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Abstract: This paper considers fault tolerant attitude control problem of spacecraft under
intermittent faults that occur in the control processor. A novel control framework based
on multiple redundant control processors is provided, and a state-dependent switching law
among these processors is proposed to stabilize the attitude dynamics without requiring control
reconfiguration in each control processor when faults occur. Moreover, a probability-based
method is provided to find the minimal number of control processors that are needed for attitude
stabilization. Simulation results show the efficiency of the proposed methods.

1. INTRODUCTION

The potential faults in a complex system often range over a
very large region. A single fault tolerant control (FTC) law
(even an adaptive one) is often hard to design to stabilize
all faulty situations effectively as indicated in Blanke et al.
(2006); Yang et al. (2010). Supervisory FTC approaches
assume that the plant model belongs to a pre-specified set
of models, including the nominal situation and all possible
faulty situations, and that there exists a finite family
of candidate control laws such that the faulty system
is stabilized when controlled by one of those candidate
control laws as in Staroswiecki and Gehin (2011); Yang
et al. (2009) or by switching among those control laws as
in Yang et al. (2012).

Although multiple control laws are provided, the physical
realization of supervisory FTC is often achieved by only
one control processor (it will be called “processor” for
short in the following if there is no confusion) which adopts
the most appropriate control law. Such a supervisory
FTC scheme obviously relies on the assumption that the
processor is always healthy and available. In the presence
of processor faults, most of (supervisory) FTC methods
that are based on control reconfiguration are unavailable.
Different from faults in actuator, sensors or the plant
that are often permanent, most of processor faults are
intermittent. An intermittent fault appears and disappears
successively and randomly as described in Su et al. (1978),
such faults can occur 10 to 30 times as often as the
permanent faults and often exists in electronic equipments
(Ismaeel and Bhatnagar (1997)).
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of China (61104116, 61273171), and Doctoral Fund of Ministry of
Education of China (No.20113218110011).
Email: haoyang@nuaa.edu.cn. (H. Yang), binjiang@nuaa.edu.cn (B.
Jiang), vincent.cocquempot@univ-lille1.fr (V. Cocquempot).

This paper investigates the FTC problem of spacecraft
attitude control system (ACS) and particulary focuses
on a kind of intermittent processor faults (I) that forces
the torque inputs to be zero (the mechanism and formal
model of I will be given later). Although FTC methods of
spacecraft ACS have been researched for many years, e.g.
Tafazoli and Khorasani (2006); Xiao et al. (2011), to name
a few, most of these results assume that the faulty space-
craft is still controlled with three inputs and processor is
always healthy. In the presence of complete failures such
that torque inputs become zero, the spacecraft become
underactuated, and the FTC design is more complicated
as indicated in Tsiotras and Doumtchenko (2000). The
fault tolerance of I deserves deep investigation due to two
reasons:

1. For FTC design with hardware redundancy, multiple
processors would be applied as backups. However,
intermittent faults may occur in each processors, the
reliability of the whole ACS may not be guaranteed
even with multiple control processes. Moreover, too
many processors obviously increase the hardware cost
and computational burden of the spacecraft.

2. For FTC design with analytical redundancy, control
reconfiguration has to be applied. However, it is
difficult to adjust the controller to accommodate
the fault in itself. Moreover such FTC takes time
and control cost. Since intermittent faults may occur
frequently, much control effort has to be made if we
apply the FTC scheme every time when these faults
occur. This is often not admissible in real situation of
spacecraft operation.

This paper will answer two questions: 1) Is it possible
to accommodate I by multiple processors without control
reconfiguration in each processor? 2) how many processors
are needed?

The main contributions and novelties are as follows:
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1. The ACS is modeled by a switched system where each
mode represents the system with one of the proces-
sors. A novel switching scheme is proposed among
such a family of redundant processors. It shows that
if the period in which at least one processor is fault-
free is long enough compared with that when all
processors are faulty, then the attitude is stabilized
without any control reconfiguration in each processor.

2. According to Markovian statistical property of in-
termittent faults, a probability-based method is pro-
vided to build a link between the fault tolerance
analysis and the number of processors, under which
the minimal number of processors that are needed for
maintaining stability of ACS can be found.

In the rest of the paper: Section 2 presents some prelimi-
naries. Section 3 analyzes the system behavior under single
processor, Section 4 addresses the switching control issue
with multiple processors. Section 5 provides simulation
results, followed by conclusions in Section 6.

2. PRELIMINARIES

2.1 Rigid spacecraft model

Consider a spacecraft whose principal axes of the body-
fixed reference frame are along the direction of principal
axes of the inertia moments. The kinematics equation is:

q̇ =
1
2
(q4ω − ω×q), q̇4 = −1

2
ω>q

where ω ∈ <3 , [ω1 ω2 ω3]> represents the inertial angular
velocity vector. q ∈ <3 , [q1 q2 q3]>, q4 is a scalar, q1, q2,
q3 and q4 denote the quaternions. J = J> is the inertia
matrix. The cross product is defined as:

ω× ,
[ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]

The dynamic equation is:
Jω̇ = −ω×Jω + Du (1)

where u ∈ <3 is the output of the processor, D =
diag[1, 1, 1] is the actuator distribution matrix. Du rep-
resents the torque input generated by the thrusters. Eq.
(1) can also be expressed as in Wertz (1995):

q̈ = −1
4
ω>ωq +

1
2
Q

(−J−1(ω×Jω) + J−1Du
)

(2)

where Q ,
[

q4 −q1 −q2

q1 q4 −q3

q2 q3 q4

]
.

2.2 Model of I

Under I, the torque inputs become zero, i.e., Du = 0. This
includes three cases: 1) The fault brakes the programme
running process of the processor and makes the command
signals from the processor to thrusters be zero, i.e., u = 0;
2) The fault leads to the short circuit of the processor
and makes u = 0; 3) The fault affects the processor such
that the command signals deviate from normal, which
is very dangerous, thus the actuators are automatically

stopped, i.e., let D = 0. Such an operation is available
since thrusters can work in both continuous and impulsive
ways.

Denote uno as the nominal control law of ACS, one has

Du(t) =
{

uno(t) if there is no fault
0 if fault appears

The model of intermittent faults are often described by a
transition system with two modes (one is for the healthy
situation and the other is for the faulty situation). The
transitions between these two modes, i.e. the appearance
and disappearance of the faults follow the well known
continuous-parameter Markov rule as in Su et al. (1978).
Such a model is adopted for I. It follows that

P{Du(t + ∆t) = 0|Du(t) = uno(t)}= ρ01∆t (3)

P{Du(t + ∆t) = uno(t + ∆t)|Du(t) = 0}= ρ10∆t (4)
where P denotes the probability, 0 ≤ ρ01 < 1 represents
the fault appearance rates, and 0 ≤ ρ10 < 1 represents the
fault disappearance rates, ∆t ≥ 0 is a period. Throughout
the paper, it is supposed that the initial situation of the
processor is healthy.

2.3 Problem formulation

Define x , [q>, ε1q̇
>]>, where ε1 > 0 is a constant to be

chosen. Note that

ω = 2

[−q1 q4 q3 −q2

−q2 −q3 q4 q1

−q3 q2 −q1 −q4

] [
q̇4

q̇

]
= −2q̇4q + 2Q̄q̇

where Q̄ ,
[

q4 q3 −q2

−q3 q4 q1

q2 −q1 −q4

]
. Eq. (2) can be rewritten as:

ẋ = F (x) + G(x)u (5)

where F and G can be obtained from (2). It is clear that
if x → 0, then q → 0, q4 → 1, ω → 0, i.e., the attitude is
asymptotically stable at origin.

With m (m > 1) redundant processors, the ACS switches
among these processors and apply one of them at one time,
thus the system (5) is rewritten as

ẋ = F (x) + G(x)uσ (6)

where σ(t) : [0,∞) → M = {1, ..., m} denotes the
switching function, and ui denotes the output of processor
i, whose nominal control law is denoted as uno

i accordingly.

The problem to be solved in this paper is: Given any
ρ01 and ρ10 (the appearance and disappearance rates of
I), choose m (the minimal number of processors), design
uno

i (t) of each processor i and a switching function σ(t)
among processors such that the origin of system (6) is
asymptotically stable without reconfiguring ui of each pro-
cessor i in its faulty case.

3. SYSTEM BEHAVIOR UNDER SINGLE
PROCESSOR

Suppose that processor i, i ∈ M, is applied to the ACS,
i.e. σ = i.
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Lemma 1 : Consider the system (6) with σ(t) = i, i ∈ M,
and there is no fault. There exists an initial condition
of x(0) and uno

i such that the origin of system (6) is
asymptotically stable.

Proof : Design the nominal control law

uno
i =

(
1
2
QJ−1

)−1 (
1
4
ω>ωq +

1
2
Q

(
− J−1(ω×Jω)

)

−k1q − k2ε1q̇
)

(7)

where Q is defined in (2), k1 and k2 are two positive
constants.

Substituting (7) into (6) yields

ẋ =

[
03×3

1
ε1

I3×3

−k1I3×3 −k2I3×3

]
x (8)

For any ε1 > 0, we can chose k1 and k2 such that the
system (8) is asymptotically stable at origin. Consider a
function V = V1 +V2 +V3 where Vi , [qi ε1q̇i]>P [qi ε1q̇i]>
with P being positive definite symmetric matrix, its time
derivative along the solution of (8) satisfies

V̇ ≤ −λ0V (9)

for λ0 > 0. It follows that |x(t)| ≤ Me−
λ0
2 t|x(0)|, where

M ,
√

λmax(P )
λmin(P ) .

Note that the control law (7) is available if Q is non-
singular, this requires that q4 6= 0. If we choose the initial
state satisfying

|x(0)| ≤ α

M
, α < 1 (10)

then q4(0) 6= 0, control law (7) is available at t = 0. It
follows from (9) that under (7), |q(t)| ≤ α ∀t ≥ 0, this
means that q>q(t) ≤ α and q2

4(t) ≥ 1−α, ∀t ≥ 0. Therefore
control law (7) always works and limt→∞ V (t) = 0. This
completes the proof.

The initial condition (10) implies that if the initial Euler
angle θ ∈ (−π, π), then under (7), θ → 0 and would never
reach π. This does not restrict q̇(0) since ε1 can be chosen
small.

Lemma 2 : Consider the system (6) with σ(t) = i, i ∈ M,
and Dui = 0. If |x(t)| ≤ α, then V̇ ≤ λ1V for λ1 ≥ 0.

Proof : Since Dui = 0, the system (8) changes into

ẋ =
[

1
ε1

x4
1
ε1

x5
1
ε1

x6 f1(ω, x) f2(ω, x) f3(ω, x)
]>

(11)

where

f1(ω, x) ,−1
4
ω>ωq1 +

1
2
[q4 − q1 − q2]

(
J−1(ω×Jω)

)

f2(ω, x) ,−1
4
ω>ωq2 +

1
2
[q1 q4 − q3]

(
J−1(ω×Jω)

)

f3(ω, x) ,−1
4
ω>ωq3 +

1
2
[q2 q3 q4]

(
J−1(ω×Jω)

)

The time derivative of V along the solution of (11) is

V̇ ≤ 2|x||P |
(

3∑

i=1

|fi(ω, x)|+ |x|
ε1

)
(12)

Since |x| ≤ α, |q| ≤ α, one has that

|ω| ≤ 2α|q̇4|+ 2
√

2 + α|q̇| (13)

Also note that |q4q̇4| = | − q>q̇| ≤ α|q̇|, it follows that

|q̇4| ≤ α√
1− α

|q̇| (14)

Substituting (14) into (13) yields

|ω| ≤
(

2α2

√
1− α

+ 2
√

2 + α

)

︸ ︷︷ ︸
Λ

|q̇| (15)

One further has that

|fi(ω, x)| ≤ 1
4
|ω|2|q|+ 1

2
|J−1||ω×Jω|

≤
(

α

4
+
√

2
2
|J−1||J |

)
Λ2

︸ ︷︷ ︸
Ψ

|q̇|2 ≤ Ψα

ε1
|q̇| (16)

Substituting (16) into (12) leads to

V̇ ≤ 2|x||P |
(

3Ψα

ε21
|x|+ 1

ε1
|x|

)

≤ 2|P |6Ψα + ε1
ε21

|x|2 ≤ λ1V (17)

This completes the proof.

Lemmas 1 and 2 mean that in the healthy situation, under
initial condition satisfying (10) and nominal control law as
in (7), the origin of ACS can be exponentially stabilized.
In the presence of fault, the states may diverge no faster
than exponential provided it is bounded within a region.

4. FTC VIA MULTIPLE REDUNDANT PROCESSORS

4.1 Switching control framework

Onboard computers and processors of spacecraft often
need the hot backups that always work even they are
not used for the purpose of reliability. Inspired by such
a setting, a switching control framework is proposed as
shown in Fig. 1, where m processors work in parallel, each
one is a hot backup of others. Each processor i, i ∈ M is
either connected with spacecraft body denoted as B or
connected with its virtual body denoted as Ei. At one
time, only one of processors is chosen to be connected
with B, others are connected with Ei. The control law
ui of processor i is always designed as uno

i whatever the
processor is connected with B or with Ei.

It is assumed that the appearance and disappearance of
I can be detected rapidly by using certain fault diagnosis
scheme which is not the main focus of the paper. Interested
readers are referred to Su et al. (1978); Ismaeel and Bhat-
nagar (1997), Blanke et al. (2006) for detailed information.
The real-time fault diagnosis information of processor i
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is sent to Ei and the switching scheme. Based on these
information, the switching scheme provides the switching
function σ(t), and chooses one of processors to connect
with B.

processor 1

...

Switching 

scheme

xu

σ

1u1

processor

...

1

m

m

Spacecraft 

body  

Fault  

information

Fig. 1. Switching control framework

We will first discuss the design of Ei, then propose a
switching law among processors.

4.2 Design of Ei

Ei works when processor i is connected with it. The
dynamics of Ei is also represented by a switched system
with two modes

żi = F%i
(zi) + G%i

(zi)ui (18)

where zi ∈ <6 is the state, %i(t) : [0,∞) → {1, 2} is
a switching function, %i(t) = 1 if there is no fault in
processor i, and %i(t) = 2 if fault occurs. The synchro-
nization between the switchings of two modes of Ei and
the appearance/disappearance of processor i’s fault can
be achieved based on fault diagnosis information.

The dynamics of mode 1 is designed to be the same as B,
i.e., F1(z) = F (z) and G1(z) = G(z), where F (·) and G(·)
are defined in (5). One has that

∂V

∂zi
(F1(zi) + G1(zi)ui) ≤ −λ0V (zi) (19)

where V takes the same form as in Section 3.

The dynamics of mode 2 is designed as F2(zi) = Azi where
A is a Hurwitz matrix and G2(zi) = 0 such that

∂V

∂zi
A(zi) ≤ −λ2V (zi) for λ2 > 0 (20)

It can be seen from (19)-(20) that whatever processor
i is faulty or not, zi exponentially converges to zero if
processor i is connected with Ei.

To guarantee the availability of nominal control law uno
i

for Ei. At every time instant ts after which processor i is
connected with Ei, the state values zi(ts) is chosen such
that

|zi(ts)| ≤ α

M
, α < 1 (21)

4.3 Switching law design

Divide M = Mh

⋃Mf , where Mh denotes the set of
healthy processors, and Mf denotes the set of faulty
processors. Since under I, the fault appears and disappears
intermittently in each processor, both Mh and Mf are
time variant.

The switching law among processors are given as:

Switching law S
1. At t = 0, apply an arbitrary processor i, i ∈M, to B.
2. Until t = t? such that i ∈ Mf (t?), if Mh(t?) 6= ∅,

disconnect processor i from B, go to step 3; else go to
step 4.

3. Pick an arbitrary controller j ∈ Mh(t?), apply it to
B, let i = j, go to step 2.

4. Continue applying processor i to B, until t = t?? such
that Mh(t??) 6= ∅, let t? = t??, go to step 3. ¥

The main idea behind S is that at each time one healthy
processor i is connected with B until this processor can not
stabilize B due to fault, then another healthy processor
is connected with B. If there is no healthy processor,
processor i is still applied until a healthy one appears.

It can be seen that such a switching law relies on real-time
situations (healthy or faulty) of all processors. Thanks
to the structure of Ei as described in Section 4.2, S is
implementable since each processor always works whatever
it is faulty or not by being connected with Ei or B, its real
situation is always known by fault diagnosis scheme.

4.4 Fault tolerance analysis

For any t > 0, divide the interval [0, t) into two parts:
∆h

aoc(t) and ∆f
allc(t), where ∆h

aoc denotes the period in
which at least one healthy processor exists and ∆f

allc
denotes the period in which all processors are faulty.

Theorem 1 : The origin of (6) with initial condition satisfy-
ing (10) is asymptotically stable by m redundant proces-
sors under switching law S if

λ0∆h
aoc(t) > λ1∆

f
allc(t), ∀t > 0 (22)

Proof : According to Step 1 of S, apply an arbitrary pro-
cessor i to B. Since the initial situation of each processor
is healthy, based on lemma 1, applying processor i with
nominal control law as in (7) and choosing the initial
condition satisfying (10) guarantee V̇ ≤ −λ0V . It follows
that V (t) ≤ e−λ0tV (0) for t < tf where tf is the time
when fault occurs in processor i.

At t = tf , two cases are considered:

- Case 1, Mh(tf ) = ∅.
According to Step 4 of S, processor i is still applied

to B until t = t?? such that Mh(t??) 6= ∅. It follows
that ∆h

aoc(t
??) = tf , ∆f

allc(t
??) = t?? − tf .

Note that |x(tf )| ≤ α < 1, thus control law (7) is
still available at tf . According to Lemma 2, one has

V (t) ≤ e−λ0tf +λ1(t−tf )V (0)
for t < tescape where tescape denotes the time when
|x(tescape)| ≥ 1. Note that for t ≥ tescape, q4(t) may
equal zero, which violates the control law (7).
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On the other hand, Condition (22) guarantees that
V (t) < V (0), which means that |x(t)| ≤ α, ∀t ≤ t??.
Therefore the control law (7) and lemmas 2 is always
available in [0, t??). It follows that

V (t??)≤ e−λ0tf +λ1(t
??−tf )V (0) < V (0)

Thus |x(t??)| ≤ α < 1.
- Case 2, Mh(tf ) 6= ∅.

According to Step 3 of S, at t = tf , apply another
healthy processor j to B. We have that

V (tf )≤ e−λ0tf V (0) < V (0)
It holds that |x(tf )| ≤ α < 1.

Therefore, when another healthy processor j is applied to
B, the nominal control law is always available.

S guarantees that for any t > 0, one of healthy processors
is always being applied to B in ∆h

aoc(t), while in ∆f
allc(t),

a faulty processor is applied, it follows that

V (x(t)) ≤ e−λ0∆
h
aoc(t)+λ1∆

f
allc

(t)V (x(0)), ∀t > 0

Condition (22) guarantees that V (t) always decreases,
therefore when each processor is connected with B,
the nominal control law is always available. Finally,
limt→0 V (t) = 0. This completes the proof.

It is interesting to compare (22) with the stability condi-
tion of ACS under individual processor. Denote ∆h

i (t) and
∆f

i (t) respectively as the period in which the individual
processor i is healthy and faulty in [0, t). It is clear that
processor i stabilizes B if

λ0∆h
i (t) > λ1∆

f
i (t), ∀t > 0 (23)

In this case, there is no need to switch among multiple
redundant processors. In the proposed multiple-processors
switching scheme, even all processors do not satisfy (23),
condition (22) may still hold. The more is the number of
processors, the less restrictive is condition (22). This ex-
plicitly reveals the advantage of using multiple processors.

4.5 The minimal number of processors

Condition (22) of Theorem 1 can be used for checking
on-line whether the attitude is stable. However it is un-
available a priori for the determination of the number of
redundant processors. This motivates us to further inves-
tigate the statistic properties of I which can build a link
between the fault tolerance analysis and the number of
processors as it will be shown.

For each processor, denote ρh(t) and ρf (t) respectively as
the probability of the healthy and faulty situation at t.
Since the initial situation is healthy, it follows from the
Markovain jump theory (see Parzen (1962)) and (3)-(4)
that ∀t ≥ 0

ρf (t) =
ρ01

ρ01 + ρ10

(
1− e−(ρ01+ρ10)t

)
≤ ρ01

ρ01 + ρ10
(24)

ρh(t) = 1− ρf (t) ≥ ρ10

ρ01 + ρ10
(25)

Inequalities (24)-(25) implies that a large (small) fault
appearance rate ρ01 leads to a large (small) probability

of being faulty at present time, while a large (small) fault
disappearance rate ρ10 leads to a large (small) probability
of being healthy (faulty) at present time.

Definition 1 : The origin of the system (6) is asymptotically
stable in probability if limt→∞E(x) = 0, where E denotes
the mathematical expectation.

Theorem 2 : The origin of (6) with initial condition sat-
isfying (10) is asymptotically stable in probability by m
redundant processors under switching law S if

λ0(1− (%f )m) > λ1(%f )m, ∀t > 0 (26)

where %f , ρ01
ρ01+ρ10

.

Proof : It follows from (24) and (25) that

E(∆f
allc(t)) = t(ρf )m ≤ t(%f )m

E(∆f
aoc(t)) = t−E(∆f

allc(t)) ≤ t− t(%f )m

Under switching law S, applying processor i with control
law designed as uno

i in (7) and choosing the initial condi-
tion satisfying (10) leads to

E(V (x(t)))≤ e−λ0E(∆h
aoc(t))+λ1E(∆f

allc
(t))V (x(0))

≤ et(−λ0(1−(%f )m)+λ1(%f )m)V (x(0)), ∀t > 0
Condition (26) ensures that E(V (t)) < V (0), which means
that when each processor is connected with B, the nominal
control law is always available in probability. Finally, with
(26), limt→∞E(V (t)) = 0. This completes the proof.

Following condition (26), we can choose a minimal number
of m such that

(%f )m <
λ0

λ0 + λ1
(27)

Condition (27) reveals that the appropriate selection of
number m depends on the decay rate of the system with
the healthy processor, the diverging rate with the faulty
processor, and the fault appearance and disappearance
rates. If ρ10 and λ0 are large enough such that

%f <
λ0

λ0 + λ1
(28)

then one processor can stabilize the ACS in the presence
of intermittent faults. Since %f < 1, one has that (28) ⇒
(27) while the converse may not be true.

5. SIMULATION RESULTS

In the simulation, the inertia matrix is chosen as in Xiao
et al. (2011) :

J =

[ 350 3 4
3 270 10
4 10 190

]
kg ·m2

The initial parameters are (q1, q2, q3, q4) = (0.308, 0.218,
−0.218, 0.9), (ω1, ω2, ω3) = (0, 0, 0) (rad/s), therefore
q̇(0) = 0. Choose α = 0.4, ε1 = 1. The feedback gains
are k1 = k2 = 1. Simple calculations lead to λ0 = 1.5,
λ1 = 10.5. Also choose A in (20) such that λ2 = 1.5.

The appearance rate and disappearance rate of I are
supposed to be ρ01 = 0.2, ρ10 = 0.6. It follows that %f = 1

4 ,
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while λ0
λ0+λ1

= 1
12 . According to condition (26), let m = 2,

i.e., 2 processors are applied for the FTC purpose.

The first two sub-figures of Fig. 2 illustrate the healthy
periods and faulty periods of two processors that are gener-
ated under ρ01 and ρ10, the function χi(t) = 1 (χi(t) = 0)
when processor i is healthy (faulty), i = 1, 2. It can be seen
that in period [0.50)s, processor 1 is healthy in periods
[0, 7.7)

⋃
[12.4, 22.5)

⋃
[28.7, 41.3)

⋃
[45.1, 50)s and proces-

sor 2 is healthy in periods [0, 3.6)
⋃

[8.7, 14.1)
⋃

[16.7, 30.8)⋃
[37.8, 43.1)

⋃
[47.8, 50)s.

The third sub-figure of Fig. 2 shows the trajectory of σ(t)
according to switching law S. Processor 1 is applied to
the spacecraft in periods [0, 8.7)

⋃
[12.4, 22.5)

⋃
[30.8, 41.3)⋃

[45.1, 50)s and processor 2 is applied in other periods.

Fig. 3 shows trajectories of Duσ. Since in periods
[7.7, 8.7)

⋃
[43.1, 45.1)s, both processors are faulty, there

is no torque input in these periods. Fig. 4 shows the
behaviors of ω, q and q4. It can be seen that when there is
no torque input, the states diverge, however, the attitude
stability in the whole process is achieved under switching
between two processors in spite of intermittent faults.
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and the trajectory of σ(t)
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6. CONCLUSION

This paper provides a new fault tolerant control method
for spacecraft with intermittent faults. Such a method
relies on the trade-off among multiple processors, and
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Fig. 4. The trajectories of ω, q and q4

provides a new FTC clue in the case that control reconfig-
urations are difficult to be done. In this work, all states are
available, output-feedback control together with observer
design would be considered in the absence of full state
measurements.
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