For the Markovian jump system (1), our aim is to design
a mode dependent state feedback controller

u(t) = K(η(t))x(t), t ≥ 0, (4)

and a probability rate matrix Q, such that the resulting
closed-loop system is stochastically stable.

3. STABILITY ANALYSIS

In this section, we consider the stability problem of the
free system in (1) (i.e., u(t) ≡ 0). The following result is
taken from Boukas et al. [2002] and provides a sufficient
condition for checking the stability of the free system in (1)
when the probability rate matrix Q is given.

Lemma 4. (Boukas et al. [2002]). Given the time delay
τ > 0. The free system in (1) is stochastically stable if
there exist positive definite matrices P (µ) > 0, µ ∈ M,
R > 0, R1 > 0, such that

[A(µ) +Ad(µ)]
T
P (µ) + P (µ) [A(µ) +Ad(µ)]

+

M∑
ν=1

qµνP (ν) + τ
[
AT (µ)RA(µ) +R1

]
+2τP (µ)Ad(µ)R−1ATd (µ)P (µ) < 0, (5)

ATd (µ)RAd(µ) ≤ R1. (6)

The conditions in Lemma 4 can be easily recast as LMIs by
using the Schur complement equivalence if the probability
rate matrix Q is given. However, if the probability rate
matrix Q is not known, the inequalities in (5), (6) cannot
be transformed into LMIs directly and hence is generally
very difficult to solve. In the following, we will deal with
the stability analysis problem where the probability rate
matrix Q is not known. We assume that the value of the
probability rate matrix Q is allowed to be designed (or
changed) to make the resulting system stable.

Theorem 5. Given the time delay τ > 0. If there exist
positive definite matrices X(µ) > 0, X̄(µ) > 0, µ ∈ M,
Y > 0, Ȳ > 0, Z > 0, Z̄ > 0, a scalar ε > 0, and a Metzler
matrix Q̄ = [q̄µν ] ∈ RM×M , such that the following rank
constrained LMIs hold:


G11(µ) G12(µ) G13(µ) G14(µ) G15(µ) G16(µ)
∗ G22(µ) 0 0 0 0
∗ ∗ G33(µ) 0 0 0
∗ ∗ ∗ −Y 0 0
∗ ∗ ∗ ∗ −Ȳ 0
∗ ∗ ∗ ∗ ∗ −Z̄

 < 0, (7)

ATd (µ)Y Ad(µ) ≤ Z, (8)

rank

([
X(µ) I
I X̄(µ)

])
≤ n, rank

([
Y I
I Ȳ

])
≤ n, (9)

rank

([
Z I
I Z̄

])
≤ n, (10)

where

G11(µ) = −2X(µ)−
M∑

ν=1,ν 6=µ

X(ν),

G12(µ) = I + ε [A(µ) +Ad(µ)]
T
, G22(µ) = −X̄(µ),

G13(µ) = [(1 + q̄µ1)I (1 + q̄µ2)I · · · (1 + q̄µM )I] ,

G33(µ) = −diag
[
X̄(1), X̄(2), · · · , X̄(M)

]
,

G14(µ) =
√

2τX(µ)Ad(µ), G15(µ) =
√
τεAT (µ),

G16(µ) =
√
τεI.

then the free system in (1) is stochastically stable with the
probability rate matrix given by Q = 2

ε Q̄.

Proof. The inequality (5) holds if and only if the following
inequality holds for some sufficiently small scalar ε > 0.

[A(µ) +Ad(µ)]
T
P (µ) + P (µ) [A(µ) +Ad(µ)]

+

M∑
ν=1

qµν
2
P (ν) +

M∑
ν=1

qµν
2
P (ν) + ε

M∑
ν=1

(qµν
2
P (ν)

qµν
2

)
+ ε [A(µ) +Ad(µ)]

T
P (µ) [A(µ) +Ad(µ)]

+ τ
[
AT (µ)RA(µ) +R1

]
+ 2τP (µ)Ad(µ)R−1ATd (µ)P (µ) < 0. (11)

By Schur complement equivalence, the inequality (11) can
be further transformed into the following inequality:


H11(µ) H12(µ) H13(µ) H14(µ) H15(µ) H16(µ)
∗ H22(µ) 0 0 0 0
∗ ∗ H33(µ) 0 0 0
∗ ∗ ∗ −ε−2R 0 0
∗ ∗ ∗ ∗ −ε2R−1 0
∗ ∗ ∗ ∗ ∗ −ε2R−11

 < 0,

(12)

where
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H11(µ) = −2ε−1P (µ)− ε−1
M∑

ν=1,ν 6=µ

P (ν),

H12(µ) = I + ε [A(µ) +Ad(µ)]
T
,

H22(µ) = −εP−1(µ),

H13(µ) =
[
(1 +

ε

2
qµ1)I (1 +

ε

2
qµ2)I · · · (1 +

ε

2
qµM )I

]
,

H33(µ) = −diag
[
εP−1(1), εP−1(2), · · · , εP−1(M)

]
,

H14(µ) =
√

2τε−1P (µ)Ad(µ),

H15(µ) =
√
τεAT (µ),

H16(µ) =
√
τεI.

On the other hand, the inequality (6) is equivalent to the
following inequality

ATd (µ)
(
ε−2R

)
Ad(µ) ≤ ε−2R1. (13)

By defining X(µ) = ε−1P (µ), X̄(µ) = εP−1(µ), q̄µν =
ε
2qµν , Y = ε−2R, Ȳ = ε2R−1, Z = ε−2R1 and Z̄ =

ε2R−11 in the inequalities (12) and (13), we see that
the inequalities (12) and (13) can be reformulated as
the inequalities (7), (8) with matrix equality constraints
X(µ)X̄(µ) = I, Y Ȳ = I, ZZ̄ = I. Note that these
matrix equality constraints are in fact equivalent to the
rank constraints (9), (10). Therefore, if the inequalities (7),
(8), (9), (10) hold, then the inequalities (5), (6) hold. By
Lemma 4, the free system in (1) is stochastically stable if
the probability rate matrix is chosen as Q = 2

ε Q̄. 2

Theorem 5 provides us a method to find an appropriate
probability rate matrix Q such that the free system in (1)
is stochastically stable. Similar to Feng et al. [2010], the
result in Theorem 5 can be extended to the free time-delay
system in (1) with polytopic uncertainties. To illustrate
this, assume that the free system in (1) has the following
polytopic uncertainties:

[A(µ) Ad(µ)] =

$∑
ξ=1

αξ [Aξ(µ) Adξ(µ)] , (14)

where µ ∈ M, αξ ≥ 0,
∑$
ξ=1 αξ = 1. Then we have the

following corollary.

Corollary 6. Given the time delay τ > 0. For the free time-
delay system in (1) with polytopic uncertainties (14), if
there exist positive definite matrices X(µ) > 0, X̄(µ) > 0,
µ ∈ M, Y > 0, Ȳ > 0, Z > 0, Z̄ > 0, a scalar ε > 0,
and a Metzler matrix Q̄ = [q̄µν ] ∈ RM×M , such that the

following rank constrained LMIs hold:

Ξξ(µ) =


G11(ξ, µ) G12(ξ, µ) G13(ξ, µ)
∗ G22(ξ, µ) 0
∗ ∗ G33(ξ, µ)
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

G14(ξ, µ) G15(ξ, µ) G16(ξ, µ)
0 0 0
0 0 0
−Y 0 0
∗ −Ȳ 0
∗ ∗ −Z̄

 < 0,

(15)

Πξ,%(µ) = ATdξ(µ)Y Ad%(µ) ≤ Z, (16)

rank

([
X(µ) I
I X̄(µ)

])
≤ n, rank

([
Y I
I Ȳ

])
≤ n, (17)

rank

([
Z I
I Z̄

])
≤ n, (18)

where

G11(ξ, µ) = −2X(µ)−
M∑

ν=1,ν 6=µ

X(ν),

G12(ξ, µ) = I + ε [Aξ(µ) +Adξ(µ)]
T
, G22(ξ, µ) = −X̄(µ),

G13(ξ, µ) = [(1 + q̄µ1)I (1 + q̄µ2)I · · · (1 + q̄µM )I] ,

G33(ξ, µ) = −diag
[
X̄(1), X̄(2), · · · , X̄(M)

]
,

G14(ξ, µ) =
√

2τX(µ)Adξ(µ), G15(ξ, µ) =
√
τεATξ (µ),

G16(ξ, µ) =
√
τεI,

ξ = 1, · · · , $, % = 1, · · · , $, then the free system in (1)
is robustly stochastically stable with the probability rate
matrix given by Q = 2

ε Q̄.

Proof. Multiplying both sides of the inequality (15) by
αξ yields that

αξΞξ(µ) < 0, ξ = 1, · · · , $. (19)

Then we have
$∑
ξ=1

αξΞξ(µ) < 0, shown at the bottom of

this page, where

$∑
ξ=1

αξΞξ(µ) =



$∑
ξ=1

αξG11(ξ, µ)
$∑
ξ=1

αξG12(ξ, µ)
$∑
ξ=1

αξG13(ξ, µ)
$∑
ξ=1

αξG14(ξ, µ)
$∑
ξ=1

αξG15(ξ, µ)
$∑
ξ=1

αξG16(ξ, µ)

∗
$∑
ξ=1

αξG22(ξ, µ) 0 0 0 0

∗ ∗
$∑
ξ=1

αξG33(ξ, µ) 0 0 0

∗ ∗ ∗
$∑
ξ=1

αξ(−Y ) 0 0

∗ ∗ ∗ ∗
$∑
ξ=1

αξ(−Ȳ ) 0

∗ ∗ ∗ ∗ ∗
$∑
ξ=1

αξ(−Z̄)
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$∑
ξ=1

αξG11(ξ, µ) = −2X(µ)−
M∑

ν=1,ν 6=µ

X(ν),

$∑
ξ=1

αξG12(ξ, µ) = I + ε [A(µ) +Ad(µ)]
T
,

$∑
ξ=1

αξG22(ξ, µ) = −X̄(µ),

$∑
ξ=1

αξG13(ξ, µ) = [(1 + q̄µ1)I (1 + q̄µ2)I · · · (1 + q̄µM )I] ,

$∑
ξ=1

αξG33(ξ, µ) = −diag
[
X̄(1), X̄(2), · · · , X̄(M)

]
,

$∑
ξ=1

αξG14(ξ, µ) =
√

2τX(µ)Ad(µ),

$∑
ξ=1

αξG15(ξ, µ) =
√
τεAT (µ),

$∑
ξ=1

αξG16(ξ, µ) =
√
τεI,

$∑
ξ=1

αξ(−Y ) = −Y,

$∑
ξ=1

αξ(−Ȳ ) = −Ȳ ,
$∑
ξ=1

αξ(−Z̄) = −Z̄.

That is, the inequality (7) holds. On the other hand, the
inequality (16) implies

ATd (µ)Y Ad(µ) =

$∑
ξ=1

$∑
%=1

αξα%A
T
dξ(µ)Y Ad%(µ)

≤
$∑
ξ=1

$∑
%=1

αξα%Z = Z. (20)

That is, the inequality (8) holds. Therefore, based on The-
orem 5, the free time-delay system in (1) with polytopic
uncertainties (14) is robustly stochastically stable if the
probability rate matrix is chosen as Q = 2

ε Q̄. 2

4. STABILIZATION VIA PROBABILITY RATE
SYNTHESIS AND STATE FEEDBACK

In this section, we are concerned with the problem of de-
signing a stabilizing state feedback controller (4) and a cor-
responding probability rate matrix Q for the system (1).
Firstly, applying the controller (4) to the system (1) yields
the following closed-loop system:

ẋ(t) = (A(η(t)) +B(η(t))K(η(t)))x(t) +Ad(η(t))x(t− τ),
(21)

x(t) = %(t), ∀t ∈ [−τ, 0]. (22)

Then we give the following Theorem 7 which provides
a sufficient condition for the design of a state feedback
stabilizing controller (4) and a corresponding probability
rate matrix Q.

Theorem 7. Given the time delay τ > 0. If there exist
positive definite matrices X(µ) > 0, X̄(µ) > 0, µ ∈ M,
Y > 0, Ȳ > 0, Z > 0, Z̄ > 0, a positive scalar ε > 0,
a Metzler matrix Q̄ = [q̄µν ] ∈ RM×M and matrices

K̃(µ) ∈ Rm×n, µ ∈ M, such that the following rank
constrained LMIs hold:



G11(µ) G12(µ) G13(µ) G14(µ) G15(µ) G16(µ) G17(µ)
∗ G22(µ) 0 0 0 0 0
∗ ∗ G33(µ) 0 0 0 0
∗ ∗ ∗ G44(µ) 0 0 0
∗ ∗ ∗ ∗ G55(µ) 0 0
∗ ∗ ∗ ∗ ∗ G66(µ) 0
∗ ∗ ∗ ∗ ∗ ∗ G77(µ)

 < 0,

(23)

ATd (µ)Y Ad(µ) ≤ Z, (24)

rank

([
X(µ) I
I X̄(µ)

])
≤ n, (25)

rank

([
Y I
I Ȳ

])
≤ n, rank

([
Z I
I Z̄

])
≤ n, (26)

where

G11(µ) = −3X(µ)−
M∑

ν=1,ν 6=µ

X(ν),

G12(µ) = I + ε [A(µ) +Ad(µ)]
T
,

G13(µ) = I +
[
B(µ)K̃(µ)

]T
,

G22(µ) = G33(µ) = −X̄(µ),

G14(µ) = [(1 + q̄µ1)I (1 + q̄µ2)I · · · (1 + q̄µM )I] ,

G44(µ) = −diag
[
X̄(1), X̄(2), · · · , X̄(M)

]
,

G15(µ) =
√

2τX(µ)Ad(µ), G55(µ) = −Y,

G16(µ) =
√
τ
[
εA(µ) +B(µ)K̃(µ)

]T
, G66(µ) = −Ȳ ,

G17(µ) =
√
τεI, G77(µ) = −Z̄,

then the closed-loop system (21), (22) is stochastically

stable if the controller is chosen to be K(µ) = ε−1K̃(µ),
µ ∈ M and the probability rate matrix is chosen to
be Q = 2

ε Q̄.

Proof. By Lemma 4, if there exist positive matrices
P (µ) > 0, µ ∈ M, R > 0, R1 > 0, such that the following
inequalities hold:

[A(µ) +B(µ)K(µ) +Ad(µ)]
T
P (µ)

+ P (µ) [A(µ) +B(µ)K(µ) +Ad(µ)] +

M∑
ν=1

qµνP (ν)

+ τ
[
(A(µ) +B(µ)K(µ))TR(A(µ) +B(µ)K(µ)) +R1

]
+ 2τP (µ)Ad(µ)R−1ATd (µ)P (µ) < 0, (27)

ATd (µ)RAd(µ) ≤ R1, (28)

then the closed-loop system (21), (22) is stochastically
stable.

On the other hand, the inequality (27) holds if and only
if the following inequality holds for some sufficiently small
scalar ε > 0.

[A(µ) +Ad(µ)]
T
P (µ) + P (µ) [A(µ) +Ad(µ)]

+ [B(µ)K(µ)]
T
P (µ) + P (µ)B(µ)K(µ)

+

M∑
ν=1

qµν
2
P (ν) +

M∑
ν=1

qµν
2
P (ν) + ε

M∑
ν=1

(qµν
2
P (ν)

qµν
2

)
+
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ε [A(µ) +Ad(µ)]
T
P (µ) [A(µ) +Ad(µ)]

+ ε [B(µ)K(µ)]
T
P (µ)B(µ)K(µ)

+ 2τP (µ)Ad(µ)R−1ATd (µ)P (µ)+

τ
[
(A(µ) +B(µ)K(µ))TR(A(µ) +B(µ)K(µ)) +R1

]
< 0.
(29)

By Schur complement equivalence, the inequality (29) is
equivalent to the following inequality:
H11(µ) H12(µ) H13(µ) H14(µ) H15(µ) H16(µ) H17(µ)
∗ H22(µ) 0 0 0 0 0
∗ ∗ H33(µ) 0 0 0 0
∗ ∗ ∗ H44(µ) 0 0 0
∗ ∗ ∗ ∗ H55(µ) 0 0
∗ ∗ ∗ ∗ ∗ H66(µ) 0
∗ ∗ ∗ ∗ ∗ ∗ H77(µ)

 < 0,

(30)

where

H11(µ) = −3ε−1P (µ)− ε−1
M∑

ν=1,ν 6=µ

P (ν),

H12(µ) = I + ε [A(µ) +Ad(µ)]
T
,

H13(µ) = I + ε [B(µ)K(µ)]
T
,

H22(µ) = H33(µ) = −εP−1(µ),

H14(µ) =
[
(1 +

ε

2
qµ1)I (1 +

ε

2
qµ2)I · · · (1 +

ε

2
qµM )I

]
,

H44(µ) = −diag
[
εP−1(1), εP−1(2), · · · , εP−1(M)

]
,

H15(µ) =
√

2τε−1P (µ)Ad(µ), H55(µ) = −ε−2R,
H16(µ) =

√
τε [A(µ) +B(µ)K(µ)]

T
, H66(µ) = −ε2R−1,

H17(µ) =
√
τεI, H77(µ) = −ε2R−11 .

On the other hand, the inequality (28) holds if and only if
the following inequality holds:

ATd (µ)
(
ε−2R

)
Ad(µ) ≤ ε−2R1, (31)

By defining X(µ) = ε−1P (µ), X̄(µ) = εP−1(µ), q̄µν =
ε
2qµν , Y = ε−2R, Ȳ = ε2R−1, Z = ε−2R1, Z̄ = ε2R−11 ,

K̃(µ) = εK(µ), µ ∈ M, in the inequalities (30), (31), we
see that the inequalities (30), (31) can be reformulated as
the inequalities (23), (24) with matrix equality constraints
X(µ)X̄(µ) = I, Y Ȳ = I, ZZ̄ = I. Note that these matrix
equality constraints are in fact equivalent to the rank
constraints (25), (26). Therefore, if the inequalities (23),
(24), (25), (26) hold, then the inequalities (27), (28) hold.
By Lemma 4, the resulting closed-loop system (21), (22) is

stochastically stable if the controller is K(µ) = ε−1K̃(µ),
µ ∈M and the probability rate matrix is Q = 2

ε Q̄. 2

Similarly, Theorem 7 can be extended to the time-delay
system (1) with polytopic uncertainties. To illustrate this,
we assume that the system (1) has the following polytopic
uncertainties:

[A(µ) Ad(µ) B(µ)] =

$∑
ξ=1

αξ [Aξ(µ) Adξ(µ) Bξ(µ)] , (32)

where µ ∈ M, αξ ≥ 0,
∑$
ξ=1 αξ = 1. Then we have the

following corollary.

Corollary 8. Given the time delay τ > 0. For the time-
delay system in (1) with polytopic uncertainties (32), if
there exist positive definite matrices X(µ) > 0, X̄(µ) > 0,
µ ∈ M, Y > 0, Ȳ > 0, Z > 0, Z̄ > 0, a positive scalar

ε > 0, a Metzler matrix Q̄ = [q̄µν ] ∈ RM×M and matrices

K̃(µ) ∈ Rm×n, µ ∈ M, such that the following rank
constrained LMIs hold:

Ξξ(µ) =



G11(ξ, µ) G12(ξ, µ) G13(ξ, µ) G14(ξ, µ)
∗ G22(ξ, µ) 0 0
∗ ∗ G33(ξ, µ) 0
∗ ∗ ∗ G44(ξ, µ)
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

G15(ξ, µ) G16(ξ, µ) G17(ξ, µ)
0 0 0
0 0 0
0 0 0

G55(ξ, µ) 0 0
∗ G66(ξ, µ) 0
∗ ∗ G77(ξ, µ)

 < 0,

(33)

Πξ,%(µ) = ATdξ(µ)Y Ad%(µ) ≤ Z, (34)

rank

([
X(µ) I
I X̄(µ)

])
≤ n, (35)

rank

([
Y I
I Ȳ

])
≤ n, rank

([
Z I
I Z̄

])
≤ n, (36)

where

G11(ξ, µ) = −3X(µ)−
M∑

ν=1,ν 6=µ

X(ν),

G12(ξ, µ) = I + ε [Aξ(µ) +Adξ(µ)]
T
,

G13(ξ, µ) = I +
[
Bξ(µ)K̃(µ)

]T
,

G22(ξ, µ) = G33(µ) = −X̄(µ),

G14(ξ, µ) = [(1 + q̄µ1)I (1 + q̄µ2)I · · · (1 + q̄µM )I] ,

G44(ξ, µ) = − diag
[
X̄(1), X̄(2), · · · , X̄(M)

]
,

G15(ξ, µ) =
√

2τX(µ)Adξ(µ), G55(µ) = −Y,

G16(ξ, µ) =
√
τ
[
εAξ(µ) +Bξ(µ)K̃(µ)

]T
, G66(µ) = −Ȳ ,

G17(ξ, µ) =
√
τεI, G77(ξ, µ) = −Z̄,

ξ = 1, · · · , $, % = 1, · · · , $, then the closed-loop sys-
tem (21), (22) is stochastically stable if the controller is

chosen to be K(µ) = ε−1K̃(µ), µ ∈M and the probability
rate matrix is chosen to be Q = 2

ε Q̄.

Proof. The proof is very similar to the proof of Corol-
lary 6, hence is omitted here. 2

Remark 9. It is worth noting that, in both Theorem 5
and Theorem 7, an implicit equality constraint exists as
follows:

q̄µµ = −
M∑

ν=1,ν 6=µ

q̄µν , µ ∈M.

To eliminate this equality constraint, one may replace
G13(µ) in (7) and G14(µ) in (23) by the following:

T (µ) = [(1 + q̄µ1)I · · · (1 + q̄µ(µ−1))I (1−
M∑

ν=1,ν 6=µ

q̄µν)I

(1 + q̄µ(µ+1))I · · · (1 + q̄µM )I].

Remark 10. Although the rank constrained LMI prob-
lem (23), (24), (25), (26) is generally NP-hard, several
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numerical methods have been proposed for this prob-
lem, such as, alternating projections method (Grigori-
adis and Skelton [1996]); sequential semidefinite pro-
gramming (Fares et al. [2002]); augmented Lagrangian
method (Fares et al. [2001]); cone complementarity lin-
earization algorithm (Ghaoui et al. [1997]); Newton-like
method (Orsi et al. [2006]). In the numerical example,
we use the Newton-like method suggested in Orsi et al.
[2006] to solve our problem. The corresponding Matlab
toolbox LMIRank can be downloaded for free at the au-
thor’s homepage (Orsi [2005]). Although this algorithm
is not guaranteed to find a solution in all cases, it can be
quite effective and often yields good results in applications;
see Orsi et al. [2006] for details.

5. NUMERICAL EXAMPLE

In this section, we consider the stabilization problem of
a Markovian jump system with constant time delay as
follows:

A(1) =

[
−1 0
0 −2

]
, A(2) =

[
−2 2
0 −1

]
, B(1) =

[
0.2
1

]
,

A(3) =

[
0.1 1
0.3 −0.5

]
, Ad(1) =

[
−1 0
0.5 1

]
, B(2) =

[
1
−1

]
Ad(2) =

[
1 1
0 −1

]
, Ad(3) =

[
−1 0
0.5 1.5

]
, B(3) =

[
0.1
0.8

]
.

The time delay τ = 0.25. By using Theorem 7, a feasible
state feedback controller is found to be

K(1) = [−2.6951 −11.5792] ,

K(2) = [−4.4455 7.5539] ,

K(3) = [−1.4005 −10.6123] ,

and the corresponding probability rate matrix is found to
be

Q =

[−10.494245 4.730089 5.764156
0.017226 −5.404557 5.387331
0.017226 0.017226 −0.034452

]
.

After obtaining the probability rate matrix Q and the
feedback controllers K(µ), µ = 1, 2, 3, we can deduce
the stability of the resulting closed-loop system using the
results in Theorem 7.

6. CONCLUSION

In this paper, we have studied the stabilization problem
for a class of Markovian jump systems with constant time
delays. A sufficient condition based on rank constrained
linear matrix inequalities is proposed for the design of state
feedback control laws and probability rate matrices. We
also provide a numerical example to show the effectiveness
of the proposed results.
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