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Abstract: A reaction network consists of a finite number of species, which interact through
predefined reaction channels. Traditionally such networks were modeled deterministically, but
it is now well-established that when reactant copy numbers are small, the random timing of the
reactions create internal noise that can significantly affect the macroscopic properties of the
system. To understand the role of noise and quantify its effects, stochastic models are necessary.
In the stochastic setting, the population is described by a probability distribution, which evolves
according to a set of ordinary differential equations known as the Chemical Master Equation
(CME). This set is infinite in most cases making the CME practically unsolvable. In many
applications, it is important to determine if the solution of a CME has a globally attracting
fixed point. This property is called ergodicity and its presence leads to several important insights
about the underlying dynamics. The goal of this paper is to present a simple procedure to verify
ergodicity in stochastic reaction networks. We provide a set of simple linear-algebraic conditions
which are sufficient for the network to be ergodic. In particular, our main condition can be cast
as a Linear Feasibility Problem (LFP) which is essentially the problem of determining the
existence of a vector satisfying certain linear constraints. The inherent scalability of LFPs make
our approach efficient, even for very large networks. We illustrate our procedure through an
example from systems biology.
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1. INTRODUCTION

Reaction networks represent a modeling paradigm that
is used in many biological disciplines, such as, systems
biology, epidemiology, pharmacology and ecology. Such
networks were traditionally studied by expressing the dy-
namics as a set of ordinary differential equations. However
these deterministic formulations become inaccurate when
the reactant copy numbers are small. In this case, the dis-
crete nature of the interactions makes the dynamics inher-
ently noisy and this noise can have a significant impact on
the macroscopic properties of the system (see Elowitz et al.
(2002)). To account for this noise and study its effects, a
stochastic formulation of the dynamics is necessary. The
most common approach is to model the dynamics as a
continuous-time Markov process whose states denote the
current population size of the constituent species. Many
recent articles use such stochastic models to understand
the role of noise in various biological phenomena.

Even though stochastic models have become very popular,
the tools for analyzing them are still lacking. Most papers
that use such models have to simulate several trajectories
(using the Stochastic Simulation Algorithm by Gillespie
(1977), for example) in order to determine the relevant

characteristics of the system. Simulation of trajectories
can be computationally demanding, and since one can
only simulate a finite number of trajectories for a finite
amount of time, properties like long-term behaviour can-
not be satisfactorily studied through such simulations.
Our goal in this paper is to overcome this problem and
provide a direct way to examine the long-term behaviour
for the stochastic model, without relying on simulations.
Specifically we check if the underlying Markov process is
ergodic, which is analogous to having a globally attracting
fixed point in the deterministic setting. An ergodic process
has a unique stationary distribution, and in the long-
run, the proportion of time spent by its trajectories in
any set is equal to the stationary probability of that set
(see (7)). Hence information about the whole population
at stationarity can be obtained by observing just one
trajectory for a long time. Such an insight can be used
to leverage different experimental techniques such as flow-
cytometry and time-lapse microscopy, for biological appli-
cations. Ergodicity also implies that certain moments of
the underlying Markov process converge to their steady-
state values with time (see (6)). This can be used to design
biological controllers that steer the moments to specific
steady state values.
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The canonical example of an ergodic reaction network is
the simple birth-death model in which a single chemical
species S undergoes the following two reactions:

∅ θ1→ S
θ2→ ∅,

where θ1, θ2 > 0. For this network, the reaction dynamics
is given by a Markov process (X(t))t≥0 with state space
N0 = {0, 1, 2, . . . }. At any time t, X(t) is the number
of molecules of species S. If X(t) = n, then the next
reaction occurs at time (t+τ), where τ is an exponentially
distributed random variable with rate (θ1 + θ2n). At time
(t + τ) the state jumps by ±1 with probabilities p±(n)
given by

p+(n) =

(
θ1

θ1 + θ2n

)
and p−(n) =

(
θ2n

θ1 + θ2n

)
.

From these probabilities, two observations can be made.
Firstly, the state space N0 is irreducible, which means that
there is a positive probability for reaching any state in N0

from any other state in N0, in a finite time. Secondly, if the
current state X(t) = n is large, the stochastic dynamics
experiences a negative drift in the sense that the next
jump state is more likely to be below n than above n.
Establishing irreducibility of the state space and checking
the negative drift conditions will be the two main steps in
proving ergodicity for a general reaction network.

The approach we present in this paper, relies on some
known results on stochastic processes and it involves
checking simple linear-algebraic conditions. In particular,
we would need to solve Linear Feasibility Problems (LFPs)
of the form :

F = {v ∈ Rn : Av ≤ b and Aeqv = beq} , (1)

for certain matrix-vector pairs (A, b) and (Aeq, beq). We
say that the LFP corresponding to set F has a solution
if this set is non-empty. Many methods are available to
efficiently solve LFPs in very high dimensions. Therefore
our approach can be easily applied to very large networks.

This paper is organized as follows. In Section 2 we provide
some mathematical background. Our main results are
presented in Section 3 and in Section 4 we illustrate our
approach through an example.

Notation : We now introduce some notation that will be
used in the paper. Let R, R+, Z, N and N0 denote the sets
of all reals, nonnegative reals, integers, positive integers
and nonnegative integers respectively. For v, w ∈ Rn we
say v < w or v ≤ w if the corresponding inequality
holds component-wise. The vectors of all zeros and all
ones in Rn are denoted by 0̄n and 1̄n respectively. For
any v = (v1, . . . , vn) ∈ Rn we define its support as
supp(v) = {i = 1, . . . , n : vi 6= 0}. Let M be a m × n
matrix with real entries. We denote its rank by Rank(M).
If C1, . . . , Cn are the columns of M then for any A ⊂ R,
the set ColspanA(M) stands for{

x ∈ Rm : x =

n∑
i=1

aiCi for some a1, . . . , an ∈ A

}
.

For any positive integer n, where In is the n × n identity
matrix. While multiplying a matrix with a vector we
always regard the vector as a column vector.

2. PRELIMINARIES

We start by formally defining the stochastic model of a
reaction network. Consider a system containing molecules
that belong to one of d species S1, . . . ,Sd. We assume that
the system is well-stirred and hence its state at any time
can be described by a vector in Nd0, whose i-th component
is number of molecules of the i-th specie. The species
interact through K predefined reaction channels. For any
k = 1, . . . ,K, the k-th reaction has the form

d∑
i=1

νikSi −→
d∑
i=1

ν′ikSi, (2)

where νik (ν′ik) denotes the number of molecules of species
Si that are consumed (produced) by reaction k. Let νk
and ν′k be vectors in Nd0, given by νk = (ν1k, . . . , νdk)
and ν′k = (ν′1k, . . . , ν

′
dk). When the state of the system

is x = (x1, . . . , xd), the k-th reaction fires after a random
time which is exponentially distributed with rate λk(x)
and it displaces the state by (ν′k − νk). The functions
λ1, . . . , λK are called the propensity functions for the
reaction network. We assume mass action kinetics and
hence each λk is given by

λk(x1, . . . , xd) = θk

d∏
i=1

xi(xi − 1) . . . (xi − νik + 1)

νik!
, (3)

where θk > 0 is the rate constant for the k-th reaction.

The property of ergodicity depends crucially on the choice
of the state space S for the reaction dynamics. We will
later discuss how it can be chosen appropriately. For now,
let S be a non-empty subset of Nd0 which satisfies the
following property : if y ∈ S and λk(y) > 0 for some
k = 1, . . . ,K, then y+ ζk ∈ S. This property ensures that
if the reaction dynamics starts in S then it stays in S
forever. Let (X(t))t≥0 be the Markov process representing
the stochastic reaction dynamics with some initial state
X(0) in S. For any x, y ∈ S let

px(t, y) = P (X(t) = y|X(0) = x) . (4)

Hence px(t, y) is the probability that the reaction dynam-
ics starting at x will be in state y at time t. Defining
px(t, A) =

∑
y∈A px(t, y) for any A ⊂ S, we can view px(t)

as a probability distribution over S. The dynamics of px(t)
is given by the Chemical Master Equation (CME) which
has the following form. For each y ∈ S
dpx(t, y)

dt
=

K∑
k=1

(px(t, y − ζk)λk(y − ζk)− px(t, y)λk(y))

where ζk = ν′k − νk. Observe that this system consists of
as many equations as the number of elements in S, which
is typically infinite and hence solving this system is nearly
impossible.

Note that the CME essentially describes a dynamical
system over the space of probability measures on S. We
are interested in knowing if this dynamical system has a
globally attracting fixed point. Specifically, we would like
to determine if there exists a probability distribution π
over S such that

lim
t→∞

sup
A⊂S
|px(t, A)− π(A)| = 0 for any x ∈ S. (5)

Let (X(t))t≥0 be the Markov process described before.
Relation (5) implies that for any A ⊂ S, the probability

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1712



of the event {X(t) ∈ A} converges to π(A) as t → ∞,
irrespective of the initial state X(0). This is same as
saying that the reaction dynamics (X(t))t≥0 is ergodic
with π as the unique stationary distribution. Ergodicity
implies that for any real-valued function f satisfying∑
y∈S |f(y)|π(y) <∞, we have

lim
t→∞

E(f(X(t))) =
∑
y∈S

f(y)π(y) (6)

Moreover the following limit holds with probability 1

and lim
t→∞

1

t

∫ t

0

f(X(s))ds =
∑
y∈S

f(y)π(y). (7)

Relation (6) can be used to show that the moments of the
reaction dynamics converge to their steady state values
as t → ∞. Relation (7) is just the ergodic theorem for
Markov processes (see Norris (1998)) and it shows that the
stationary distribution of the population can be inferred
by observing a single trajectory of the underlying Markov
process (X(t))t≥0 for a sufficiently long time.

Recall the definition of px(t, y) from (4). We say that a
state y ∈ S is accessible from another state x ∈ S if
px(t, y) > 0 for some t > 0. For the reaction dynamics to be
ergodic it is necessary that the state space S is irreducible,
which means that all the states in S are accessible from
each other. Assuming irreducibility, it follows from the
work of Meyn and Tweedie (1993), that ergodicity can
be checked by showing the existence of a positive function
V on S such that V (x) → ∞ as ‖x‖ → ∞ and for some
c1, c2 > 0, the following holds for all x ∈ S:

K∑
k=1

λk(x) (V (x+ ν′k − νk)− V (x)) ≤ c1 − c2V (x). (8)

In fact, if such a function V exists then the convergence
in (5) is exponentially fast. The left side of (8) is the drift
the process (V (X(t)))t≥0 experiences when X(t) = x.
Relation (8) implies that this drift is negative for large
values of ‖x‖. From now on, we will refer to (8) as the
negative drift condition.

3. MAIN RESULTS

In this section we present our framework for checking
ergodicity in stochastic reaction networks. Our first task
is to select the right state space S, so as to ensure
that it is irreducible under the reaction dynamics. The
most common choice of S is Nd0, which corresponds to
the situation where each species can have any number
of molecules with a positive probability. Of course, this
will not be true if certain species satisfy a conservation
relationship which is preserved by all the reactions. For
example, in some gene-expression networks (see Vilar
et al. (2002)), the active and inactive states of genes are
represented as different species, and hence their will be
conserved throughout the dynamics. When conservation
relationships are present between dc(< d) species, then by
renaming species if necessary, one can often show that the
state space of the form S = Nd−dc0 ×Ec is irreducible, where

Ec is a finite subset of Ndc0 .

Using some recent results from Pauleve et al. (2013), we
show how irreducibility of S can be checked in Section

3.1. For convenience, we separate the two cases mentioned
above, S = Nd0 and S = Nd−dc0 × Ec. Once irreducibility
is established, ergodicity can be verified by checking a
negative-drift condition of the form (8). This is done in
Section 3.2 using ideas that are developed in significantly
greater detail in Briat et al. (2013).

3.1 Checking irreducibility

For the reaction network described in Section 2, we define
its structure to be the set R = {(νk, ν′k) : k = 1, . . . ,K}.
This structure along with the vector of positive rate
constants θ = (θ1, . . . , θK) fully determine the stochastic
reaction dynamics. Irreducibility is a structural property
in the sense that it only depends on the network structure
(R) and not on the rate constants (θ). To see this define

a relation between the states in S as follows : x
R−→ y

if and only if x ≥ νk and y = x + ν′k − νk for some

k = 1, . . . ,K. Let
R∗

−→ be the transitive closure of this

relation. In other words, x
R∗

−→ y if and only if there exist
states z1, z2, . . . , zn−1 for some n ≥ 1 such that

x = z0
R−→ z1

R−→ z2 · · ·
R−→ zn

R−→ zn = y. (9)

For each k = 1, . . . ,K let nk be the number of elements
in the set {i = 1, . . . , n : zi = zi−1 + ν′k − νk}. Then∑K
k=1 nk = n and

y = x+

K∑
k=1

(ν′k − νk)nk. (10)

Observe that the form of the function λk (see (3)) implies
that λk(z) > 0 is equivalent to the condition z ≥ νk.
This shows that when the state is z, the reaction k has
a positive probability of firing if and only if z ≥ νk. Hence

px(t, y) > 0 for some t > 0, if and only if x
R∗

−→ y. This
proves our claim that irreducibility is a structural property.

Let M be the d × K matrix whose k-th column is (ν′k −
νk). Then M is the stoichiometry matrix for the reaction
network with structure R. Suppose there is a non-zero
vector γ ∈ Rd+, in the left null-space of M

γTM = 0̄K . (11)

In this case, 〈γ,X(t)〉 = 〈γ,X(0)〉 for all t ≥ 0, where
(X(t))t≥0 is the Markov process representing the reaction
dynamics. Therefore the species in the set {Si : i ∈
supp(γ)} satisfy a conservation relation and S = Nd0
cannot be irreducible. Of course a non-zero γ satisfying
(11) cannot be present if Rank(M) = d, and in this case
we can expect S = Nd0 to be irreducible. We consider this
situation first and deal with the other situation later.

Networks with no conservation relations : We now
present sufficient conditions to check if S = Nd0 is irre-
ducible for the reaction network. We need to verify that for

every x, y ∈ Nd0 we have x
R∗

−→ y. From (10) it is immediate
that this can only be true if

ColspanN0
(M) = Zd. (12)

Checking (12) directly is computationally difficult. How-
ever (12) is equivalent to having ColspanZ(M) = Zd and
ColspanR+

(M) = Rd (see Theorem 3.4 in Pauleve et al.

(2013)). The first condition, ColspanZ(M) = Zd, can be
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easily checked by computing the Hermite normal form
(see Cohen (1993)) of the matrix M . The Hermite normal
form is an analogue of the row-reduced echelon form for
integer matrices. Assuming Rank(M) = d, it follows from
Theorem 3.6 in Davis (1954) that the second condition,
ColspanR+

(M) = Rd, can be checked by showing that

there exists a vector v ∈ RK with strictly positive entries,
satisfying Mv = 0̄d. Such a vector exists if and only if the
LFP corresponding to

F1 =
{
v ∈ RK : Mv = 0̄d and v ≥ 1̄K

}
(13)

has a solution. Note that this LFP has the form (1) with
A = −IK , b = −1̄K , Aeq = M and beq = 0̄d.

Assuming (12), the analysis in Pauleve et al. (2013) shows
that for some large positive vector z0 ∈ Nd all the states
in the region {z ∈ Nd0 : z ≥ z0} are accessible from each
other. Moreover to prove that Nd0 is irreducible we only
have demonstrate that for some x, x′ ∈ Nd:

0̄d
R∗

−→ x and x′
R∗

−→ 0̄d. (14)

For details, see Theorem 3.8 in Pauleve et al. (2013).

From now on let D = {1, . . . , d} be the set of species and
K = {1, . . . ,K} be the set of reactions. To prove the first
accessibility relation in (14), we need to show that there
exists a sequence of n reactions k1, . . . , kn ∈ K, such that
the cumulative effect of all these n reactions is positive
for each species (that is,

∑n
j=1(ν′kj − νkj ) > 0̄d) and

each intermediate reaction kj has a positive probability of

firing (that is,
∑j−1
l=1 (ν′kl − νkl) ≥ νkj ). Such a sequence of

reactions is difficult to construct for general networks, but
we now present a simple scheme that allows us to easily
check if such a sequence exists for a large class of networks.

Our scheme is motivated by the observation that many
biochemical reaction networks appear like complex cas-
cades of birth-death networks. By this we mean that in
these networks, a certain set of species are produced con-
stitutively due to reactions of the form ∅ −→ Si. These
species then produce another set of species which in turn
produce another set of species and so on. If all the species
are produced this way then one can construct a sequence
of reactions that proves the first accessibility relation in
(14). To make this formal, we arrange the species into
levels according to the minimum number of reactions it
takes for the species to be produced from nothing. Let
H0 = ∅ and for each l = 1, 2, . . . define

Gl ={i ∈ D\Hl−1 : supp(νk) ⊂ Hl−1 and i ∈ supp(ν′k)

for some k ∈ K} and Hl = Hl−1 ∪Gl,
where D\Hl−1 = {i ∈ D : i /∈ Hl−1}. The set Gl contains
all the species at level l and the set Hl contains all the
species that belong to levels 1, . . . , l. We say that a reaction
network with structure R is exhaustive if there exists a
l0 ≥ 1 such that Hl0 = ∪l0l=1Gl = D. The level construction
allows us to prove the following.

Lemma 1. Suppose that a reaction network with structure
R is exhaustive. Then there exists a x ∈ Nd such that

0̄d
R∗

−→ x.

Proof. We prove this lemma by an induction argument.

In this proof we denote the relation
R∗

−→ by −→. We
say that a level l is satisfiable if for any r ∈ Nd0 with
supp(r) ⊂ Hl, we can find a state x such that x ≥ r and

0̄d −→ x. Certainly level 1 is satisfiable, because H1 = G1

consists of those species that are produced from nothing.
Suppose that level (l − 1) is satisfiable. Pick any r ∈ Nd0
with supp(r) ⊂ Hl. We can write it as r = r1 + r2 where
supp(r1) ⊂ Hl−1 and supp(r2) ⊂ Gl. Note that molecules
of species in Gl are produced by consuming molecules
of species in Hl−1. Hence we can find states x, y with
x ≥ r, y ≥ r1 and supp(y) ⊂ Hl−1 such that y −→ x.
Satisfiability of level l−1 implies that there exists a δ ∈ Nd0
such that supp(δ) ⊂ Hl−1 and 0̄d −→ y + δ. But y −→ x
implies that y + δ −→ x + δ and hence 0̄d −→ x + δ.
This shows that level l is satisfiable and by induction we
can conclude that all the levels are satisfiable. Since R is
exhaustive we can find a state x with supp(x) = D such
that 0̄d −→ x. This completes the proof of the lemma.

Using Lemma 1 we can check the first relation in (14).
To check the second relation we consider a reaction net-
work with the inverse structure Rinv = {(ν′k, νk) : k =
1, . . . ,K}, which is obtained by flipping the arrows in (2).

We can define the relation
R∗

inv−→ for this network structure

as above. Note that for any x, y ∈ Nd0, x
R∗

inv−→ y holds if

and only if y
R∗

−→ x holds. Hence the second relation in

(14) can be checked by showing that 0̄d
R∗

inv−→ x′ for some
x′ ∈ Nd. This can again be done using Lemma 1 if the
network with structure Rinv is exhaustive.

The above discussion gives us our main result for checking
the irreducibility of S = Nd0.

Theorem 2. Suppose Rank(M) = d, ColspanZ(M) = Zd
and the LFP corresponding to F1 (see (13)) has a solution.
Also assume that reaction networks with structures R
and Rinv are exhaustive. Then the state space S = Nd0
is irreducible under the reaction dynamics.

Networks with conservation relations : We now come
to the situation when the reaction network has conser-
vation relations. Each conservation relation corresponds
to a non-zero vector γ ∈ Rd+ satisfying (11). We assume
that the network has only one conservation relation, but
our method can be easily extended to cases where many
conservation relations are present.

Let γ be as above and suppose that supp(γ) contains dc
elements, where dc < d. Then the reaction network has dc
conserved species, while the remaining du = d−dc species
are unconserved. By renaming species if necessary, we
can assume that γ = (0, . . . , 0, γdu+1, . . . , γd), and hence
the set of conserved and unconserved species is given by
Dc = {du + 1, . . . , d} and Du = {1, . . . , du} respectively.

Let Ec be the finite subset of Ndc0 defined by

Ec =

{
(x1, . . . , xdc) ∈ Ndc0 :

dc∑
i=1

γdu+ixi = C

}
,

where C is some constant. For each k ∈ K, let ν̄k ∈ Ndu0
and ν̂k ∈ Ndc0 be the vectors containing the first du and
the last dc components of νk. The definitions of ν̄′k and ν̂′k
are similar. Define M̄ to be the du×K matrix whose k-th
column is (ν̄′k − ν̄k).

We now describe a way to show that state space S = Ndu0 ×
Ec is irreducible for the reaction dynamics. For this to hold
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it is necessary that

ColspanN0
(M̄) = Zdu . (15)

This condition can be checked by verifying that Rank(M̄) =
du, ColspanZ(M̄) = Zdu and the LFP corresponding to

F2 =
{
v ∈ RK : M̄v = 0̄du and v ≥ 1̄K

}
(16)

has a solution. Assuming (15), the irreducibility of Ndu0 ×Ec
can be proved by arranging the unconserved species into
levels as before. However the description of levels gets more
complicated because of the presence of conserved species.

For any group of unconserved species A ⊂ Du and any
e ∈ Ec define K(A, e) = {k ∈ K : supp(ν̄k) ⊂ A and e ≥
ν̂k}. This is the set of reactions which have a positive
probability of firing when the molecules of species in A
are abundantly available, and when the dynamics of the
conserved species is at state e. Suppose that the finite
set Ec has nc elements. Then we can write it as Ec =
{e1, . . . , enc

}. For any A ⊂ Du we define a nc × nc matrix
Z(A) as

Zij(A) =

{
1 if ej = ei + ν̂′k − ν̂k for some k ∈ K(A, ei)
0 otherwise.

Note that Zij(A) = 1 if and only if the dynamics of the
conserved species can reach ej from ei due to the firing of
a single reaction in K(A, ei). If we define

Ω(A) = (Inc
+ Z(A))nc−1,

then Ωij(A) > 0 if and only if there exist i1, . . . , in ∈
{1, . . . , nc} such that

Zii1(A) = Zi1i2(A) = · · · = Zin−1in(A) = Zinj(A) = 1.

We can define a relation on Ec as follows : ei ↔A ej if and
only if Ωij(A) = Ωji(A) = 1. This is an equivalence rela-
tion and hence we can partition Ec into η(A) equivalence
classes. An equivalence class C is called closed if for each
i, j ∈ {1, . . . , nc}, if ei ∈ C and Zij(A) = 1 then ej ∈ C.
An equivalence class is called open if it is not closed. Let
C(A) be the collection of all closed equivalence classes
corresponding to the relation↔A. Each closed equivalence
class consists of states of the conserved species that are
accessible from each other given that the molecules of
the unconserved species in A are abundantly available.
For the state space S = Ndu0 × Ec to be irreducible for
the reaction dynamics, it is necessary that when all the
unconserved species are abundantly available (A = Du),
then the relation ↔A induces only one closed equivalence
class that covers the whole set Ec. This necessary condition
can be stated as η(Du) = 1.

We are now ready to classify our unconserved species into
various levels. Let H0 = ∅ and for each l = 1, 2, . . . define

Gl = {i ∈ Du\Hl−1 : for each C ∈ C(Hl−1) there exists a

k ∈ K(Hl−1, C) such that i ∈ supp(ν′k)}
and Hl = Hl−1∪Gl, where K(Hl−1, C) = ∪e∈CK(Hl−1, e).
We say that a reaction network with structure R is
exhaustive if there exists a l0 ≥ 1 such that Hl0 = D.
Analogous to Lemma 1 we get the following result.

Lemma 3. Suppose that a reaction network with structure
R is exhaustive and η(Du) = 1. Then there exists a
x ∈ Ndu such that for any e, f ∈ Ec we have

(0̄du , e)
R∗

−→ (x, f).

Proof. Observe that for any A ⊂ Du, if the dynamics of
the conserved species is at a state which is inside an open
equivalence class of ↔A, then this dynamics will reach a
closed equivalence class after a finite number of transitions.
The proof of this lemma is essentially the same as the
proof of Lemma 1. The only difference is that to produce
the species in Gl one has to choose reactions based on the
current state of the conserved species, which varies due to
transitions inside Ec, but eventually gets trapped inside a
closed equivalence class of ↔Hl−1

.

DefiningRinv as before, we get our main result for checking
the irreducibility of S = Ndu0 × Ec.
Theorem 4. Suppose Rank(M̄) = du, ColspanZ(M̄) =
Zdu , η(Du) = 1 and the LFP corresponding to F2 (see
(16)) has a solution. Also assume that reaction networks
with structures R and Rinv are exhaustive. Then the state
space S = Ndu0 × Ec is irreducible under the reaction
dynamics.

3.2 Checking the negative drift condition

Suppose that the state space of the form S = Ndu0 ×
Ec has been shown to be irreducible under the reaction
dynamics, where the set Ec may be empty. This covers both
the situations discussed in Section 3.1. We also assume
that

∑d
i=1 νik ≤ 2 for each k ∈ K. This implies that

all the reactions are either constitutive (∅ −→ ?), unary
(Si −→ ?) or binary (Si + Sj −→ ?).

Define a set of reactions by Kunr = {k ∈ K :
∑d
i=1 νik =

1 and supp(νk) ⊂ Du}. Each reaction k ∈ Kunr has the
form Si −→ ? for some unconserved species Si. For such a
k define a vector ak = (0, . . . , 0, 1, 0, . . . , 0) ∈ Ndu0 , where
the 1 is at the i-th place. Let Kbin be the set of all binary

reactions Kbin = {k ∈ K :
∑d
i=1 νik = 2} and let Kq be

the number of reactions in Kbin.

Recall that θk is the rate constant for the k-th reaction.
Define a du × d matrix by

A =
∑

k∈Kunr

θkak(ν′k − νk)T .

Let Mq be the d × Kq matrix whose set of columns is
{(ν′k − νk) : k ∈ Kbin}.
Lemma 5. Suppose there exists a vector w ∈ Rd whose
first du components are strictly positive, and w satisfies
Aw < 0̄du and wTMq = 0̄TKq

. Then there exists a positive

function V on S along with constants c1, c2 > 0 such
that V (x) → ∞ as ‖x‖ → ∞, and (8) is satisfied for all

x ∈ S = Ndu0 × Ec.

Proof. Let γ ∈ Rd+ be the vector that characterizes
the conservation relation in the network. The last dc
components of γ are strictly positive, and since γ satisfies
(11) we have Aγ = 0̄du and γTMq = 0̄TKq

. Therefore we

can choose an α > 0 such that the vector v = w + αγ has
all strictly positive components and v satisfies Av < 0̄du
and vTMq = 0̄TKq

. Define the function V : S → (0,∞) by

V (x) = vTx. The relation vTMq = 0̄TKq
implies that for

any k ∈ Kbin, we have V (x + ν′k − νk) − V (x) = (ν′k −
νk)T v = 0. For any k ∈ Kunr, λk(x) = θkx

Tak and for
any k ∈ K′ = {k ∈ K : k /∈ Kunr ∪ Kbin}, the function
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x 7→ λk(x) is bounded on S. Therefore there exists a c1 > 0

such that for all x = (x1, x2) = Ndu0 × Ec, the left side of
(8) is less than

c1 +
∑

k∈Kunr

θkx
T
1 ak(ν′k − νk)T v = c1 + xT1 Av.

Since Av < 0̄du and Ec is finite, we can find a c2 > 0 such
that (8) is satisfied for all x ∈ S. This completes the proof
of the lemma.

Define a (2du)×d matrix by B = [−Idu N ], where N is the
du×dc matrix of zeroes. Observe that a vector w satisfying
the conditions of Lemma 5 exists if and only if the LFP
corresponding to the set

F3 =

{
v ∈ Rd :

[
A
B

]
v ≤ −

[
1̄du
1̄du

]
and MT

q v = 0̄Kq

}
has a solution. This solution, Lemma 5 and Theorem 7.1
in Meyn and Tweedie (1993) prove the ergodicity of the
reaction dynamics giving us our last result.

Theorem 6. Assume that the state space S = Ndu0 × Ec
is irreducible for the reaction dynamics and the LFP
corresponding to F3 has a solution. Then the relation (5)
holds and the stochastic reaction dynamics is ergodic.

4. AN EXAMPLE

To illustrate our procedure for checking ergodicity, we
consider the example of the genetic oscillator described
in Vilar et al. (2002). It has 9 species S1, . . . ,S9 and 16
reactions given in the table below. This network has an

Table 1. List of reactions for genetic oscillator

No. Reaction No. Reaction

1 S6 + S2 −→ S7 9 S2 −→ ∅
2 S7 −→ S6 + S2 10 S9 −→ S9 + S3

3 S8 + S2 −→ S9 11 S8 −→ S8 + S3

4 S9 −→ S8 + S2 12 S3 −→ ∅
5 S7 −→ S7 + S1 13 S3 −→ S3 + S4

6 S6 −→ S6 + S1 14 S4 −→ ∅
7 S1 −→ ∅ 15 S2 + S4 −→ S5

8 S1 −→ S1 + S2 16 S5 −→ S4

activator gene, which may exist in bound (S6) or unbound
(S7) form. Similarly there is a promoter gene which may
also exist in bound (S8) or unbound form (S9). We assume
that one copy of both the genes is present. Hence the sum
of the species numbers of S6 and S7 is 1. The same is
true for species S8 and S9. Note that we have named the
species in the model of Vilar et al. (2002) in such a way,
so that the conserved species are at the end. Even though
our procedure will work for any choice of rate constants
(θk), we set all of them to 1 for convenience.

For this network, the set of unconserved species is Du =
{1, 2, 3, 4, 5}, and there are two disjoint sets of conserved

species D(1)
c = {6, 7} and D(2)

c = {8, 9}. The dynamics
of both sets of conserved species is over the set E =
{(0, 1), (1, 0)}. To prove ergodicity we first need to show
that the state space S = N5

0×E ×E is irreducible. For this
we use Theorem 4, generalized to the case of having two
disjoint sets of conserved species.

Consider the dynamics of species in D(1)
c = {6, 7} over

E . For any A ⊂ Du, the relation ↔A induces only one

closed equivalence class. This class is either E or {(1, 0)}
depending on whether 2 ∈ A or not. By symmetry one can
see that exactly the same holds true for the dynamics of

species in D(2)
c = {8, 9}. With this information we can

arrange the unconserved species into levels as : G1 =
{1, 3}, G2 = {2, 4} and G3 = {5}, which shows that the
network is exhaustive. Similarly for the inverse network
we can arrange the unconserved species into levels as :
G1 = {1, 2, 3, 4} and G2 = {5}, thereby showing that
the inverse network is also exhaustive. Other conditions
of Theorem 4 can be easily checked and hence this result
proves that the state space S = N5

0 × E × E is irreducible.

Now we need to check the negative drift condition. Observe
that Kunr = {7, 8, 9, 12, 13, 14, 16} and Kbin = {1, 3, 15}.
Constructing matrices A,B and Mq from Section 3.2, one
can verify that the vector

v = (2, 1, 2, 1, 2,−0.5, 0.5,−0.5, 0.5)

solves the feasibility problem for F3. Theorem 6 proves
that the reaction dynamics is ergodic with state space
S = N5

0 × E × E .

ACKNOWLEDGEMENTS

The authors thank Corentin Briat for invaluable discus-
sions and helpful suggestions.

REFERENCES

Briat, C., Gupta, A., and Khammash, M. (2013). A
scalable computational framework for establishing long-
term behavior of stochastic reaction networks. Unpub-
lished. Available on arXiv:1304.5404.

Cohen, H. (1993). A course in computational algebraic
number theory, volume 138 of Graduate Texts in Math-
ematics. Springer-Verlag, Berlin.

Davis, C. (1954). Theory of positive linear dependence.
Amer. J. Math., 76, 733–746.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S.
(2002). Stochastic gene expression in a single cell.
Science, 297(5584), 1183–1186.

Gillespie, D.T. (1977). Exact stochastic simulation of
coupled chemical reactions. The Journal of Physical
Chemistry, 81(25), 2340–2361.

Meyn, S.P. and Tweedie, R.L. (1993). Stability of
Markovian processes. III. Foster-Lyapunov criteria for
continuous-time processes. Adv. in Appl. Probab., 25(3),
518–548.

Norris, J.R. (1998). Markov chains, volume 2 of Cam-
bridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, Cambridge. Reprint
of 1997 original.

Pauleve, L., Craciun, G., and Koeppl, H. (2013). Dynam-
ical properties of discrete reaction networks. Unpub-
lished. Available on arXiv:1302.3363.

Vilar, J.M.G., Kueh, H.Y., Barkai, N., and Leibler, S.
(2002). Mechanisms of noise-resistance in genetic os-
cillator. Proc. Natl. Acad. Sci., 99(9), 5988–5992.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1716


