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Abstract: This work develops a nonlinear controller for an induction heating system using a
parallel resonant inverter. The proposed controller should be seen as a nonlinear alternative
to the standard Phase-locked loop technique which uses a PI regulator. The asymptotic
stability of the closed loop system is demonstrated using a Lyapunov function. The controller
is experimentally validated and its performances (robustness and disturbance rejection) are
compared to those of a PI regulator.
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1. INTRODUCTION

Electromagnetic induction heating is an established tech-
nique to produce very high temperature for metal ap-
plications such as melting, brazing, forging, and surface
hardening, annealing, tempering and welding. Induction
heating systems provide high power density in a work-
piece allowing a very quick heating process. Depending
on the application, an appropriate frequency must be
imposed which takes into account the work-piece geometry
and skin-depth requirements. The frequency regulation is
accomplished by phase control employing the well-known
Phase-Locked Loop (PLL) technique. Two basic topologies
exist for induction heating systems: the Series Resonant
Inverters (SRI) and the Parallel Resonant Inverters (PRI).
A PRI is considered in the present work, it consists mainly
of a DC current source, an inverter and the resonant RLC
circuit.

An efficient controller has to maintain the phase between
the resonant circuit voltage and the input current to zero
independently of the perturbations affecting the system. A
large phase overshoot leads to a voltage overshoot which
may deteriorate the system components. The resonant
circuit is driven by a Voltage Controlled Oscillator (VCO)
and thus the control problem reduces to the assignment
of a desired voltage at the input of the VCO. Note that,
in practice, a small phase lag (2◦ to 3◦) is imposed for
security reasons.

The literature about the control of induction heating sys-
tems uses mainly PI controllers within a PLL (see S.
Chudjuarjeen [2004], N.-J. Park & D.-Y. Lee [2007], E.
Dede & J. Gonzalez [1991], S. Chudjuarjeen [2011], O.
Lucia [2009]). Such a linear control is quite appealing
due to its conceptual simplicity and straightforward imple-
mentability. However, its performances deteriorates in the
presence of hard perturbations. Moreover, the synthesis
of the PI controller is very often based on the transfer
function modeling the system which subsumes a constant

operating frequency. Consequently, such an approach do
not take into account the frequency transients. These two
points are addressed in the present work.

The contribution is thus twofold.

• A nonlinear controller which is based on the concepts
of homogeneity and finite-time stability (see S.P. Bhat
& D.S. Bernstein [1997, 2005]) is developed. The
advantage of the proposed controller is the reduction
of the phase overshoot during the transients and in
the presence of perturbations. This is demonstrated
on an experimental setup.

• The induction system admits a typical cascaded
structure constituted by the resonant circuit dynam-
ics and the VCO dynamics. This motivates the use
of cascaded systems theory in order to provide a
transient analysis and demonstrate the asymptotic
stability of the closed loop system.

The communication is organized as follows. Section 2
summarizes homogeneous, finite-time stable systems of
S.P. Bhat & D.S. Bernstein [1997, 2005] and cascaded
systems theory developed in Sepulchre [2003] in order to
fix the control problem. Section 3 is devoted to the system
description and mathematical modeling while section 4
provides the control design and stability analysis. Exper-
imental results are presented in section 5. Section 6 ends
the paper with a conclusion.

2. PRELIMINARIES

2.1 Homogeneous systems and finite-time convergence

A brief overview of the concepts of homogeneity and finite-
time stability is provided in this section. The content is
mainly taken from S.P. Bhat & D.S. Bernstein [1997].
Interested readers can see S.P. Bhat & D.S. Bernstein
[2005] for a deeper analysis but also the works of H. Hermes
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[1991] and M. Kawski [1989]. The following notation will
be used:

Φα(x) = sign(x)|x|α, x ∈ R, α > 0 (1)

where | • | denotes the absolute value of x. The fol-
lowing rules for derivation apply to (1), except at x =

0, where the derivatives are not defined: dΦα(x)
dx =

α|x|α−1 and d|x|α
dx = αΦα−1(x), ∀x ∈ R\{0}.

With r and λ two positive scalar constants, the mapping
x 7→ Λrx = λrx is called a dilation. A scalar field h(x)
satisfying h(Λrx) = λmh(x) is said to be homogeneous,
with degree m, with respect to the dilation Λr. The degree
of h is denoted by deg(h) = m+ r.

With r1 > 0 and r2 > 0, introduce now the multi-
index r = (r1, r2) and define the mapping x 7→ Λrx by

Λrx = (λr1x1, λ
r2x2). The vector field f(x) =

[
f1(x)
f2(x)

]
:

R2 7→ R2 is homogeneous with degree m ∈ R with respect
to the dilation Λr if:

deg(f1) = m+ r1, deg(f2) = m+ r2. (2)

Consequently, the system

ẋ = f(x), (3)

with f(x) satisfying (2) is said to be homogeneous with
degree m with respect to Λr.

A remarkable property of homogeneous systems with neg-
ative degree (i.e m < 0) (see S.P. Bhat & D.S. Bernstein
[2005]) is the following. If the origin, x = 0, of the system
(3) is a locally asymptotically stable equilibrium and f(x)
is homogeneous with negative degree then the origin is a
finite time stable equilibrium. This means that there exists
a positive time t1 such that x(t, t0, x0) = 0 ∀t > t1 where
x(t, t0, x0) denotes a solution of (3) initialized on x0 6= 0 at
t = t0. Note the difference with asymptotic stability where
x(t, t0, x0)→ 0 as t→∞.

One can easily verify that the vector filed

f(x) =

[
x2

−K1Φ α
2−α

(x1)−K2Φα(x2)

]
,

α ∈ (0, 1), K1 > 0, K2 > 0.

is homogeneous with negative degree. Consequently the
corresponding system

ẋ1 = x2,

ẋ2 =−K1Φ α
2−α

(x1)−K2Φα(x2) (4)

is finite time stable.

In addition, if one takes α = 0, (4) reduces to the so called
twisting algorithm (A. Levant [2003]) featuring finite-time
stability. Moreover, for α = 1 one obtains ẍ1 = −K1x1 −
K2x2, a linear, asymptotically stable system. Therefore,
in our practical context, system (4) with α small enough
can be seen as a continuous approximation of a variable
structure system. It shares thus good robustness properties
with sliding modes while reducing the chattering effect
since the signum function is substituted by a continuous
approximation. Recall that chattering reduction can be
done by artificially increasing the output relative degree
(see A. Levant [2003]).

2.2 Cascaded systems

Cascaded systems are an important class of systems
since they represent many physical systems (see Sepulchre
[2003]). A major obstacle for the global stabilization of cas-
caded systems is the peaking phenomenon (H.J. Sussman
[1991]). This phenomenon consists in large transient and
finite-time instability of a subsystem of the cascade during
the stabilization of the other subsystem of the cascade.
This results in the instability of the whole cascade. In order
to prevent from the peaking phenomenon, a well known re-
sult assumes a linear growth in the interconnection terms.
In fact, consider the nonlinear cascade:

˙̄z = f(z̄) + ψ(z̄, ξ̄)

˙̄ξ = a(ξ̄, v) (5)

such that the following assumptions are satisfied:

Assumption 2.1. The function ψ(z̄, ξ̄) has linear growth in
z̄, that is, there exist two class-K functions γ1(.) and γ2(.),
differentiable at ξ̄ = 0, such that

‖ψ(z̄, ξ̄)‖ ≤ γ1(‖ξ̄‖)‖z̄‖+ γ2(‖ξ̄‖)
Assumption 2.2. The Jacobian linearization (A,B) of ˙̄ξ =
a(ξ̄, v) at ξ̄ = 0 is stabilizable.

Theorem 2.3. (Sepulchre [2003]). Suppose that Assump-
tions 2.1 and 2.2 hold and let v = k(ξ̄) be any C1

partial-state feedback such that the equilibrium ξ̄ = 0 of
˙̄ξ = a(ξ̄, k(ξ̄)) is globally asymptotically stable and locally
exponentially stable. If there exists a positive semi-definite
radially unbounded function V (z̄) and positive constants
c and M such that for ‖z̄‖ > M

(1) LfV (z̄) ≤ 0,

(2) ‖∂V (z̄)
∂ ‖‖z̄‖ ≤ cV (z̄)

then the feedback v = k(ξ̄) guarantees boundedness of
all the solutions of (5). If, in addition, ˙̄z = f(z̄) is
globally asymptotically stable, then the feedback v = k(ξ̄)
achieves globally asymptotically stable of the equilibrium
(z̄, ξ̄) = (0, 0).

2.3 Application to the stabilization of the PRI system

The PRI system model is rewritten in the cascaded form
(5). Then the control input is chosen such that the ξ̄-
subsystem resembles to (4) i.e, the ξ̄-subsystem is finite-
time stable. Then, the remaining subsystem of the cascade
is shown to be asymptotically stable by using a Lyapunov
function. In sum an asymptotic stability is guaranteed for
the PRI system.

3. SYSTEM DESCRIPTION AND DYNAMICAL
MODEL

The PRI system is depicted in figure 1. The inverter
consists of four switching cells. Each cell is constituted by
a diode in series with an IGBT (Insulated-Gate Bipolar
Transistor). Switches have to be unidirectional in current,
bidirectional in voltage, which explains the use of the
diodes with the IGBTs.

Next we describe the operation for one switching cycle. For
simplicity reasons, we assume that the phase between the
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Fig. 1. A schematic representation of the inverter and the
resonant circuit.

input current and the resonant circuit output voltage is
zero. According to figure 1, the four IGBTs are activated
by G1, G2, G3 and G4. They are driven with a duty cycle
of 50%. Alternatively, S1 and S4 are activated during a
half cycle, then S2 and S3 are activated during the other
half.

An operating cycle is described below:

• S1 and S4 are conducting while S2 and S3 are
switched-off until the inverter output voltage crosses
zero.

• S1, S4, S2 and S3 are conducting. Considering
the overlapping of switches in current-fed invert-
ers, switching-off S1 and S4 must be preceded by
switching-on S2 and S3.

• S1, S4 are switched-off and S2, S3 are switched-on
until the inverter output voltage crosses zero.

• S1, S4, S2 and S3 are conducting which ends the cycle.

The parallel resonant circuit is composed by a capacitor
C, in parallel with an inductor Ls. The equivalent model
of the induction coil Ls is a series combination of a
resistor R and an inductor L. A detailed explanation of
the equivalent model can be found in E.J. Davies [1990].

Theoretically, the inverter current I(t) (see Figure 1) can
take two discrete values +IDC and −IDC. However, in
practice, as indicated by the second item of the operating
cycle description, the current I(t) cannot be discontinuous.
This motivates the following assumption.

Assumption 3.1. I(t) is differentiable.

The dynamical model with the current I(t) as input and
the capacitor voltage u(t) as output is given by:

LCü+RCu̇+ u = RI + Lİ. (6)

The control law is developed in section 4.

4. CONTROL DESIGN

Introduce the complex representation

u = rejϕ I = ρejθ (7)

where r and ρ denote, respectively, the magnitudes of the
input and output signals while θ and ϕ their respective
phases. The magnitude ρ of the input current is assumed
to be constant.

The first and second derivative of u are given by u̇ =
(ṙ + jrϕ̇) ejϕ and ü =

[
r̈ − rϕ̇2 + j (2ṙϕ̇+ rϕ̈)

]
ejϕ. The

first derivative of I gives İ = ρθ̇jejθ. Plugging in equation
(6) leads to:

ejϕ
(
LC

[
r̈ − rϕ̇2 + j (2ṙϕ̇+ rϕ̈)

]
+RC (ṙ + jrϕ̇) + r

)
= Rρejθ + Lρθ̇jejθ. (8)

Equating real and imaginary parts of (8) leads to the
following set of equations:

r̈=−R
L
ṙ − r

LC
+ rϕ̇2 +

R

LC
cos(θ − ϕ)− R

C
θ̇ sin(θ − ϕ)

ϕ̈=−R
L
ϕ̇− 2

ṙ

r
ϕ̇+

θ̇

Cr
cos(θ − ϕ) +

R

LCr
sin(θ − ϕ). (9)

Let θ̇, the frequency of the input signal, be the control
input. Thus, one sets:

θ̇ = v (10)

where v is the input voltage to the VCO. With ξ = θ − ϕ
and η(t) =

∫ t
0
ξ(s)ds the control law, inspired from (4), is

given by:

v = ϕ̇−K1Φ α
2−α

(η)−K2Φα(ξ), α ∈ (0, 1). (11)

With (9), (10) and (11), the closed loop system reduces
to:

r̈=−R
L
ṙ − r

LC
+ rϕ̇2 +

R

LC
cos(ξ)

−
(
ϕ̇−K1Φ α

2−α
(η)−K2Φα(ξ)

) R
C

sin(ξ)

ϕ̈=−R
L
ϕ̇− 2

ṙ

r
ϕ̇+

R

LCr
sin(ξ)

+
1

Cr

(
ϕ̇−K1Φ α

2−α
(η)−K2Φα(ξ)

)
cos(ξ)

η̇ = ξ

ξ̇ =−K1Φ α
2−α

(η)−K2Φα(ξ), α ∈ (0, 1). (12)

Set

ϕ̇? = θ̇? =

√
L−R2C

L2C
rd/sec, r? =

L

RC
, (13)

and the error variables er = r − r? and eϕ = ϕ̇− ϕ̇? then
the error dynamics is given by:

ër =−R
L
ėr −

er + r?

LC
+ (er + r?)(eϕ + ϕ̇?)2 +

R

LC
cos(ξ)

−
(
eϕ + ϕ̇? −K1Φ α

2−α
(η)−K2Φα(ξ)

) R
C

sin(ξ)

ėϕ =−R
L

(eϕ + ϕ̇?)− 2
ėr(eϕ + ϕ̇?)

er + r?
+

R sin(ξ)

LC(er + r?)

+

(
eϕ + ϕ̇? −K1Φ α

2−α
(η)−K2Φα(ξ)

)
cos(ξ)

C(er + r?)

η̇ = ξ

ξ̇ =−K1Φ α
2−α

(η)−K2Φα(ξ), α ∈ (0, 1). (14)

System (14) is of the form (5) with z̄ = (er, ėr, eϕ)T ,
ξ̄ = (η, ξ)T and we have the following result:

Proposition 4.1. For any strictly positive ε, each trajec-
tory of (14) initialized such that rt=0 ∈ R+\[0, ε), con-
verges asymptotically towards the equilibrium given by
er = eϕ = η = ξ = 0.
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Proof 4.2. Notice first that the (η, ξ)-subsystem is of the
form (4) and is therefore finite-time stable which satisfies
assumption 2.2. Secondly, given a strictly positive ε, there
always exists a class-K function γ2(‖(η, ξ)‖) ∼ 1

ε
2

such

that the assumption 2.1 is satisfied. Let us now study
the stability of the dynamics of (12) corresponding to
η = ξ = 0:

r̈=−R
L
ṙ − r

LC
+ rϕ̇2 +

R

LC

ϕ̈=−R
L
ϕ̇− 2

ṙ

r
ϕ̇+

ϕ̇

Cr
. (15)

Consider now the following function which is the energy
of the system:

V =
1

2
Cr2 +

1

2
L
[
(1− Cṙ)2 + (Crϕ̇)2

]
. (16)

Its derivative along the trajectories of (15) is given by:

V̇ = r −R
[
(1− Cṙ)2 + (Crϕ̇)2

]
.

If r
R <

[
(1− Cṙ)2 + (Crϕ̇)2

]
then V̇ < 0 and V decreases

with V > 1
2Cr

2 + 1
2L

r
R . If r

R >
[
(1− Cṙ)2 + (Crϕ̇)2

]
then V̇ > 0 and V increases with V < 1

2Cr
2 + 1

2L
r
R . As a

consequence,

V =
1

2
Cr2 +

1

2
L
r

R
(17)

is attractive and corresponds to V̇ = 0 and V is constant.
On (17), r is constant and ṙ = r̈ = 0. Then from (16), ϕ̇
is also constant. Finally from (15) one has r = L

RC and

ϕ̇ =
√

L−R2C
L2C asymptotically and then er = eϕ = 0.

Then the error system (14) with η = ξ = 0 converges
asymptotically to zero. This ends the proof.

Remark 1. Proposition 4.1, contrarily to theorem 2.3, is
only a local result.

5. EXPERIMENTAL VALIDATION

IDC C

R

L

v

I IL

dSPACE

u(t)

Imeasure ILmeasure

INVERTER

I

VCO

G1 G2 G3 G4

Fig. 2. Bloc diagram of the PRI system.

The experimental setup, depicted in Figure 3, a bloc
diagram of which is given in Figure 2, consists of a full
bridge PRI system. The whole system is water cooled. The
system is controlled via a dSPACE dS1104 microcontroller
and monitored via ControlDesk. The control law (11) is
implemented using Matlab-Simulink.

The experimental setup is not equipped with a voltage
sensor. However, it is equipped with two current sensors

Fig. 3. The experimental setup.

Fig. 4. A heating experiment: Work-piece at around
900◦C.

IL and I. Consequently, a phase angle of approximately
90◦ has to be imposed between IL and I in order to obtain
a zero phase angle between u and I. The system model (6)
can be rewritten as follows:

LCÏL +RCİL + IL = I

and a stability analysis in the light of section 4 can be
developed without any difficulty.

Two experiments has been realized. The first one con-
sists in a heating experiment. The second one studies
the robustness of the developed nonlinear controller and
compares its performances to a standard PI controller.

5.1 Heating experiment

The aim of the experiment is to describe a heating cy-
cle. A surface hardening experiment is conducted on a
ferromagnetic work-piece. The work-piece is heated to
approximately 900◦C (see figure 4) with 1600 Watts of
input power during the heating time. The experimental
result is plotted on figure 5.

A heating cycle is described below. To each item corre-
sponds a number on the figure (5).

(1) The generator is in a free-load situation.
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Fig. 5. A heating test: frequency versus time.

(2) The work-piece is manually introduced into the in-
ductor, it causes the variation of both L and R and
consequently of the resonant frequency. Then the
controller (11) automatically adjusts the frequency of
the inverter in order to maintain u and I in phase.

(3) The work-piece is now inside the inductor. The heat-
ing step begins.

(4) The work-piece temperature is close to the Curie
point, above 770◦C, and the magnetic properties (the
magnetic permeability and resistivity) change. As a
consequence, the values of L and R change again
which explains the frequency variation in figure (5).

(5) The Curie transition is now complete, the work-piece
becomes nonmagnetic, and temperature is around
900◦C.

(6) Heating finished, the work-piece is removed from
the inductor. The system goes back to its free-load
condition.
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Fig. 6. Inverter current (I) and inductor current (IL) versus
time.

The time evolution of u and I (resp. IL and I) are depicted
in figure 6 (resp. 7). On our experimental setup, the
current I cannot be directly measured, that’s why the
IGBT input signal is used instead on both figures. This
signal is delayed by approximately 200ns with respect to
the current I. This delay is caused by the propagation
time within the IGBT driver. Therefore, the current I
is adjusted accordingly in both figures. The phase shift
between IL and I is around 90◦. Equally, the phase shift
between u and I is of 2◦. Referring to Figure 7, it can be
observed that the inverter switches close to zero voltage.
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Fig. 7. Inverter voltage (u) and current (I) versus time.

5.2 Robustness tests and comparisons

This section presents the results corresponding to three ex-
periments. A PI controller and the homogeneous controller
(11) with different values of the parameter α are compared.
For each experience, three perturbations denoted by P1,
P2 and P3 are realized in order to test the robustness of
the controllers. The transient responses are compared.

PI control The PI controller is given by

v = Kpξ +Ki

∫ t

0

ξ(s)ds.

Figure 9 shows the system response to P1, P2 and P3. The
gains of the PI controller are set to Ki = 30, Kp = 0.2. We
notice that the perturbation P1 is compensated. However,
for P2 and P3 a transient is observed. For P2 the phase
shift deviation is 11◦ which corresponds to 13% of voltage
overshoot on the load terminal (around 100V ). This issue
adds an additional constraint on the power switches as
well as the maximum voltage supported by the capacitor
C. In addition, we notice from Figure 8 that the frequency
adjusts itself according to the inductor resonant load.
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Fig. 8. Robustness test: first experiment, PI control.

Homogeneous control with α = 0.8 The same pertur-
bations P1, P2 and P3 are applied under the controller
(11) with α = 0.8, K1 = 10 and K2 = 0.05. The experi-
mental results are shown on Figure 9. A clear increase in
performance can be noticed compared to the previous PI
controller. The maximum phase overshoot is no more than
6◦. This corresponds to less voltage overshoot.

Homogeneous control with α = 0.55 The homogeneous
control parameters are now α = 0.55, K1 = 10, K2 =
0.05. As the two first configurations P1 is compensated.
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Fig. 9. Robustness test: second experiment, control (11)
with α = 0.8.

In contrast, the deviation of the phase shift during the
transients is completely eliminated for the disturbances
P2 and P3. The maximum deviation is now less than 2◦,
which eliminates the constraints of transients on the power
components.
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Fig. 10. Robustness test: third experiment, control (11)
with α = 0.55.

6. CONCLUSION

A nonlinear controller is developed for the frequency con-
trol of a parallel resonant inverter for induction heating
systems. The control relies on the concepts of homogeneity
and finite-time stability. After proving the stability of the
closed loop system, experimental tests has been conducted
on a real life system. The experiments revealed the su-
periority of the nonlinear controller compared to the PI
controller oftenly used on PLL’s.
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