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Abstract:
Recently, several authors have suggested the use of first order methods, such as fast dual ascent
and the alternating direction method of multipliers, for embedded model predictive control. The
main reason is that they can be implemented using simple arithmetic operations only. In this
paper, we present results that enable for significant improvements when using fast dual ascent
for embedded model predictive control. These improvements rely on a new characterization
of the set of matrices that can be used to describe a quadratic upper bound to the negative
dual function. For many interesting formulations, it is shown that the provided bound cannot be
improved and that it is tighter than bounds previously presented in the literature. The improved
quadratic upper bound is used in fast dual gradient methods as an approximation of the
dual function. Since it better approximates the dual function than previous upper bounds, the
convergence is improved. The performance enhancement is most significant for ill-conditioned
problems. This is illustrated by a numerical evaluation on a AFTI-16 aircraft model where the
algorithm outperforms previous proposals of first order methods for embedded control with one
to three orders of magnitude.

1. INTRODUCTION

Several authors including O’Donoghue et al. (2013); Jerez
et al. (2013); Richter et al. (2013); Patrinos and Bemporad
(2014) have recently proposed first order optimization
methods as appropriate for embedded model predictive
control. In O’Donoghue et al. (2013); Jerez et al. (2013),
the alternating direction method of multipliers (ADMM,
see Boyd et al. (2011)) were used and high computational
speeds were reported when implemented on embedded
hardware. In Richter et al. (2013); Patrinos and Bemporad
(2014), the optimal control problems arising in model pre-
dictive were solved using different formulations of fast dual
gradient methods. In Richter et al. (2013), the equality
constraints, i.e. the dynamic constraints, are dualized and
a diagonal cost and box constraints are assumed. The
resulting dual problem is solved using a fast gradient
method. In Patrinos and Bemporad (2014), the same split-
ting as in O’Donoghue et al. (2013); Jerez et al. (2013)
is used, but a fast gradient method is used to solve the
resulting problem as opposed to ADMM in O’Donoghue
et al. (2013); Jerez et al. (2013). In this paper, we will
show how to generalize the fast dual gradient methods
presented in Richter et al. (2013); Patrinos and Bemporad
(2014) to achieve a faster convergence.

Fast gradient methods as used in Richter et al. (2013);
Patrinos and Bemporad (2014) have been around since
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the early 80’s when the seminal paper Nesterov (1983)
was published. However, fast gradient methods did not
render much attention before the mid 00’s, after which
an increased interest has emerged. Several extensions and
generalizations of the fast gradient method have been
proposed, e.g. in Nesterov (2003, 2005). In Beck and
Teboulle (2009), the fast gradient method was generalized
to allow for minimization of composite objective functions.
Further, a unified framework for fast gradient methods and
their generalizations were presented in Tseng (2008). To
use fast gradient methods for composite minimization, one
objective term should be convex and differentiable with
a Lipschitz continuous gradient, while the other should
be proper, closed, and convex. The former condition is
equivalent to the existence of a quadratic upper bound
to the function, with the same curvature in all directions.
The curvature is specified by the Lipschitz constant to the
gradient. In fast gradient methods, the quadratic upper
bound serves as an approximation of the function to be
minimized, since the bound is minimized in every iteration
of the algorithm. If the quadratic upper bound does
not well approximate the function to be minimized, slow
convergence properties are expected. By instead allowing
for a quadratic upper bound with different curvature in
different directions, as in generalized fast gradient methods
Zuo and Lin (2011), the bound can closer approximate the
function to be minimized. For an appropriate choice of
non-uniform quadratic upper bound, this can significantly
improve the performance of the algorithm.

In (Nesterov, 2005, Theorem 1), a Lipschitz constant to
the gradient of the dual function to strongly convex prob-
lems is presented. This result quantifies the curvature of
a uniform quadratic upper bound to the negative dual
function. This result was improved in (Richter et al., 2013,
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Theorem 7) when the primal cost is restricted to being
quadratic. Using these quadratic upper bounds, with the
same curvature in all directions, as dual function approxi-
mation in a fast dual gradient method, may result in slow
convergence. Especially for ill-conditioned problems where
the upper bound does not well approximate the negative
dual function. In this paper, the main result is a new
characterization of the set of matrices that can be used
to describe quadratic upper bounds to the negative dual
function. This result generalizes and improves previous
results in Nesterov (2005); Richter et al. (2013) to allow
for a bound with different curvature in different directions.
The provided set can be used to create a quadratic upper
bound to the negative dual function with different cur-
vature in different directions. Using this quadratic upper
bound instead of the traditional uniform upper bound in
fast dual gradient methods, significant improvements can
be achieved. We also show that in many cases, the resulting
quadratic upper bounds cannot be made tighter by using
matrices outside this set.

In model predictive control, much offline computational
effort can be devoted to improve the online execution
time of the solver. This is done, e.g., in explicit MPC, see
Bemporad et al. (2002), where the explicit parametric so-
lution is computed beforehand, and found through a look-
up table online. In this paper, the offline computational
effort is devoted to choose a matrix from the provided set
that minimizes the difference, in some metric, between the
negative dual function and the resulting quadratic upper
bound. The computed matrix is the same in all samples
in the controller and can therefore be computed offline.
The algorithm is evaluated on a pitch control problem in
an AFTI-16 aircraft that has previously been studied in
Kapasouris et al. (1990); Bemporad et al. (1997). This is a
challenging problem for first order methods since it is very
ill-conditioned. The numerical evaluation shows that the
method presented in this paper outperforms the methods
presented in O’Donoghue et al. (2013); Jerez et al. (2013);
Richter et al. (2013); Patrinos and Bemporad (2014) with
one to three orders of magnitude.

For space consideration, all proofs are omitted from this
paper and can be found in the full version paper, Giselsson
(2014).

2. PRELIMINARIES AND NOTATION

2.1 Notation

We denote by R, R
n, R

m×n, the sets of real numbers,
vectors, and matrices. Sn ⊆ R

n×n is the set of symmetric
matrices, and S

n
++ ⊆ S

n, [Sn+] ⊆ S
n, are the sets of

positive [semi] definite matrices. Further, L � M and
L ≻ M where L,M ∈ S

n denotes L −M ∈ S
n
+ and L −

M ∈ S
n
++ respectively. We also use notation 〈x, y〉 = xT y,

‖x‖2 =
√
xTx, and ‖x‖H =

√
xTHx. Finally, IX denotes

the indicator function for the set X , i.e. IX (x) ,
{

0, x∈X
∞, else .

2.2 Preliminaries

In this section, we introduce generalizations of well used
concepts. We generalize the notion of strong convexity as

well as the notion of Lipschitz continuity of the gradient of
convex functions. We also define conjugate functions and
state a known result on dual properties of a function and
its conjugate.

For differentiable and convex functions f : R
n → R that

have a Lipschitz continuous gradient with constant L, we
have that

‖∇f(x1)−∇f(x2)‖2 ≤ L‖x1 − x2‖2 (1)

holds for all x1, x2 ∈ R
n. This is equivalent to that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
L

2
‖x1 − x2‖22 (2)

holds for all x1, x2 ∈ R
n (Nesterov, 2003, Theorem 2.1.5).

In this paper, we allow for a generalized version of the
quadratic upper bound (2) to f , namely that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (3)

holds for all x1, x2 ∈ R
n where L ∈ S

n
+. The bound (2) is

obtained by setting L = LI in (3).

Remark 1. For concave functions f , i.e. where −f is con-
vex, the Lipschitz condition (1) is equivalent to that the
following quadratic lower bound

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
L

2
‖x1 − x2‖22 (4)

holds for all x1, x2 ∈ R
n. The generalized counterpart

naturally becomes that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
1

2
‖x1 − x2‖2L (5)

holds for all x1, x2 ∈ R
n.

Next, we state a Lemma on equivalent characterizations
of the condition (3).

Lemma 2. Assume that f : R
n → R is convex and

differentiable. The condition that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (6)

holds for some L ∈ S
n
+ and all x1, x2 ∈ R

n is equivalent to
that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≤ ‖x1 − x2‖2L. (7)

holds for all x1, x2 ∈ R
n.

The standard definition of a differentiable and strongly
convex function f : R

n → R is that it satisfies

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
σ

2
‖x1 − x2‖22 (8)

for any x1, x2 ∈ R
n, where the modulus σ ∈ R++ describes

a lower bound on the curvature of the function. In this
paper, the definition (8) is generalized to allow for a
quadratic lower bound with different curvature in different
directions.

Definition 3. A differentiable function f : R
n → R is

strongly convex with matrix H if and only if

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H

holds for all x1, x2 ∈ R
n, where H ∈ S

n
++.

Remark 4. The traditional definition of strong convexity
(8) is obtained from Definition 3 by setting H = σI.

Lemma 5. Assume that f : R
n → R is differentiable and

strongly convex with matrix H . The condition that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H (9)
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holds for all x1, x2 ∈ R
n is equivalent to that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≥ ‖x1 − x2‖2H (10)

holds for all x1, x2 ∈ R
n.

The condition (9) is a quadratic lower bound on the
function value, while the condition (3) is a quadratic upper
bound on the function value. These two properties are
linked through the conjugate function

f⋆(y) , sup
x

{
yTx− f(x)

}
.

More precisely, we have the following result.

Proposition 6. Assume that f : R
n → R∪{∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Then the conjugate function f⋆

is convex and differentiable, and ∇f⋆(y) = x⋆(y), where
x⋆(y) = argmaxx

{
yTx− f(x)

}
. Further, ∇f⋆ is Lipschitz

continuous with constant L = 1
σ
.

A straight-forward generalization is given by the chain-rule
and was proven in (Nesterov, 2005, Theorem 1) (which also
proves the less general Proposition 6).

Corollary 7. Assume that f : R
n → R ∪ {∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Further, define g⋆(y) , f⋆(Ay).
Then g⋆ is convex and differentiable, and ∇g⋆(y) =
ATx⋆(Ay), where x⋆(Ay) = argmaxx

{
(Ay)Tx− f(x)

}
.

Further, ∇g⋆ is Lipschitz continuous with constant L =
‖A‖2

2

σ
.

For the case when f(x) = 1
2x

THx + gTx, i.e. f is
a quadratic, a tighter Lipschitz constant to ∇g⋆(y) =
∇f⋆(Ay) was provided in (Richter et al., 2013, Theorem
7), namely L = ‖AH−1AT ‖2.

3. PROBLEM FORMULATION

We consider optimization problems of the form

minimize f(x) + h(x) + g(Bx)
subject to Ax = b

(11)

where x ∈ R
n, A ∈ R

m×n, B ∈ R
p×n, b ∈ R

m. We assume
that the following assumption holds throughout the paper:

Assumption 8.

(a) The function f : R
n → R is differentiable and

strongly convex with matrix H .
(b) The extended valued functions h : R

n → R∪{∞} and
g : R

n → R ∪ {∞}, are proper, closed, and convex.
(c) A ∈ R

m×n has full row rank.

Remark 9. Examples of functions that satisfy Assump-
tion 8(a) and 8(b) are f(x) = 1

2x
THx+gTx with H ∈ S

n
++

for Assumption 8(a), and g = IX , g = ‖ · ‖1, g = I⋆X ,
or g = 0 for Assumption 8(b). If Assumption 8(c) is
not satisfied, redundant equality constraints can, without
affecting the solution of (11), be removed to satisfy the
assumption.

The optimization problem (11) can equivalently be written
as

minimize f(x) + h(x) + g(y)
subject to Ax = b

Bx = y

(12)

We introduce dual variables λ ∈ R
m for the equality

constraints Ax = b and dual variables µ ∈ R
p for the

equality constraints Bx = y. This gives the following
Lagrange dual problem

sup
λ,µ

inf
x,y

{
f(x) + h(x) + λT (Ax− b) + g(y) + µT (Bx − y)

}

= sup
λ,µ

[
− sup

x

{
(−ATλ−BTµ)Tx− f(x)− h(x)

}

− bTλ− sup
y

{
µT y − g(y)

} ]

= sup
λ,µ

{
−F ⋆(−ATλ−BTµ)− bTλ− g⋆(µ)

}
(13)

where F ⋆ is the conjugate function to F := f + h and g⋆

is the conjugate function to g. For ease of exposition, we
introduce ν = (λ, µ) ∈ R

m+p, C = [AT BT ]T ∈ R
(m+p)×n,

and c = (b, 0) ∈ R
m+p and the following function

d(ν) := −F ⋆(−CT ν)− cT ν = −F ⋆(−ATλ−BTµ)− bTλ.
(14)

The function F ⋆ is evaluated by solving an optimization
problem. The minimand to this problem is denoted by

x⋆(ν) := argmin
x

{
F (x) + νTCx

}
(15)

= argmin
x

{
f(x) + h(x) + λTAx+ µTBx

}
.

From Corollary 7 we get that the function d is concave and
differentiable with gradient

∇d(ν) = Cx⋆(ν) − c

and that ∇d is Lipschitz continuous with constant L =
‖C‖22/λmin(H), i.e., that

‖∇d(ν1)−∇d(ν2)‖2 ≤ L‖ν1 − ν2‖2 (16)

holds for all ν1, ν2 ∈ R
m+p. As stated in Remark 1, (16) is

equivalent to that the following quadratic lower bound to
the concave function d holds for all ν1, ν2 ∈ R

m+p

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
L

2
‖ν1 − ν2‖22.

In the following section we will show that the function d
satisfies the following tighter condition

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
1

2
‖ν1 − ν2‖2L (17)

for all ν1, ν2 ∈ R
m+p and L ∈ S

m+p
+ that satisfies L �

CH−1CT .

4. DUAL FUNCTION PROPERTIES

The following theorem states that the function d defined
in (14) satisfies (17) for any L � CH−1CT . The results of
this section are proven in Giselsson (2014).

Theorem 10. The function d defined in (14) is concave,
differentiable and satisfies

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
1

2
‖ν1 − ν2‖2L (18)

for every ν1, ν2 ∈ R
m+p and L ∈ S

m+p
+ that satisfies

L � CH−1CT .

Next, we show that if f is a strongly convex quadratic func-
tion and h satisfies certain conditions, then Theorem 10
gives the best possible bound of the form (18).

Proposition 11. Assume that f(x) = 1
2x

THx + ζTx with
H ∈ S

n
++ and ζ ∈ R

n and that there exists a set
X ⊆ R

n with non-empty interior on which h is linear, i.e.
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h(x) = ξTXx+θX for all x ∈ X . Further, assume that there
exists ν̃ such that x⋆(ν̃) ∈ int(X ). Then for any matrix
L 6� CH−1CT , there exist ν1 and ν2 such that (18) does
not hold.

Proposition 11 shows that the bound in Theorem 10 is
indeed the best obtainable bound of the form (18) if f
is a quadratic and h specifies the stated assumptions.
Examples of functions that satisfy the assumptions on h in
Proposition 11 include linear functions, indicator functions
of closed convex constraint sets with non-empty interior,
and the 1-norm.

5. FAST DUAL GRADIENT METHODS

In this section, we will describe generalized fast gradient
methods and show how they can be applied to solve the
dual problem (13). Generalized fast gradient methods can
be applied to solve problems of the form

minimize ℓ(x) + ψ(x) (19)

where x ∈ R
n, ψ : R

n → R ∪ {∞} is proper, closed and
convex, ℓ : R

n → R is convex, differentiable, and satisfies

ℓ(x1) ≤ ℓ(x2) + 〈∇ℓ(x2), x1 − x2〉+ 1
2‖x1 − x2‖2L (20)

for all x1, x2 ∈ R
n and some L ∈ S

n
++. Before we state the

algorithm, we define the generalized prox operator

proxLψ(x) := argmin
y

{
ψ(y) + 1

2‖y − x‖2
L

}
(21)

and note that

proxLψ
(
x− L−1∇ℓ(x)

)
=

= argmin
y

{
1
2‖y − x+ L−1∇ℓ(x)‖2

L
+ ψ(y)

}

= argmin
y

{
ℓ(x) + 〈∇ℓ(x), y − x〉+ 1

2‖y − x‖2
L
+ ψ(y)

}
.

(22)

The generalized fast gradient method is stated below.

Algorithm 1.
Generalized fast gradient method

Set: y1 = x0 ∈ R
n, t1 = 1

For k ≥ 1

xk = proxLψ
(
yk − L−1∇ℓ(yk)

)

tk+1 =
1+

√
1+4(tk)2

2

yk+1 = xk +
(
tk−1
tk+1

)
(xk − xk−1)

The standard fast gradient method as presented in Beck
and Teboulle (2009) is obtained by setting L = LI
in Algorithm 1, where L is the Lipschitz constant to
∇ℓ. The main step of the fast gradient method is to
perform a prox-step, i.e., to minimize (22) which can be
seen as an approximation of the function ℓ + ψ. For the
standard fast gradient method, ℓ is approximated with
a quadratic upper bound that has the same curvature,
described by L, in all directions. If this quadratic upper
bound is a bad approximation of the function to be
minimized, slow convergence properties are expected. The
generalization to allow for a matrix L in the algorithm
allows for quadratic upper bounds with different curvature
in different directions. This enables for quadratic upper

bounds that much better approximate the function ℓ and
consequently gives improved convergence.

The generalized fast gradient method has a convergence
rate of (see Zuo and Lin (2011))

ℓψ(x
k)− ℓψ(x

⋆) ≤ 2‖x⋆ − x0‖2
L

(k + 1)2
(23)

where ℓψ := ℓ + ψ. The convergence rate of the standard
fast gradient method as given in Beck and Teboulle (2009),
is obtained by setting L = LI in (23).

The objective here is to apply the generalized fast gradient
method to solve the dual problem (13). By introducing
g̃(ν) = g⋆([0 I]ν), the dual problem (13) can be expressed
maxν d(ν) − g̃(ν), where d is defined in (14). As shown
in Theorem 10, the function −d satisfies the properties re-
quired to apply generalized fast gradient methods. Namely
that (20) holds for any L ∈ S

m+p
+ such that L � CH−1CT .

Further, since g is a closed, proper, and convex function
so is g⋆, see (Rockafellar, 1970, Theorem 12.2), and by
(Rockafellar, 1970, Theorem 5.7) so is g̃. This implies that
generalized fast gradient methods, i.e. Algorithm 1, can
be used to solve the dual problem (13). We set −d = ℓ
and g̃ = ψ, and restrict L = blkdiag(Lλ,Lµ) to get the
following algorithm.

Algorithm 2.
Generalized fast dual gradient method

Set: z1 = λ0 ∈ R
m, v1 = µ0 ∈ R

p, t1 = 1
For k ≥ 1

yk = argminx
{
f(x) + h(x) + (zk)TAx+ (vk)TBx

}

λk = zk + L−1
λ (Ayk − b)

µk = prox
Lµ

g⋆ (v
k + L−1

µ Byk)

tk+1 =
1+

√
1+4(tk)2

2

zk+1 = λk +
(
tk−1
tk+1

)
(λk − λk−1)

vk+1 = µk +
(
tk−1
tk+1

)
(µk − µk−1)

where yk is the primal variable at iteration k that is used
to help compute the gradient∇d(νk), where νk = (zk, vk).
To arrive at the λk and µk iterations, we let ξk = (λk, µk),
and note that

ξk = proxL
g̃

(
νk + L−1∇d(νk)

)
(24)

= argmin
ν

{
1
2‖ν − νk − L−1∇d(νk)‖2

L
+ g⋆([0 I]ν)

}

=

[
argmin

z

{
1
2‖z − zk − L−1

λ ∇zd(ν
k)‖2

Lλ

}

argmin
v

{
1
2‖v − vk − L−1

µ ∇vd(ν
k)‖2

Lµ
+ g⋆(v)

}
]

=

[
zk + L−1

λ (Ayk − b)

prox
Lµ

g⋆ (v
k + L−1

µ Byk)

]
.

In the following proposition we state the convergence rate
properties of Algorithm 2.

Proposition 12. Suppose that Assumption 8 holds. If
L = blkdiag(Lλ,Lµ) ∈ S

m+p
++ is chosen such that L �

CH−1CT . Then Algorithm 2 converges with the rate

D(ν⋆)−D(νk) ≤
2
∥∥ν⋆ − ν0

∥∥2
L

(k + 1)2
, ∀k ≥ 1 (25)
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where D = d− g̃ and k is the iteration number.

Remark 13. By forming a specific running average of pre-
vious primal variables, it is possible to prove a O(1/k)
convergence rate for the distance to the primal variable op-
timum and a O(1/k2) convergence rate for the worst case
primal infeasibility, see Patrinos and Bemporad (2014).

For some choices of conjugate functions g⋆, prox
Lµ

g⋆ (x) can
be difficult to evaluate. For standard prox operators (given
by proxIg⋆(x)), Moreau decomposition (Rockafellar, 1970,
Theorem 31.5) states that

proxIg⋆(x) + proxIg(x) = x.

In the following proposition, we will generalize this result
to hold for the generalized prox-operator used here.

Proposition 14. Assume that g : R
n → R is a proper,

closed, and convex function. Then

proxLg⋆(x) + L−1proxL
−1

g (Lx) = x

for every x ∈ R
n and any L ∈ S

n
++.

Remark 15. If g = IX where IX is the indicator function,
then g⋆ is the support function. Evaluating the prox
operator (21) with g⋆ being a support function is difficult.
However, through Proposition 14, this can be rewritten
to only require the a projection operation onto the set
X . If X is a box constraint and L is diagonal, then the
projection becomes a max-operation and hence very cheap
to implement.

Remark 16. We are not restricted to have one auxiliary
term g only. We can have any number of auxiliary terms
gi that all decompose according to the computations in
(24), i.e., we get one prox-operation in the algorithm for
every auxiliary term gi.

6. MODEL PREDICTIVE CONTROL

In this section, we pose some standard model predictive
control problems and show how they can be solved using
the methods presented in this paper. The resulting algo-
rithms will have simple arithmetic operations only which
allows for easier implementation in embedded systems. We
also show how to choose the L-matrix in each case.

Example 17. We consider MPC optimization problems of
the form

minimize

N−1∑

t=0

1
2

(
xTt Qxt + uTt Rut

)
+ 1

2x
T
NQfxN

subject to xt+1 = Φxt + Γut, t = 0, . . . , N − 1
xmin ≤ xt ≤ xmax, t = 0, . . . , N
umin ≤ ut ≤ umax, t = 0, . . . , N − 1
x0 = x̄

where x̄, xt ∈ R
nx , ut ∈ R

nu , Φ ∈ R
nx×nx , Γ ∈ R

nx×nu

and Q ∈ S
nx

++, R ∈ S
nu

++, Qf ∈ S
nx

++ are all diagonal.
Letting y = (x0, . . . , xN , u0, . . . , uN−1), this can be cast as

minimize 1
2y
THy

subject to Ay = bx̄
ymin ≤ y ≤ ymax

where H , A, b, ymin, and ymax are structured according to
y. We choose f(y) = 1

2y
THy, g = 0, and h = IY where IY

is the indicator function to

Y = {y ∈ R
(N+1)nx+Nnu | ymin ≤ y ≤ ymax}.

This implicitly implies that we introduce dual variables
λ for the equality constraints Ay = bx̄. The algorithm
becomes:

yk = argmin
y

{
1
2y
THy + IY(y) + zTAx

}
(26)

λk = zk + L−1
λ (Ayk − bx̄) (27)

tk+1 =
1+

√
1+4(tk)2

2 (28)

zk+1 = λk +
(
tk−1
tk+1

)
(λk − λk−1) (29)

where the first step (26) can be implemented as

yk = max
(
min

(
−H−1AT zk, ymax

)
, ymin

)
(30)

due to the structure of the problem. From Theorem 10,
we know that Lλ must satisfy Lλ � AH−1AT . By
Assumption 8 we have that A has full row rank, which
is common in MPC. Further, A is sparse in MPC which
renders Lλ = AH−1AT a good choice. The algorithm
requires the computation of L−1

λ z, where z = Ayk − bx̄,
in each iteration. Since Lλ = AH−1A is sparse, this can
efficiently be implemented by offline storing the sparse
Cholesky factorization RTR = STLλS, where R is sparse
and upper triangular, and S is a permutation matrix. The
online computation of L−1

λ z then reduces to one forward
and one backward solve, which can be very efficiently
implemented.

The algorithm in this example is a generalization of the
algorithm in Richter et al. (2013), where the matrix L is
chosen as L = ‖AH−1AT ‖2I. In the numerical section we
will see that this generalization can significantly improve
the convergence rate.

Next, we present an algorithm that works for arbitrary
positive definite cost matrices, and arbitrary linear con-
straints.

Example 18. We consider the MPC optimization problems
of the form

minimize

N−1∑

t=0

1

2

(
xTt Qxt + uTt Rut

)
+

1

2
xTNQfxN

subject to xt+1 = Φxt + Γut, t = 0, . . . , N − 1
Bxxt ≤ dx, t = 0, . . . , N − 1
Buut ≤ du, t = 0, . . . , N − 1
x0 = x̄, BNxN ≤ dN

where x̄, xt ∈ R
nx , ut ∈ R

nu , Φ ∈ R
nx×nx , Γ ∈ R

nx×nu ,
Bx ∈ R

px×nx , Bu ∈ R
pu×nx , BN ∈ R

pN×nx , dx ∈ R
px ,

du ∈ R
pu , dN ∈ R

pN , Q ∈ S
nx

++,R ∈ S
nu

++, and Qf ∈ S
nx

++.
We let y = (x0, . . . , xN , u0, . . . , uN−1) and define B =
blkdiag(B̄x, BN , B̄u) where B̄x = blkdiag(Bx, . . . , Bx)
and B̄u = blkdiag(Bu, . . . , Bu). We also introduce d =
(dx, . . . , dx, dN , du, . . . , du). This implies that all inequality
constraints are described by By ≤ d. Using this notation,
the optimization problem can be rewritten as

minimize 1
2y
THy

subject to Ay = bx̄
By = v
v ≤ d

We let f(y) = 1
2y

THy, h = IAy=bx̄, and g = IY where

Y = {y ∈ R
(N+1)nx+Nnu | By ≤ d}. Since h is the

indicator function for the equality constraints Ay = bx̄,
we do not need to introduce dual variables for those
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Table 1. Numerical evaluation of the dual gradient method proposed in this paper.

exec time (ms) nbr iters
Algorithm Parameters avg. max avg. max

(26)-(29) Lλ = AH−1AT 2.3 12.1 21.7 102
Richter et al. (2013) Lλ = ‖AH−1AT ‖2I 4713.9 28411 50845 308210
(31)-(34) Lµ = BH−1BT + 10−4I 1.4 7.2 19.0 102
Patrinos and Bemporad (2014) Lµ = ‖BH−1BT ‖2I 180.3 1225 2626.7 18093
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 0.4 205.8 974.3 2351.7 11229
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 4 56.9 314.0 638.3 3593
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 40 90.7 692.7 1027.2 7994

constraints. However, we introduce dual variables µ for
By = v. Letting HA = AH−1AT , the algorithm becomes

yk = H−1(ATH−1
A (AH−1BT vk + bx̄)−BT vk) (31)

µk = prox
Lµ

g⋆ (v
k + L−1

µ Byk) (32)

tk+1 =
1+

√
1+4(tk)2

2 (33)

vk+1 = µk +
(
tk−1
tk+1

)
(µk − µk−1) (34)

where the yk iterate follows from solving minx
{
f(x) +

IAx=bx̄(x) + (vk)TBx
}
. In an implementation, the yk-

update can be implemented as in (31). Then, for efficiency,
the matrix multiplications should be computed offline and
stored for online use. Depending on the sparsity of H , A,
and B, it might be more efficient to use the KKT-system
from which (31) is deduced, namely

[
H AT

A 0

] [
yk

ξ

]
=

[
−BT vk
bx̄

]
.

Then, a sparse LDL-factorization of the KKT-matrix[
H AT

A 0

]
is computed offline for online use. The online

computational burden to compute the yk-update then
becomes one forward and one backward solve. Whichever
method that has the lower number of flops should be
chosen.

By restricting Lµ to be diagonal, the second step, i.e. (32),
can be implemented as

µk = max
(
0, vk + L−1

µ (Byk − d)
)
.

To implement the algorithm, the matrix Lµ must also be
chosen. From Theorem 10 we know that Lµ � BH−1BT .
Usually in MPC, B is a thin matrix which implies that
BH−1BT is positive semi-definite only. One option is to

choose Lµ = BH−1BT + ǫI, and to solve prox
Lµ

g⋆ (v
k +

L−1
µ Byk) parametrically for fast execution. Another op-

tion is to choose Lµ by solving the following semi-definite
program:

minimize tr Lµ
subject to Lµ � BH−1BT

Lµ ∈ Lµ
where Lµ describes the sparsity structure of Lµ, e.g.,
diagonal.

The splitting method used here is the same as the one
used in Patrinos and Bemporad (2014). However, this is
more general since we allow for Lµ-matrices that are not
a multiple of the identity matrix. Also, the same splitting
is used in O’Donoghue et al. (2013); Jerez et al. (2013),
where ADMM (see Boyd et al. (2011)) is used to solve the
optimization problem.

7. NUMERICAL EXAMPLE

The proposed algorithms are evaluated by applying them
to the AFTI-16 aircraft model in Kapasouris et al. (1990);
Bemporad et al. (1997). This problem is also a tutorial ex-
ample in the MPC toolbox in MATLAB. As in Bemporad
et al. (1997) and the MPC toolbox tutorial, the continuous
time model from Kapasouris et al. (1990) is sampled using
zero-order hold every 0.05 s. The system has four states
x = (x1, x2, x3, x4), two outputs y = (y1, y2), two inputs
u = (u1, u2), and obeys the following dynamics

x+ =

[ 0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

]
x+

[−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

]
u,

y = [ 0 1 0 0
0 0 0 1 ]x

where x+ denotes the state in the next time step. The
dynamics, input, and output matrices are denoted by Φ,
Γ, C respectively, i.e. we have x+ = Φx + Γu, y = Cx.
The system is unstable, the magnitude of the largest
eigenvalue of the dynamics matrix is 1.313. The outputs
are the attack and pitch angles, while the inputs are the
elevator and flaperon angles. The inputs are physically
constrained to satisfy |ui| ≤ 25◦, i = 1, 2. The outputs
are soft constrained to satisfy −s1 − 0.5 ≤ y1 ≤ 0.5 +
s2 and −s3 − 100 ≤ y2 ≤ 100 + s4 respectively, where
s = (s1, s2, s3, s4) ≥ 0 are slack variables. The cost in each
time step is

ℓ(x, u, s) =
1

2

(
(x− xr)

TQ(x− xr) + uTRu+ sTSs
)

where Q = CTQyC + Qx, where Qy = 102I and Qx =
diag(10−4, 0, 10−3, 0), xr is such that yr = Cxr where
yr is the output reference that can vary in each step,
R = 10−2I, and S = 106I. This gives condition number
1010 of the full cost matrix. Further, the terminal cost
is Q, and the control and prediction horizon is N = 10.
The numerical data in Table 1 is obtained by following
a reference trajectory on the output. The objective is to
change the pitch angle from 0◦ to 10◦ and then back to 0◦

while the angle of attack satisfies the output constraints
−0.5◦ ≤ y1 ≤ 0.5◦. The constraints on the angle of attack
limits the rate on how fast the pitch angle can be changed.

All algorithms in the comparison are implemented in
MATLAB on a Linux machine using a single core run-
ning at 2.9 GHz. To create an easily transferable and
fair termination criterion, the optimal solution to each
optimization problem y⋆ is computed to high accuracy
using an interior point solver. The optimality condition is
‖yk − y⋆‖2/‖y⋆‖2 ≤ 0.005, where yk is the primal iterate
in the algorithm. This implies that a relative accuracy of
0.5% of the primal solution is required.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2308



The algorithms in Example 17, i.e. (26)-(29), and Exam-
ple 18, i.e. (31)-(34), have been applied to this problem.
Due to the slack variables, (30) cannot replace (26) for the
yk update. However, the yk minimization is separable in
the constraints and each of the projections can be solved
by a multiparametric program with two regions. This is
almost as computationally inexpensive as the yk update
in (30). Further, we use Lλ = AH−1AT . Algorithm (26)-
(29) is a generalization of Richter et al. (2013) that allows
for general matrices Lλ. The algorithm in Richter et al.
(2013) is obtained by setting Lλ = ‖AH−1AT ‖2I. The
numerical evaluation in Table 1 reveals that this gen-
eralization improves the execution time with more than
three orders of magnitude for this problem. The formu-
lation in Example 18, i.e. (31)-(34), directly covers this
MPC formulation with soft constraints. For this algorithm,
we choose Lµ = BH−1BT + 10−4I and solve (32), i.e.

prox
Lµ

g⋆ (v
k + L−1

µ Byk), parametrically. It turns out that
also this parametric program is cheap to implement as it
requires one max-operation only. The resulting algorithm
is a generalization of the algorithm in Patrinos and Bem-
porad (2014). The algorithm in Patrinos and Bemporad
(2014) is given by setting Lµ = ‖BH−1BT ‖2I in the
iterations (31)-(34). Table 1 indicates that this general-
ization improves the algorithm by one to two orders of
magnitude compared to Patrinos and Bemporad (2014).
Further, (31)-(34) is based on the same splitting as the
method in O’Donoghue et al. (2013); Jerez et al. (2013).
The difference is that here, the problem is solved with a
generalized dual gradient method, while in O’Donoghue
et al. (2013); Jerez et al. (2013) it is solved using ADMM.
In ADMM, the ρ-parameter need to be chosen. However,
no exact guidelines are yet known for this choice, and the
performance of the algorithm often relies heavily on this
parameter. We compare our algorithm with ADMM using
the best ρ that we found, ρ = 4, and with one larger and
one smaller ρ. Table 1 reports that the execution time for
our method is one to two orders of magnitude smaller (or
more if the ρ-parameter in O’Donoghue et al. (2013); Jerez
et al. (2013) is chosen suboptimally) than the proposed
algorithm in O’Donoghue et al. (2013); Jerez et al. (2013).

8. CONCLUSIONS

We have proposed a generalization of dual fast gradient
methods. This generalization allows the algorithm to, in
each iteration, minimize a quadratic upper bound to the
negative dual function with different curvature in different
directions. This is in contrast to the standard fast dual
gradient method where a quadratic upper bound to the
negative dual with the same curvature in all directions is
minimized in each iteration. This generalization is made
possible by the main contribution of this paper that
characterizes the set of matrices that can be used to
describe a quadratic upper bound to the negative dual
function. The numerical evaluation on an ill-conditioned
aircraft problem reveals that the proposed algorithms
outperform, with one to three orders of magnitude, other
first order algorithms that have recently been proposed to
be suitable for embedded model predictive control.
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