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1. INTRODUCTION

The problem of state estimation for deterministic systems
in presence of delayed measurements has attracted consid-
erable attention in the last years and several approaches
are now available for linear and nonlinear systems with
fixed or time-varying delays. A significantly smaller num-
ber of authors have studied the problem for stochastic
systems with delay. In the area of optimal filtering, the
attempt to extend the classical Kalman-Bucy filter in
presence of delayed measurements has been pursued along
two approaches. The first one is to use the so called re-
organized innovation analysis with the orthogonal projec-
tion lemma (Lu et al. [2005], Zhang et al. [2006]). The
second approach uses the general expression of the Itô dif-
ferential of the optimal estimate proposed in Pugachev and
Sinitsyn [2001] to derive optimal filtering equations similar
to the Kalman-Bucy ones (Basin and Zuniga [2004], Basin
et al. [2007]).

A recent work that generalizes these approaches is Kong
et al. [2013]. The basic idea is to transform the continuous-
time system with delayed measurements into a system with
delay-free measurements by directly solving the stochastic
equation. The optimal filter for the state is naturally given
by the conditional expectation over the delay free measure-
ments. It is concluded that time delay in the observation
simply leads to an additional term in the error variance
equations. These approaches provide optimal filters and
can cope with several kinds of systems, i.e. single or
multiple delays, delays in state and measurements, etc.
However they share the main drawback that the filter
equations contain distributed terms, whose evaluation is

computationally challenging, particularly in presence of
deterministic input or unstable system matrices.

In this paper we propose a new suboptimal filter based
on the minimum estimation variance framework. Our filter
uses only local instantaneous terms, thus avoiding the com-
putational complexities of the distributed terms of optimal
filters even in presence of deterministic input. Delay is
supposed to be bounded and known. The filter is inspired
by the observer for deterministic systems with delayed
measurements proposed in Cacace et al. [2013]. Moreover,
a precise characterization of the relationship between the
delay bound and the variance of the estimation error is
provided.

The paper is organized as follows. Section 2 states the
problem formulation and gives some preliminary defini-
tions. The proposed approach is developed in Section
3. Technical proofs are provided in Section 4. Section 5
presents the results of a numeric example and Section 6
summarizes the conclusions of the paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Notation

Given a real number α, the symbol C<α (C≤α) denotes
the set of all complex numbers s ∈ C such that ℜ(s) < α
(ℜ(s) ≤ α). σ(A) denotes the spectrum of a real square
matrix A. In is the identity matrix in Rn. λmax(P )
indicates the maximum eigenvalue of the symmetric non-
negative matrix P . Given x ∈ Rn, the euclidean norm
in Rn is denoted by ‖x‖. Given a positive number δ,
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Cn
δ denotes the space of the continuous functions that

maps [−δ, 0] into Rn, with the uniform convergence norm,
denoted by ‖ · ‖∞. W 1,2 indicates the space of absolutely

continuous functions form [−δ, 0] into Rn. Lδ,n
2 denotes the

space of Lebesgue measurable square integrable functions
mapping [−δ, 0] into Rn, with the norm denoted by ‖ · ‖2.
Given a linear operator T which maps a normed space H1

into a second normed space H2, ‖T ‖ denotes the operator
norm defined as supx∈H1

‖Tx‖H2
/‖x‖H1

.

2.2 Problem formulation

In this work we deal with the class of linear stochastic
systems with delayed measurements, described by

ẋ(t) = Ax(t) +Bu(t) + Fω(t) (1)

ȳ(t) = Cx(t − δt) +Gω(t) (2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is the
deterministic input, ω(t) ∈ Rs is the noise term, and
ȳ(t) ∈ Rq is the output signal. The latter is a function of
the state x at the time t− δ, where δ is the measurement
delay. We assume that δ is bounded and known. The
noise term ω is supposed to be a standard white process,
such that E[ω(t)ωT (t)] = Is. Independence of the state
and observation noises is assumed, that is, FGT = 0.
Finally, we assume that for t ∈ [−δ, 0], x(t) = φ(t), where
φ ∈ Cn

δ := C([−δ, 0];Rn). Note that this also means that

φ ∈ Lδ,n
2 .

The principal aim here is to design a filtering system for
estimating the state of (1)-(2).

2.3 Preliminary definitions

Definition 1. (α-exp stability). Consider a linear delay
system with the form

ż(t) = A0z(t) +A1(t)z(t− δ) (3)

with z(t) = φz(t) for t ∈ [−δ, 0]. For a given real number
α > 0, system (3) is said to be α-exp stable if there exists
a γ > 0 such that

‖z(t)‖ ≤ e−αtγ‖φz‖2, ∀t ≥ 0, ∀φ ∈ Cn
δ .

System (3) is said 0-exp stable if it is asymptotically stable.

Definition 2. (Maximal Delay for α-exp stability). For a
given α > 0 the maximal delay for α-exp stability, denoted
∆α, is the supremum among all δ > 0 such that system
(3) is α-exp stable. If system (3) is α-exp stable for any
δ ∈ [0, ∞), then ∆α = ∞. ∆0 indicates the maximal delay
for 0-exp stability.

2.4 Steady-state Kalman-Bucy gain

As well known, the Kalman-Bucy filter provides the mini-
mum variance estimate x̂(t) for a linear stochastic system
of the form:

ẋ(t) = Ax(t) +Bu(t) + Fω(t)

y(t) = Cx(t) +Gω(t)

with the same mentioned properties for system (1)-(2).
The filtering equation is

˙̂x(t) = Ax̂(t) +Bu(t) +K(t) (y(t)− Cx̂(t))

where
K(t) = P̂ (t)CT

(
GGT

)−1

and P̂ (t) ∈ Rn×n, defined as the covariance matrix of the
estimation error ê(t) := x(t) − x̂(t), is the solution of the
matrix differential equation

˙̂
P (t) = AP̂ (t) + P̂ (t)AT − P̂CT

(
GGT

)−1
CP̂ (t) + FFT .

Under the hypothesis that the pair (A,F ) is controllable

and the pair (A,C) is observable, P̂ (t) converges to a

unique positive definite symmetric matrix P̂∞, solution of
the steady-state Riccati equation

AP̂∞ + P̂∞AT − P̂∞CT
(
GGT

)−1
CP̂∞ + FFT = 0

from which the steady-state Kalman gain K∞ can be
obtained by

K∞ = P̂∞CT
(
GGT

)−1
.

Such a gain matrix can be used to replace the time-varying
gain K(t) in (4) for obtaining the steady-steady Kalman-
Bucy filter

˙̃xs(t) = Ax̃s(t) +Bu(t) +K∞ (y(t)− Cx̃s(t)) (4)

which has two key properties listed in the following lemma.

Lemma 1. Consider the steady-state Kalman-Bucy filter
(4), then:

(i) the estimate x̃s(t) is asymptotically optimal, i.e.

limt→∞E[(x(t)− x̃s(t))(x(t) − x̃s(t))
T ] = P̂∞;

(ii) σ(A − K∞C) ∈ C<0, i.e. the filtering system (4) is
asymptotically stable.

3. PROPOSED APPROACH

We here propose a filtering system having the form:

˙̃x(t) = Ax̃(t) +Bu(t) + K̃ (ȳ(t)− Cx̃(t− δ)) (5)

with

K̃ = eA∞δK∞, and A∞ = A−K∞C.

For t ∈ [−δ, 0], a pre-shape function x̃(t) = φ̃(t) ∈ Cn
δ

is assigned to the filter. Note that from property (ii) in
Lemma 1 results that σ (A∞) ∈ C<0. The estimation error
ẽ(t) := x(t) − x̃(t) obeys the following delay differential
equation

˙̃e(t) = Aẽ(t)− K̃Cẽ(t− δ) +
(
F − K̃G

)
ω(t), (6)

with ẽ(t) = φẽ(t) := φ(t) − φ̃(t) for t ∈ [−δ, 0], φẽ ∈ Lδ,n
2 .

The corresponding error covariance matrix is defined as

P̃ (t) = E
[
ẽ(t)ẽT (t)

]
, (7)

with initial the initial value

P̃ (0) = E

[(
x(0)− φ̃(0)

)(
x(0)− φ̃(0)

)T
]
.

We are interested in characterizing this covariance matrix.
To do this, in the following Lemmas we recall some results
of Cacace et al. [2013] applied to the deterministic part of
the error system (6), which has the form of a linear delay
system as (3).

Lemma 2. Consider the deterministic part of the error
system (6):

˙̃e = Aẽ(t)− K̃Cẽ(t− δ) (8)

and suppose that there exists some α > 0 such that
σ (A∞) ∈ C<−α. Then,
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(i) all the eigenvalues in σ (A∞) are roots of the charac-
teristic equation of (8);

(ii) for any α > 0 a sufficient condition for α-exp stability
of (8) with delay δ is that

∫ δ

0

‖CeA∞tK̃‖eαtdt < 1; (9)

(iii) if ȳ(t) is scalar and moreoverCeA∞tK̃ > 0 ∀t ∈ [0, δ],
a necessary and sufficient condition for the α-exp
stability of (8) with delay δ is that

∫ δ

0

CeA∞tK̃eαtdt < 1. (10)

Lemma 3. Under the hypothesis of Lemma 2, let δ̄α ∈ R+

be such that
∫ δ̄α

0

‖CeA∞tK̃‖eαtdt = 1 (11)

or δ̄α = ∞, if
∫∞

0
‖CeA∞tK̃‖eαtdt = 1. Then,

(i) δ̄α is a lower bound for ∆α;

(ii) if the output is scalar and CeA∞tK̃ > 0 ∀t ∈ [0, δ̄α],
then the bound is strict, i.e. δ̄α = ∆α, and it is the
smallest positive solution to the equation

KT Ā−1
α

(
eĀα − I

)
− 1 = 0, (12)

where KT and Āα are defined as follows

Ab −BbK
T
A = TAT−1,

Ab −BbK̃
T = TA∞T−1,

KT = K̃T −KT
A ,

Āα = Ab −BbK̃
T + αI = TA∞T−1 + αI.

Therefore, δ̄α = ∆α depends only on α, σ(A) and
σ(A∞), i.e. it does not depend on B or C and it is
the same if A is replaced by a similar matrix.

Note that: 1) by (9), Lemma 2 gives a condition to study
the α-exp stability of the deterministic part of error system
(6); 2) point (i) of Lemma 3, which trivially follows from
condition (9), defines a lower bound for the maximum
delay ∆α for which the α-exp stability of the deterministic
part of error system (6) is guaranteed; 3) such a bound can
be computed by solving (12).

In the following theorem these conditions are used to
derive an upper bound for the error covariance matrix (7).

Theorem 4. Let α > 0 be such that σ(A∞) ∈ C<−α. If
condition (9) on δ holds true, then for all t > δ it is

λmax

(
P̃ (t)

)
≤ Mα

2

(
p0 +

‖F0‖
2

2α

)
, (13)

where p0 is a positive constant that depends on the pre-
shape function, Mα is a bounded function of α, and

F0 = F − K̃G.

A proof of this theorem is provided in Section 4.

Corollary 5. In the hypothesis of Theorem 4, let δ̄α ∈ R+

be the solution of (11). Then (13) holds for all δ < δ̄α.

This corollary trivially follows from Theorem 4 since, by
Lemma 3, condition (9) is satisfied for all δ < δ̄α and
therefore Theorem 4 holds.

Theorem 4 states that for any strictly positive α such that
σ(A∞) ∈ C<−α, (9) can be used to study the existence

of a bound for the error covariance matrix P̃ (t); whereas
Corollary 5 establishes that, under the same hypothesis
about A∞, for all δ < δ̄α the error covariance matrix
admits a bound, whose expression is given in (13). Using
these results we can express the relationship between δ and

P̃ (t) in the following way.

Corollary 6. If the pair (A,C) is observable and the pair

(A,F ) is controllable, the error covariance matrix P̃ (t) of
the filter (5) for the system (1)–(2) has bounded norm if
the constant delay δ is such that

∫ δ

0

‖CeA∞tK∞‖dt < 1.

In the conditions of point (ii) of Lemma 3, this condition is

necessary, i.e.
∫ δ

0
‖CeA∞tK∞‖dt > 1 implies that ‖P̃ (t)‖

is not bounded.

Proof. Definition (11) implies that δ̄0 > δ̄α for any
α > 0. This means that δ̄0 is the superior element of
the delay values δ for which the boundedness of the
error covariance matrix is guaranteed. The delay bound
is therefore obtained by setting α = 0 in (11). �

Remark 7. It can be shown that the bound in (13) de-
creases when α increases. From definition (11) it results
that δ̄α monotonically decreases when α increases. There-
fore, assuming that δ = δ̄α, it follows that the bound of
the error covariance matrix bound (13) decreases with δ,
as it could be expected.

4. PROOFS

Theorem 4 provides a boundedness condition for the co-

variance matrix P̃ (t) of the error system (6), which has the
form of a linear stochastic system with state delay. In order
to prove this theorem, we need to represent system (6) with
the infinite dimensional state-space representation, which
is often used for managing such a class of systems (e.g.
Germani et al. [2000]). In the next section we describe
this representation and the proof of Theorem 4 is given in
the following Section 4.2.

4.1 Infinite dimensional state-space model of linear delay
systems

Consider a linear delay system with the form:

ż(t) = A0z(t) +A1z(t− δ) + F0ω(t), (14)

where z(t) ∈ Rn and ω belongs to the Hilbert space
L2([0, tf ];R

s) equipped with standard Gaussian cylinder
measure (that corresponds to model ω as a standard white-
process). Variable z in the interval [−δ, 0] is assumed to be
generated as follows:

z(θ) = φz(θ) +

∫ 0

−δ

k(θ, τ)ω̄(τ)dτ (15)

where φz is uniformly bounded and so it belongs to Lδ,n
2 ,

the process ω̄, independent of ω, belongs to Lδ,s̄
2 equipped

with the standard Gaussian cylinder measure, and the
kernel k(θ, τ) is integrable for τ ∈ [−δ, 0].
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System (14) can be rewritten in state-space form in the

Hilbert spaceM2 := R
n×Lδ,n

2 , endowed with the following
inner product:([

x0

x1

]
,

[
y0

y1

])

M2

:= xT
0 y0 +

∫ 0

−δ

xT
1 (θ)y1(θ)dθ.

In M2 system (14) assumes the form

ẋ(t) = Ax(t) +Fω(t), x(0) =

[
φz(0)
φz

]
+

[
L0

L1

]
ω̄ (16)

where the component x1(t) ∈ Rn is the current state z(t)

and x2(t) ∈ Lδ,n
2 is the state trajectory into the interval

[t− δ, t]. The operator A : D(A) → M2 is defined as

A : A

[
x0

x1

]
=

[
A0x0 +A1x1(−δ)

d

dθ
x1

]

with domain

D(A) :=

{[
x0

x1

]
|
x0 ∈ R

n

x1 ∈ W 1,2 , x0 = x1(0)

}

and F : Rs → M2 is defined as

F : Fω(t) =

[
F0ω(t)

0

]
.

The Hilbert-Schmidt operator

L =

[
L0

L1

]
,

which defines the stochastic initial state x(0), descends
from definition (15) and it is defined as

L0 : Lδ,s̄
2 → R

n; L0ω =

∫ 0

−δ

k(0, τ)ω̄(τ)dτ ;

L1 : Lδ,n
2 → W 1,2; L1ω(θ) =

∫ 0

−δ

k(θ, τ)ω̄(τ)dτ.

The mean value and nuclear covariance of the initial state
x0 are

x̄0 =

[
φz(0)
φz

]
, P0 = LL∗.

The operators in the next proposition must be well defined
to be used to our purposes.

Proposition 8. The operators F∗, FF∗, and A∗ are as
follows:

F∗ : M2 → R
s, F∗

[
x0

x1

]
=

[
FT
0 x0

0

]
; (17)

FF∗ : M2 → M2, FF∗

[
x0

x1

]
=

[
F0F

T
0 x0

0

]
; (18)

A∗ : D (A∗) → M2, A∗

[
y0

y1

]
=

[
y1(0) +AT

0 y0

−
d

dθ
y1

]
, (19)

with dense domain

D(A∗) :=

{[
y0

y1

] ∣∣∣∣
y0 ∈ R

n, AT
1 y0 = y1(−δ)

y1 ∈ W 1,2

}
. (20)

Only (19) and (20) require a not trivial proof, that can be
obtained as a particular case of Proposition 2.2 in Germani
et al. [2000].

The representation is now complete and it enables us to
write the solution of (16) as

x(t) = T(t)x(0) +

∫ t

0

T(t− τ)Fω(τ)dτ,

where T(t) is the semigroup generated by A. Moreover, it
can be proved that the nuclear covariance operator P(t)
evolves in the Hilbert space of Hilbert-Schimdt operators
with the following equation

P(t) = T(t)P0T
∗(t) +

∫ t

0

T(t− τ)FF∗T∗(t− τ)dτ. (21)

We finally define the operator Π0
n : M2 → Rn as

Π0
nx = x0,

which simply extracts the first component of the state
x ∈ M2, and we introduce the useful property stated by
the following Lemma.

Lemma 9. Consider the deterministic part of system (16)
(i.e. assume F = 0). If there exist α, γ > 0 such that
‖Π0

nx(t)‖ ≤ γe−αt‖φz‖2, ∀t ≥ 0, then there exists a
uniformly bounded Mα > 0 such that ‖T(t)‖ ≤ Mαe

−αt,
∀t > δ.

Proof. For any t ≥ δ,

x(t) =

[
x0(t)
x1(t)

]

where x0(t) = Π0
nx(t) ∈ Rn and x1(t) ∈ Lδ,n

2 , i.e. x1(t) =
x1(t, θ) with θ ∈ [−δ, 0] . Moreover, by the definition of
D(A), x1(t, θ) = x0(t− θ) = Π0

nx(t− θ). Therefore,

‖T(t)‖2 = sup
x(0)∈D(A)

‖T(t)x(0)‖2M2

‖x(0)‖2M2

= sup
x(0)∈D(A)

‖x(t)‖2M2

‖x(0)‖2M2

= sup
x(0)∈D(A)

‖Π0
nx(t)‖

2 +
∫ 0

−δ
‖Π0

nx(t− θ)‖2dθ

‖x(0)‖2M2

.

From the hypothesis of the Lemma, it follows that

‖T(t)‖2 = sup
x(0)∈D(A)

‖Π0
nx(t)‖

2 +
∫ 0

−δ
‖Π0

nx(t − θ)‖2dθ

‖x(0)‖2
M2

≤ sup
x(0)∈D(A)

γ2e−2αt‖φz‖22 +
∫ 0

−δ
γ2e−2α(t−θ)‖φz‖22dθ

‖x(0)‖2
M2

= sup
x(0)∈D(A)

γ2e−2αt‖φz‖22 + γ2e−2αt‖φz‖22
1
2α

(
1− e−2αδ

)

‖x(0)‖2
M2

= sup
x(0)∈D(A)

Mα
2e−2αt‖φz‖22
‖x(0)‖2

M2

≤ sup
x(0)∈D(A)

Mα
2e−2αt

(
‖φz(0)‖2 + ‖φz‖22

)

‖x(0)‖2
M2

= Mα
2e−2αt,

with Mα
2 = γ2

(
1 + 1

2α

(
1− e−2αδ

))
. �

Lemma 10. Consider system (16). If there exist α,Mα > 0
such that ‖T(t)‖ ≤ Mαe

−αt for all t > δ, then

‖P(t)‖ ≤ Mα
2

(
‖F‖2

2α
+ ‖P0‖

)
, ∀t > δ.

Proof. From (21) and the main hypothesis of the Lemma,
it turns out that, for any t > δ,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3748



‖P(t)‖ ≤ ‖T(t)‖2‖P0‖+

∫ t

0

‖T(t− τ)F‖2dτ

≤Mα
2e−2αt‖P0‖+

∫ t

0

Mα
2e−2α(t−τ)‖F‖2dτ

=Mα
2e−2αt‖P0‖+

Mα
2

2α
‖F‖2(1 − e−2αt)

≤Mα
2‖P0‖+

Mα
2

2α
‖F‖2.

�

We have now all the instruments to prove Theorem 4 as
follows.

4.2 Proof of Theorem 4

By setting A0 = A, A1 = −K̃C, F0 = F − K̃G, and
φz ≡ φẽ, the error system (6) can be rewritten in the form
of (14). Under the hypothesis of Theorem 4, from Lemma
2 follows that there exists γ > 0 such that

‖ẽ(t)‖ ≤ e−αtγ‖φẽ‖2, ∀t ≥ 0. (22)

If we use the infinite dimensional representation (16)
for the error system, (22) is equivalent to the following
condition:

‖Π0
nx(t)‖ ≤ e−αtγ‖φẽ‖2, ∀t ≥ 0.

From which, by using Lemma 9 and Lemma 10, it results
that, since ‖F‖2 = ‖F0‖

2, for all t > δ it is

‖P(t)‖ ≤ Mα
2

(
p0 +

‖F0‖
2

2α

)
, (23)

with p0 = ‖P0‖. Now recall that the covariance operator
is defined as the linear bounded operator such that

[P(t)y,y]M2
=

∫

M2

[x(t),y]2 dµM2
(x(t)),

where µM2
is the mentioned Gaussian cylinder measure

defined intoM2. By choosing the special case y = [y0 0]
T
,

(i.e. the component y0 is identically equal to zero), we
have:

[P(t)y,y]M2
=

∫

Rn

(
xT
0 (t)y0

)2
dµRn (x0(t))

=yT
0 E

[
x0(t),x

T
0 (t)

]
y0 = yT

0 P̃ (t)y0

since, in this case, x0(t) = Π0
nx(t) = ẽ(t). It is well known

that (always assuming y = [y0 0]
T
)

[P(t)y,y]M2
≤ ‖P(t)‖‖y‖2 = ‖P(t)‖yT

0 y0,

from which it follows that

λmax

(
P̃ (t)

)
= sup

‖y0‖6=0

yT
0 P̃ (t)y0

yT
0 y0

= sup
‖y0‖6=0

[P(t)y,y]M2

yT
0 y0

≤ ‖P(t)‖.

The theorem is finally proved by considering last inequality
and (23). �

5. EXAMPLE

Consider system (1)-(2) with

A =

[
−1 0 0.48
1 −0.2 0
1 −0.1 −0.3

]
, B =

[
1
1
1

]
, F =

[
1 0
−1 0
0.7 0

]
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Fig. 1. Sample error covariance matrix averaged over 100
noise realizations for different values of the measure-
ment delay δ.

C = [ 1 0.1 0 ] , G = [ 0 0.5 ] , u(t) = sin

(
2π

1000
t

)
.

The pair (A,C) is observable and (A,F ) is reachable.
Therefore there exists the steady-state Kalman gain

K∞ = [ 1.6211 −0.7939 2.1073 ]
T
,

which is obtained solving the matrix steady-state Riccati
equation, as recalled in Section 2.4. The corresponding
eigenvalues of A∞ = A−K∞C are

σ(A∞) = {−2.281, −0.381 + 0.284j, −0.381− 0.284j}.

The hypothesis of Theorem 4 and Corollary 5-6 are satis-
fied for example with α = 0.38. Using (12) with α = 0 and
a solver of scalar nonlinear equations we have δ̄0 = 2.2137.
Corollary 6 guarantees the existence of a bound for the
error covariance matrix P̃ (t) for all δ < δ̄0.

The proposed filter has been applied to the example
system, in a 100 realizations Monte Carlo simulation.
Euler-Meruyama integration (with ∆EM = 0.001) has
been used. The initial conditions are x(0) = [5 20 5]T for
the real state and x̃(t) = [0 0 0]T , with t ∈ [0, δ], for the
estimated state. Figure 1 depicts the maximum eigenvalues
of the sample error covariance matrix, averaged over the
100 noise realizations, defined as

Π(t) =
1

100

100∑

i=1

(
x(i)(t)− x̃(i)(t)

)(
x(i)(t)− x̃(i)(t)

)T

,

where the apex (i) indicates the i-th noise realization. The
measurement delay is set to the values δ = {0.5, 1.25, 2},
which are lower than δ̄0 = 2.2137, and δ = 2.25, which is
larger than δ̄0. As stated by Theorem 4, after the initial
transient, in the first three cases λmax(Π(t)) is bounded,
whereas in the last case it is not bounded. Moreover, in
the former cases the bound grows with δ.

Two different filtering methods have been also tested on
this system: the Kalman-Bucy filter without measurement
delay (KBF) and the standard optimal Kalman-Bucy pre-
dictor (KBP). Obviously, both the filters are not suitable
in real applications since the former assumes a null delay
and the latter requires the use of distributed terms. In this
sense, they can considered as referring cases to assess the
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Fig. 2. Real and estimated state component x1 for one of the 100 noises realization with δ = 0.5 (left) and δ = 1.25
(right).

Table 1. Numerical results: MSE.

δ = 0.5 δ = 1.25
x1 x2 x3 x1 x2 x3

NF 0.730 0.774 1.556 1.546 0.864 4.739
KBP 0.698 0.773 1.472 1.064 0.817 2.896
KBF 0.421 0.740 0.812 0.426 0.723 0.823

performances of the new filter (NF). Table 5 reports the
mean square error (MSE) for the three state components of
the estimation results obtained with δ = 0.5 and δ = 1.25,
with the KBP and the NF, and the corresponding results
for the KBF. Obviously, KBF definitely has better perfor-
mances with respect to both KBP and NF. Moreover, also
KBP outperforms the proposed filter. This was expected
because of the optimality of KBP. However, KBP and
NF clearly have comparable results. Figure 2 reports an
example of the estimation results for the first component
of the system for two values of delay, δ = 0.5 and δ = 1.25.

6. CONCLUSIONS

A suboptimal filter for linear stochastic system with de-
layed measurement is proposed in this paper. The filer
avoids the computational complexities due to the use of
distributed terms of optimal filters. Bound conditions on
the delay for assure the boundedness of the error covari-
ance matrix are provided. A numeric example confirms
the theoretical results. Future works will be devoted to
the extension of the approach to the time-varying delay
case.
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