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Abstract: Robust stability analysis is investigated for discrete-time linear systems with rational depen-
dency with respect to polytopic type uncertainties. Two type of uncertainties are considered: constant
parametric uncertainties and time-varying switching uncertainties. Results are in LMI formalism and
proofs involve parameter-dependent, quadratic in the state, Lyapunov functions. The new proposed
conditions are shown to extend and merge two important existing results. Conservatism reduction is
tackled via a model augmentation technique. Numerical complexity is contained by exploiting the
structure of the models with respect to the uncertainties.
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1. INTRODUCTION

In the early 2000, two results have been produced that we aim
at studying and merging in the present paper. Both results con-
sider linear systems with uncertainties of affine polytopic type.
The first one, Peaucelle et al. [2000], that extends results of
Oliveira et al. [1999a,b], is dedicated to robust analysis assum-
ing uncertainties are constant over time. The second, Daafouz
and Bernussou [2001], assumes time-varying uncertainties with
possibly unbounded time-variations. To distinguish both cases,
the former is designated at the the parametric case, while the
latter is the switching uncertainty case. Results of Daafouz and
Bernussou [2001] have indeed been mainly used for the study
of switching systems, see for example Daafouz et al. [2002].
An intermediate case between the two is when uncertainties are
time-varying with bounded rates. This intermediate case is not
considered in the present paper.

In both parametric and switching cases, the upper cited papers
prove stability using Lyapunov certificates of the same poly-
topic type. Results are formulated in terms of a finite number of
LMI constraints, yet these are quite different. The contribution
of the present paper is to explore the links between the two
results. A by product is the illustration that all these results
can be easily extended to systems rationally-dependent on the
polytopic uncertainties. To do so, the contribution is to consider
descriptor type models. The models are such that the E matrix
is parameter-dependent and left-hand side invertible. These two
features for E differ from assumptions in Bara [2011], Barbosa
et al. [2012].

The other difference with the last cited papers is that we provide
conditions that relax the assumption of parameter-indepedent
slack variables. Such assumption happens to be needed only for
parametric uncertainties and can be relaxed when considering
switching uncertainties. The resulting conservatism reduction
is at the expense of increased numerical burden. To limit the
effect of this increased burden, we provide methods that exploit
the structure of the uncertain models. The methods limit the

size of the slack variables. These results are improved versions
of that in Peaucelle [2009].

The outline of the paper is as follows. Preliminaries are devoted
to exposure of the two central results from Peaucelle et al.
[2000] and Daafouz and Bernussou [2001]. The section that
follows is devoted to the main results for rationally uncertainty
dependent switching systems. The fourth section gives the
techniques for reducing the size of LMI problems both in terms
of number of variables and of size of the constraints. The fifth
section treats the mixed switching and parametric uncertainties
case and recalls a simple technique for conservatism reduction.
It is followed by an illustrative numerical example. Some
conclusions are given in the closing section.

2. PRELIMINARIES

Notation: I stands for the identity matrix. AT is the transpose
of the matrixA. {A}S stands for the symmetric matrix {A}S =
A + AT . For a matrix A ∈ Rn×m or rank r, A⊥ ∈ R(n−r)×n

stands for the matrix of maximal rank such that A⊥A =
0. A+ stands for the Moore-Penrose of A. A ≺ B is the
matrix inequality stating that A − B is negative definite. Ξv̄ =
{θv=1...v̄ ≥ 0,

∑v̄
v=1 θv = 1} is the unit simplex in Rv̄ . Its

vertices are the v̄ vectors θ[v] with all zeros coefficients except
one equal to 1.

The considered systems are linear discrete-time:
xk+1 = A(θk)xk (1)

where xk ∈ Rn is the vector state at time k ∈ N. The matrix
A(θk) is assumed to depend of a vector of uncertainties θk ∈
Ξv̄ and is for a start considered to be affine in the uncertainties:

A(θk) =

v̄∑
v=1

θk,vA
[v]. (2)

A[v=1...v̄] are given vertex matrices. The system is said to be
affine polytopic. The important key feature of this uncertain
model is that A(θ) lies for all θ ∈ Ξv̄ in the convex hull of the

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 724



finite number of vertices. This feature allows to prove robust
stability, that is stability for all the infinitely many possibles
realizations of the uncertainties, by LMI feasibility tests that
involve only the vertices.

The state of the art at the end of the twentieth century for ad-
dressing this problem, known as the “quadratic stability” result
of Barmish [1985], was to search for a parameter independent
quadratic Lyapunov function Vk = xTk Pxk and states as fol-
lows:
Theorem 1. If there exists a matrix P = PT � 0 ∈ Rn×n
such that the following LMI conditions hold for all vertices
v = 1 . . . v̄

A[v]TPA[v] − P ≺ 0 (3)
then the uncertain system defined by (1-2) is robustly stable
with respect to any time varying uncertainty θk ∈ Ξv̄ .

Proof The proof is well known. We reproduce it here only for
pedagogical purpose to illustrate that the next to come proofs
follow similar lines. First note that the constraints ATPA −
P ≺ 0 are convex with respect to the matrices A. To check this
fact apply a Schur complement argument to get the equivalent

constraint
[
−P PA
ATP −P

]
≺ 0. It is an affine matrix inequality

with respect to A, hence, convex in A. Assuming (3) holds,
since, as stated upper, it is convex in the A[v]s, the inequality
also holds for any convex combination of the vertices. That is,
for all θk ∈ Ξv̄ one has A(θk)TPA(θk) − P ≺ 0. Pre and
post multiply this inequality by xTk and its transpose to get
along the trajectories of (1) xTk+1Pxk+1 − xTk Pxk < 0 for
all non-zero xk. Stability is hence proved whatever sequence
{θk}k≥0 with the decreasing along trajectories, positive definite
Lyapunov function Vk = xTk Pxk. �

Theorem 1 is known to be conservative. In the case of paramet-
ric (θk = θ constant) conservatism comes from the choice of
a parameter-independent Lyapunov matrix P proving stability
for all values inside the polytopic convex set. A result that
allows to reduce the conservatism is as follows (Peaucelle et al.
[2000])
Theorem 2. If there exist v̄ matrices P [v] = P [v]T � 0 ∈
Rn×n and a matrix G ∈ R2n×n such that the following LMI
conditions hold for all vertices v = 1 . . . v̄[

P [v] 0

0 −P [v]

]
≺
{
G
[
I −A[v]

]}S
(4)

then the uncertain system defined by (1-2) is robustly stable
with respect to any parametric uncertainty θk = θ ∈ Ξv̄ .
Moreover, if conditions (3) hold, then conditions (4) hold as
well.

Proof The proof of robust stability starts as upper by noticing
that the LMI constraints are affine, and hence convex, in both
the matrices P [v] and A[v]. Defining the affine polytopic matrix
P (θ) =

∑v̄
v=1 θvP

[v] one therefore gets for all θ ∈ Θ:[
P (θ) 0

0 −P (θ)

]
≺ {G [ I −A(θ) ]}S .

Pre and post multiply this matrix inequality by
(
xTk+1 x

T
k

)
and its transpose respectively to get exactly xTk+1P (θ)xk+1 −
xTk P (θ)xk < 0 along non zero trajectories of (1). Proof of sta-
bility is as upper but with the parameter-dependent Lyapunov
function Vk(θ) = xTk P (θ)xk.

Now we prove that conditions (4) are no more conservative
than that of (3). Assume the latter hold and apply the Schur

complement argument to get
[
−P PA[v]

A[v]TP −P

]
≺ 0. This

inequality happens to be exactly that of (4) when choosing
P [v] = P and GT = [ P 0 ]. �

As seen from the proof, the conservatism reduction of Theorem
2 is thanks to the decoupling of P and A matrices that allows
the introduction of the slack-variables G. Thus obtaining con-
vexity. Yet, if looking at (3) the LMIs are already convex in both
A and P as soon as one or the other is fixed. This fact is at the
core of the following result:
Theorem 3. If there exist v̄ matrices P [v] = P [v]T � 0 ∈
Rn×n such that the following LMI conditions hold for all pairs
of vertices v = 1 . . . v̄, w = 1 . . . v̄

A[v]TP [w]A[v] − P [v] ≺ 0 (5)

then the uncertain system defined by (1-2) is robustly stable
with respect to any time-varying uncertainty θk ∈ Ξv̄ . More-
over, if conditions (3) hold, then conditions (5) hold as well.

This result is originated from Daafouz and Bernussou [2001].
As a matter of fact, in that paper the result is not formulated
that simply. It involves some unnecessary additional variables.
As already noticed in Daafouz et al. [2002], and as shown in
the following section these slack variables are useless in this
case. It should be noted as well that Daafouz and Bernussou
[2001] proves that the condition is not only sufficient but also
necessary, as long as one restricts the Lyapunov function to the
following polytopic in the uncertainties, quadratic in the state
form:

Vk(θ) = xTk P (θk)xk : P (θk) =

v̄∑
v=1

θv,kP
[v]. (6)

Proof The proof of robust stability starts as previously in terms
of convexity. First, notice the LMIs are convex in both the
vertex matrices P [v] and A[v] with indexes v. Hence, defining
the affine polytopic matrix P (θk) as in (6), one gets for all
w = 1 . . . v̄ and all θk ∈ Ξv̄:

A(θk)P [w]A(θk)− P (θk) ≺ 0

These inequalities being convex in the matrices P [w], one gets
for all θk ∈ Ξv̄ and all θk+1 ∈ Ξv̄

A(θk)P (θk+1)A(θk)− P (θk) ≺ 0.

Pre and post multiply this matrix inequality by xTk and its
transpose respectively to get exactly xTk+1P (θk+1)xk+1 −
xTk P (θk)xk < 0 along trajectories of (1). Proof of stability is
as previously but with the parameter-dependent time-varying
Lyapunov function given in (6).

The last part of the theorem that states that it is no more
conservative than Theorem 1 is trivial taking P [v] = P for all
vertices. �

The goal of this paper is to analyze the links and differences of
the results of Theorems 2 and 3 which both improve results of
Theorem 1 using similar polytopic Lyapunov functions but for
different assumptions on time evolutions of the uncertainty θ.
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3. MAIN RESULTS

3.1 Descriptor models of systems with rationally dependent
switching parameters

Let us consider now that the system (1) depends rationally
of the uncertainties θ. In such case, using classical linear-
fractional transformation (LFT), it can be equivalently rewritten
in the following feedback-loop configuration (see Doyle et al.
[1991]) {

xk+1 = Axk +Bwk,
zk = Cxk +Dk

wk = ∆(θk)zk (7)

where ∆(θ) is affine in the uncertainties and can be written as
∆(θ) =

∑v̄
v=1 θv∆

[v]. By construction, the LFT is said well
posed if the matrix I −D∆(θ) is invertible for all θ ∈ Ξv̄ and
the model (1) is recovered by the following formula:

A(θ) = A+B∆(θ)(I −D∆(θ))−1C

An alternative to that modeling, is the following descriptor
representation in which uncertainties enter in an affine fashion:[

I
0

]
xk+1 +

[
−B∆(θk)
I −D∆(θk)

]
zk =

[
A
C

]
xk.

This model happens to be a sub case of more general descriptor
models as proposed by Coutinho et al. [2002], Masubuchi et al.
[2003] :

Ex(θk)xk+1 + Eπ(θk)πk = F (θk)xk (8)
where π ∈ Rq are fictive signals used for rendering the model
affine. All matrices may be considered as affine polytopic

[Ex(θ) Eπ(θ) −F (θ) ] =

v̄∑
v=1

θv
[
E[v]
x E[v]

π −F [v]
]
. (9)

In the present paper, we consider only systems that are origi-
nally in non-descriptor form. In such case, as seen upper when
considering models issued from well-posed LFT representa-
tions, the matrix E(θ) = [Ex(θ) Eπ(θ) ] is square and invert-
ible for all θ ∈ Ξv̄ . This assumption guarantees that xk+1 and
πk are well defined for all k, and that the system is causal with-
out impulsive modes. Extensions to more general descriptor
models are possible following the lines of Bara [2011], Barbosa
et al. [2012].

3.2 Slack variables result

Theorem 4. If there exist 2v̄ matrices P [v] = P [v]T � 0 ∈
Rn×n, G[v] ∈ R(2n+q)×(n+q) such that the following LMI
conditions hold for all pairs of vertices v = 1 . . . v̄, w = 1 . . . v̄ P [w] 0 0

0 0 0

0 0 −P [v]

 ≺ {G[w]
[
E[v]
x E[v]

π −F [v]
]}S

(10)

then the uncertain system defined by (8-9) is robustly stable
with respect to any time-varying uncertainty θk ∈ Ξv̄ .

Proof The LMIs are convex in both the vertex matrices P [v],
E

[v]
x , E[v]

π and F [v] with indexes v. Hence, defining the affine
polytopic matrix P (θk) as in (6) one gets for all w = 1 . . . v̄
and all θk ∈ Ξv̄: P [w] 0 0

0 0 0
0 0 −P (θk)

 ≺ {G[w] [Ex(θk) Eπ(θk) −F (θk) ]
}S

.

These inequalities being convex in the matrices P [w] and G[w],
defining G(θk+1) =

∑w̄
w=1 θw,k+1G

[w] one gets for all θk ∈
Ξv̄ and all θk+1 ∈ Ξv̄[

P (θk+1) 0 0
0 0 0
0 0 −P (θk)

]
≺ {G(θk+1) [Ex(θk) Eπ(θk) −F (θk) ]}S .

Pre and post multiply this matrix inequality by
(
xTk+1 π

T
k xTk

)
and its transpose respectively to get exactly xTk+1P (θk+1)xk+1−
xTk P (θk)xk < 0 along trajectories of (8). �

As illustrated by the proof, Theorem 4 is a direct extension
of Theorem 3 for rationally-dependent uncertain systems. The
extension is made possible thanks to the affine descriptor mod-
eling of the systems and by introducing as in Theorem 2 some
slack variables. A question that arises naturally is whether the
additional variables are necessary or do they artificially com-
plexify the numerical problem to solve. The following section
aims at giving some answers to this question.

Before that, let us study the conservatism of Theorem 4. One
source of conservatism is the choice of a quadratic in the
state Lyapunov function Vk(θ) = xTk P (θk)xk. Assuming this
choice is done, let us look at the other possible sources of
conservatism. Lyapunov stability implies that for all θk ∈ Ξv̄
and θk+1 ∈ Ξv̄ the following quadratic form is negative for all
vectors satisfying the linear constraint:

ηTk

[
P (θk+1) 0 0

0 0 0
0 0 −P (θk)

]
ηk < 0

∀ηk =

(
xk+1

πk
xk

)
6= 0 : [Ex(θk) Eπ(θk) −F (θk) ] ηk = 0.

Equivalently, by Finsler lemma (see Skelton et al. [1998]), it
writes as the existence of a parameter-dependent G(θk, θk+1)
matrix such that[

P (θk+1) 0 0
0 0 0
0 0 −P (θk)

]
≺ {G(θk, θk+1) [Ex(θk) Eπ(θk) −F (θk) ]}S .

The second source of conservatism appears at this point.
It amounts to looking for θk independent slack matrices
G(θk, θk+1) = G(θk+1). Assume this conservative choice is
made. Let P [v] = P (θ[v]) andG[w] = G(θ[w]) be the parameter
dependent matrices evaluated at the vertices of the simplex.
Since the upper defined conditions holds for all θk ∈ Ξv̄ and
θk+1 ∈ Ξv̄ it also holds for all pairs of vertices v = 1 . . . v̄,
w = 1 . . . v̄ which is exactly the condition of Theorem 4.

As for the classical slack variable results of Theorem 2 the
upper discussion indicates that the only source of conservatism
comes from imposing the parameter-dependent slack variable
G not to depend of the uncertainties. Here the restriction is
only on part of this dependency: dependency to the current
uncertainty value θk. The fact that the Lyapunov matrix is
of affine polytopic-type is a consequence of this choice. That
constatation is classical to slack variable results (see for exam-
ple Oliveira and Geromel [2005]) and is extended here to the
switching uncertainty case.
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4. REDUCING DIMENSIONS OF LMI

First, let us consider the formula (10) applied to the case of
affine polytopic uncertain systems (1-2) it reads as follows:[

P [w] 0

0 −P [v]

]
≺
{
G[w]

[
I −A[v]

]}S
. (11)

When compared to (5) the LMIs contain many more decision
variables and are of doubled size. The upper formulated ques-
tion is whether this increased numerical complexity is useful in
terms of conservatism reduction or not. The answer is clearly
no. Indeed, pre and post multiply (11) by

[
A[v]T I

]
and its

transpose respectively. The result is exactly (5). Conversely,
assume (5) holds, then, by a Schur complement argument it
reads equivalently as[

−P [w] P [w]A[v]

A[v]TP [w] −P [v]

]
≺ 0

which is exactly (11) for the choiceG[w]T =
[
P [w] 0

]
. Condi-

tions (5) and (11) are equivalent and the former is preferable nu-
merically since it is of reduced dimensions and contains much
less decision variables. This same discussion also applies to the
results given in Daafouz and Bernussou [2001]. The additional
variables it contains are useless, at least for the stability analysis
issue.

4.1 Parameter-independent columns

The upper discussion is now generalized allowing to reduce
systematically the size of the LMIs (10). Unfortunately, except
for the upper case of affine systems (1-2), we were not able to
prove that the procedure is fully lossless. The overall procedure
contains two steps. The first one concerns parameter indepen-
dent columns of the E(θ) matrix. It may be conservative in
some cases. The second one, that is exposed later on, is lossless
and concerns parameter-independent rows.
Lemma 5. Assume there exists an invertible matrix T such that
for all v = 1 . . . v̄

E[v]T =
[
E[v]
x E[v]

π

]
T =

[
E1 E

[v]
2

]
, E1 ∈ R(n+q)×p.

Based on this factorization define

N
[v]
1 = E+

1

[
E

[v]
2 −F [v]

]
, N

[v]
2 = E⊥1

[
E

[v]
2 −F [v]

]
.

Moreover, let the following notations[
M11(P [w]) M12(P [w])

MT
12(P [w]) M22(P [w])

]
= TT

[
P [w] 0

0 0

]
T , M11 ∈ Rp×p

M̂(P [w], P [v]) =

M11(P [w]) M12(P [w]) 0

MT
12(P [w]) M22(P [w]) 0

0 0 −P [v]


If the following LMIs in the decisions variables P [v] =

P [v]T � 0 ∈ Rn×n, Ĝ[v] ∈ R(2n+q−p)×(n+q−p) hold for all
all pairs of vertices v = 1 . . . v̄, w = 1 . . . v̄[

N
[v]
1
−I

]T
M̂(P [w], P [v])

[
N

[v]
1
−I

]
≺
{
Ĝ[w]N

[v]
2

}S
(12)

then conditions of Theorem 4 are feasible, and hence the
uncertain system defined by (8-9) is robustly stable with respect
to any time-varying uncertainty θk ∈ Ξv̄ .

Proof Starting from conditions (12) by a small perturbation
argument, one gets that there exists ε > 0 such that:

[
N

[v]
1
−I

]T M11(P [w]) + εI M12(P [w]) 0

MT
12(P [w]) M22(P [w]) 0

0 0 −P [v]

[N [v]
1
−I

]
≺
{
Ĝ[w]N

[v]
2

}S
.

Applying a Schur complement argument, it reads also as[
−(M11(P [w]) + εI) −(M11(P [w]) + εI)N

[v]
1

−N [v]T
1 (M11(P [w]) + εI) (∗)

]
≺ 0

where the bottom-right block is (∗) =[
M22(P [w]) 0

0 −P [v]

]
−
{
Ĝ[w]N

[v]
2 +

[
MT

12(P [w])
0

]
N

[v]
1

}S
.

After some manipulations the inequalities also write as

M̂(P [w], P [v]) ≺
{
Ğ[w]

[
E1 E

[v]
2 −F [v]

]}
−

[
εI 0 0
0 0 0
0 0 0

]

where Ğ[w] =

 (M11(P [w]) + εI)E+
1

Ĝ[w]E⊥1 +

[
MT

12(P [w])
0

]
E+

1

 . The final

step of the proof needs to pre and post multiply the inequality

by T̆T =

[
T−T 0

0 I

]
and T̆ respectively. It implies exactly (10)

with G[w] = T̆T Ğ[w]. �

The reduction of numerical complexity from Theorem 4 to
Lemma 5 can be measured in terms of number of decisions
variables and number of rows of the LMIs. The difference of
the number of variables is

v̄((3n+ 2q)p− p2)

which is positive since p ≤ n + q. The reduction of the
number of rows in the LMIs is v̄2p. These values are non
negligible, especially when the number of vertices v̄ is large.
It is often the case, for example when the model is composed of
N independent parameters in intervals. In that case v̄ = 2N .

4.2 Parameter-independent rows

The upper defined method for reducing the dimensions of
the LMI problem is based on a factorization of the E(θ)
matrix taking advantage of parameter independent columns.
That procedure can be combined with the next lemma that takes
advantage of possible knowledge about parameter independent
rows.
Lemma 6. Assume there exists an invertible matrix S such that
for all v = 1 . . . v̄

S
[
E[v]
x E[v]

π −F [v]
]

=

[
F1

F
[v]
2

]
,

rank(F1) = r

F1 ∈ Rs×(2n+q)

then the conditions of Theorem 4 are feasible, if and only
if, there exists P [v] = P [v]T � 0 ∈ Rn×n, G̃[v] ∈
R(2n+q−r)×(n+q−s) such that the following conditions hold for
all pairs of vertices v = 1 . . . v̄, w = 1 . . . v̄

XT

 P [w] 0 0
0 0 0

0 0 −P [v]

X ≺ {G̃[w]F
[v]
2 X

}S
(13)

whereX = FT⊥T1 ∈ R(2n+q)×(2n+q−r) is such that F1X = 0.
Lemma 7. Assume there exists an invertible matrix S̃ such that
for all v = 1 . . . v̄

SN
[v]
2 =

[
F1

F
[v]
2

]
,

rank(F1) = r

F1 ∈ Rs×(2n+q−p)
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then the conditions of Lemma 5 are feasible, if and only
if, there exists P [v] = P [v]T � 0 ∈ Rn×n, G̃[v] ∈
R(2n+q−p−r)×(n+q−p−s) such that the following conditions
hold for all pairs of vertices v = 1 . . . v̄, w = 1 . . . v̄

XT

[
N

[v]
1
−I

]T
M̂(P [w], P [v])

[
N

[v]
1
−I

]
X ≺

{
G̃[w]F

[v]
2 X

}S
(14)

where X = FT⊥T1 ∈ R(2n+q−p)×(2n+q−p−r) is such that
F1X = 0.

Proof Only the proof of Lemma 7 is detailed. The proof of
Lemma 6 follows exactly the same lines.

Fist we prove that (12) implies (14). By definition of S the

right hand side of (12) is
{
Ĝ[w]S−1

[
F1

F
[v]
2

]}S
. Therefore, pre

and post multiplying (12) by XT and X respectively, one gets

exactly (14) with G̃[w] = XT Ĝ[w]S−1

[
0

In+q−p−s

]
.

Conversely, since X is full column rank one has XTX+T = I ,
and (14) can rewritten as:

XT

(
Ψ[v,w] −

{
X+T G̃[w]F

[v]
2

}S)
X ≺ 0

where Ψ[v,w] is the left-hand side term of (12). Finsler lemma
Skelton et al. [1998] implies the existence of positive scalars
ε[v,w] such that

Ψ[v,w] −
{
X+T G̃[w]F

[v]
2

}S
≺ ε[v,w]FT1 F1 ≺ ε[w]FT1 F1.

The right-hand side inequality is obtained taking ε[w] > ε[v,w]

for all v = 1 . . . v̄. This last inequality is exactly (12) for the

choice Ĝ[w] =

[
ε[w]

2
FT1 X+T G̃[w]

]
S. �

Only the reduction of numerical complexity from Theorem 4 to
Lemma 6 is stated since that to Lemma 7 is the combination of
two lemmas but is not the sum of the two. The difference of the
number of variables is

v̄((2n+ q)s+ r(n+ q)− rs)
and the reduction of the number of rows in the LMIs is v̄2r.
Again, these values are non negligible.

5. ROBUSTNESS

In the previous section it is assumed that all uncertainties
are time varying. This is a very general case that includes
the case of constant, parametric, uncertainties. But, as seen
in the preliminaries, there exist as well some slack variable
results specific for the situation where all uncertain parameters
are constant. The goal of this subsection is to consider the
combined case when some uncertainties θk ∈ Ξv̄ are time
varying, while other, φ ∈ Ξµ̄ are constant.

The uncertain models are again assumed in descriptor form
Ex(θk, φ)xk+1 + Eπ(θk, φ)πk = F (θk, φ)xk (15)

with left invertible E(θk, φ) = [Ex(θk, φ) Ex(θk, φ) ] for all
uncertainties. The model is considered as affine polytopic in
both the uncertainties

[Ex(θ, φ) Eπ(θ, φ) −F (θ, φ) ]

=

µ̄∑
µ=1

v̄∑
v=1

φµθv
[
E[µ,v]
x E[µ,v]

π −F [µ,v]
]
.

(16)

Without any difficulty, for these models one gets the following
general slack variables result:
Theorem 8. If there exist v̄µ̄ matrices P [µ,v] = P [µ,v]T �
0 ∈ Rn×n and v̄ matrices G[v] ∈ R(2n+q)×(n+q) such that
the following LMI conditions hold for all triples of vertices
µ = 1 . . . µ̄, v = 1 . . . v̄, w = 1 . . . v̄ P [µ,w] 0 0

0 0 0

0 0 −P [µ,v]

 ≺ {G[w]
[
E[µ,v]
x E[µ,v]

π −F [µ,v]
]}S
(17)

then the uncertain system defined by (15-16) is robustly stable
with respect to any time-varying uncertainty θk ∈ Ξv̄ and any
parametric uncertainty φ ∈ Ξµ̄.

The proof follows exactly the lines of the previous ones and
is therefore not reproduced here. Moreover, similar results as
Lemmas 5, 6, 7 are applicable. They are not included in the
manuscript for evident reasons of lack of space.

Theorem 8 is the result that merges the two type of results
defined in the preliminaries. They happen to be complementary
and thanks to the slack variables approach to have a simple
mathematical formulation (at least before applying the lemmas
for numerical complexity reduction).

6. NUMERICAL EXAMPLE

Let the system described by
akyk+2 + b2kyk+1 + akbkyk = 0. (18)

It admits the following usual state-space representation, rational
in the uncertainties ak 6= 0 and bk

xk+1 =

(
yk+2

yk+1

)
=

[
−b2k/ak −bk

1 0

]
xk

and the following affine descriptor representation[
ak 0
0 1
0 0

]
xk+1 +

[
bk
0
1

]
πk =

[
0 0
1 0
bk ak

]
xk.

The uncertainties are assumed to belong to intervals
ak ∈ [ 1 , 2] , bk ∈ [−0.5 , β].

The LMI conditions are tested for different values of β in order
to measure their conservatism.

Conditions of Theorem 4 are feasible up to β1 = 0.81090, the
number of decision variables is 72 and the number of lines of
the LMIs (10) is 80. For values of β larger than 0.81096 the
LMIs are found unfeasible. In between the two given values,
the SDPT3 solver of Toh et al. [1999] does not conclude due to
numerical problems (we used default settings).

Conditions of Lemma 6 are tested. From a theoretical point
of view these are equivalent to that of Theorem 4. Yet, they
are of smaller dimensions (44 variables, 64 rows). This has
the effect of reducing the possible numerical problems. Indeed,
the LMIs are feasible up to β2 = 0.81094 and unfeasible for
β = 0.81095. For results further on, no numerical problems
were found and we therefore give only the upper bounds for
which the LMIs are feasible. They are unfeasible as soon as the
last digit is increased.

For the considered example conditions of Lemma 5 are exactly
the same as those of 6 (at the expense of a permutation of some
rows and columns). Results are hence trivially identical.
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β (nb vars/nb rows) syst. (18) syst. (19)
ak, bk 0.81094 (44/64) 0.84677 (480/1536)
a, bk 0.89027 (28/32) 0.90293 (144/192)
ak, b 0.82658 (28/32) 0.85375 (144/192)
a, b 0.98059 (20/16) 0.99519 (48/24)

Table 1. Summary of the numerical results

Table 1 summarizes results when applying Theorem 8 com-
bined to size reduction technique of Lemma 6. Four cases
are tested for all possible combinations of either switching or
constant parametric uncertainties. The table provides the largest
values of β such that the LMIs are feasible. As expected, com-
paring a switching situation to a parametric one, the range of
admissible values of uncertainties is increased. This is not guar-
anteed by the theoretical results but does hold on the example.

To reduce conservatism a strategy exposed in Ebihara et al.
[2005], Peaucelle et al. [2007] is to apply the LMI tests to an
augmented model. The one considered here is with one added
sample of time ahead:

akyk+2 + b2kyk+1 + akbkyk = 0
ak+1yk+3 + b2k+1yk+2 + ak+1bk+1yk+1 = 0.

(19)

Results for the augmented model are given in the second col-
umn of Table 1. The conservatism reduction is non negligible.
It is at the expense of highly increased numerical burden, in
particular in the al switching uncertainties case.

A simple analysis of the system indicates that the actual robust
bound for constant parameters is β? = 1. It is almost attained
with test on the augmented model. Actual upper bound for the
case of switching parameters are unknown.

7. CONCLUSIONS

The contribution of the paper is to provide a flexible general
methodology for the analysis of discrete-time systems with
uncertainties. Results illustrate the high flexibility of the slack-
variable approach to analyze systems rational in the uncertain-
ties that could be switching (no bounds on their variations),
parametric (constant) or a combination of the two. Results are
shown to be conservative in general and a technique is shown
to provide less conservative results by simply applying the
formulas to models augmented with repeated dynamics further
ahead in time.

The drawback of the slack variable approach is to introduce
many decision variables. As seen on the examples this increase
of the numerical burden comes mainly from the switching
uncertainties. Some lemmas are provided to contain this nu-
merical complexity augmentation. These prove to be efficient
both in reducing the computation time and the robustness to
numerical errors.

8. ACKNOWLEDGMENTS

The authors would like to thank Boris Polyak and Jamal
Daafouz for their positive and valuable feedback about the
contributions discussed in this paper.

REFERENCES

G.I. Bara. Dilated LMI conditions for time-varying polytopic
descriptor systems: the discrete-time case. Int. J. Control, 84
(6):1010–1023, 2011.

K.A. Barbosa, C.E. de Souza, and D. Coutinho. Robust sta-
bility of discrete-time linear descriptor systems with time-
varying uncertainties via parametric Lyapunov function. In
IEEE Conf. Decision and Control, pages 5134–5139, Maui,
December 2012.

B.R. Barmish. Necessary and sufficient condition for quadratic
stabilizability of an uncertain system. J. Optimization Theory
and Applications, 46(4), August 1985.

D. Coutinho, A. Trofino, and M. Fu. Guaranteed cost control
of uncertain nonlinear systems via polynomial Lyapunov
functions. IEEE Trans. on Automat. Control, 47(9):1575–
1580, 2002.

J. Daafouz and J. Bernussou. Parameter dependent Lyapunov
functions for discrete time systems with time varying para-
metric uncertainties. Systems & Control Letters, 43:355–359,
2001.

J. Daafouz, P. Riedinger, and D. Iung. Stability analysis and
control synthesis for switched systems: A switched lyapunov
function approach. IEEE Transactions on Automatic Control,
47(11):1883–1886, 2002.

J. Doyle, A. Packard, and K. Zhou. Review of LFTs, LMIs
and µ. In IEEE Conference on Decision and Control, pages
1227–1232, Brignton, England, December 1991.

Y. Ebihara, D. Peaucelle, D. Arzelier, and T. Hagiwara. Robust
performance analysis of linear time-invariant uncertain sys-
tems by taking higher-order time-derivatives of the states. In
joint IEEE Conference on Decision and Control and Euro-
pean Control Conference, Seville, Spain, December 2005. In
Invited Session ”LMIs in Control”.

I. Masubuchi, T. Akiyama, and M. Saeki. Synthesis of output-
feedback gain-scheduling controllers based on descriptor
LPV system representation. In IEEE Conference on Decision
and Control, pages 6115–6120, December 2003.

M.C. de Oliveira and J.C. Geromel. A class of robust stability
conditions where linear parameter dependence of the lya-
punov function is a necessary condition for arbitrary param-
eter dependence. Systems & Control Letters, 54(11):1131–
1134, 2005.

M.C. de Oliveira, J. Bernussou, and J.C. Geromel. A new
discrete-time stability condition. Systems & Control Letters,
37(4):261–265, July 1999a.

M.C. de Oliveira, J.C. Geromel, and L. Hsu. LMI character-
ization of structural and robust stability: The discrete-time
case. Linear Algebra and its Applications, 296(1-3):27–38,
July 1999b.

D. Peaucelle. Integral quadratic separation applied to polytopic
systems. In IFAC Symposium on Robust Control Design,
Haifa, June 2009.

D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. A
new robust D-stability condition for real convex polytopic
uncertainty. Systems & Control Letters, 40(1):21–30, May
2000.

D. Peaucelle, D. Arzelier, D. Henrion, and F. Gouaisbaut.
Quadratic separation for feedback connection of an uncertain
matrix and an implicit linear transformation. Automatica, 43:
795–804, 2007. doi: 10.1016/j.automatica.2006.11.005.

R.E. Skelton, T. Iwasaki, and K. Grigoriadis. A Unified Ap-
proach to Linear Control Design. Taylor and Francis series
in Systems and Control, 1998.

T.C. Toh, M.J. Todd, and R.H. Tutuncu. SDPT3 - a MATLAB
software package for semidefinite programming. Opti-
mization Methods and Software, 11:545–581, 1999. URL
www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

729


