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Abstract: In [18], a class of nonlinear systems with stochastic actuator failures have been
studied. Stochastic functions related to Markovian variables have been introduced to describe
the failure scaling factors for each actuators. In this paper we consider the kind of systems
involving state-delay, which is much more practical, and adaptive fault-tolerant control problem
has been studied. Two main challenges arise: how to establish the infinitesimal generator for
systems involving multi-Markovian variables and state-delay simultaneously; then how to handle
the delayed terms and the extra transition rate related ones appearing in the wisely designed
Lyapunov-Krasovskii functional. By proposing an adaptive fault-tolerant control scheme, the
existence and uniqueness of the solution process to the closed-loop system is guaranteed and
the boundedness in probability of all the closed-loop signals can be ensured. An example is
worked out to illustrate the effectiveness of the proposed scheme.
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1. INTRODUCTION

Time-delay phenomena are prevalent in various engineer-
ing systems such as communication-based systems, bio-
logical reactors, rolling mills, aerospace systems, etc. [1]
[2] and the existence of time-delay is often a significant
source of the degradation of system performance and even
a cause of instability of closed-loop systems. During the
past few decades, considerable efforts have been made in
the stability analysis and robust stabilization control for
linear and nonlinear time-delay systems; see, for examples,
[3]-[6] and the references therein. Most of the results are
obtained in the form of linear matrix inequality (LMI).
Recently, adaptive methods are employed to deal with
the uncertainties in time-delay systems and backstepping
technique is adopted to design the stabilization or tracking
controller constructively for a class of low-triangle nonlin-
ear time-delay systems [5] [7] [8].

Meanwhile, actuator failure phenomenon is commonly en-
countered in many practical systems, which may deteri-
orate the control performance of systems, cause the in-
stability of closed-loop systems, or even worse, result in
catastrophic accidents. Due to their practical and theoret-
ical importance, the fault tolerant control (FTC) problem
for nonlinear systems has been one of main concerns of
researchers in the field of automation and control, and
fruitful results have been obtained during the past decades;
see, for examples, [9]-[15] and references therein, just to
name a few. In particular, adaptive-based FTC scheme
has received much attention for its capability to deal
with system uncertainties as well as variations caused by
⋆ The work was supported by the National Natural Science Foun-
dation of China under grants 61174079 and 61034006.

actuator failures simultaneously. It is worth noting that all
the aforementioned literatures focus on the finite number
of actuator failure case, that is, once an actuator fails,
it will stay at the faulty mode during its rest opera-
tion. However, [16] shows that the patterns, times and
modes of actuator failures are practically stochastic and
for given adequate historical data, the abrupt failures can
be modeled as Markovian process. Furthermore, the status
of each actuator is mostly governed by an independent
Markovian process, that is, each actuator may fail at any
sampling time independently of the others. Most recently,
infinite number of actuator failure case has been taken
into account in [17]. In [18], a class of nonlinear uncertain
systems with stochastic actuator failures and unknown
parameters have been considered, in which the stochastic
functions related to Markovian variables are introduced to
denote the failure scaling factors for each actuator and the
adaptive failure compensation problem has been studied
without time-delay.

In this paper, the adaptive FTC problem for a class of
nonlinear systems involving Markovian jumping actuator
failures and state-delay has been taken into consideration.
The considered system possesses the following three char-
acteristics: First, stochastic functions related to Markovian
variables are adopted to denote the failure scaling factors
for each actuators and multi-Markovian variables are in-
volved corresponding to the different actuators; Second,
state-delay is taken into account, that is, the future state
of the system under consideration is not only dependent of
the present states but also the past ones; Third, different
from the finite number of actuator failure case considering
in most existing literatures, here the total number of actu-

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11299



ator failure may be infinite. Two main challenges arise due
to the existing multi-Markovian variables and state-delay:

(1) establishing the infinitesimal generator for nonlin-
ear systems involving multi-Markovian variables and
state-delay simultaneously;

(2) dealing with the delayed terms and the extra transi-
tion rate related ones appearing in the wisely designed
Lyapunov-Krasovskii functional.

The rest part of the paper is organized as follows. Section
2 establishes some necessary preliminary results for non-
linear systems with multi-Markovian variables and state-
delay. Section 3 presents the considered system model.
Then, by employing the backstepping method, adaptive
FTC strategy and stability analysis are given in section 4
and 5 respectively. In section 6, an example is provided to
illustrate the effectiveness of the proposed scheme. Finally,
the paper is concluded in section 7.

Notations. The following notations are used through-
out the paper: R represents the set of real numbers, R+

denotes the set of nonnegative real numbers, Rn and
Rn×r denote, respectively, n-dimensional real space and
n × r-dimensional real matrix space. ∥ · ∥ is the Eu-
clidean norm. Let (Ω, F, P ) be a complete probability
space. P (·) means the probability, and E(·) denotes the
expectation. Cb

F0
([−τ, 0];Rn) denotes the family of all F0-

measurable bounded C([−τ, 0];Rn)-valued random vari-
ables ξ = {ξ(t) : −τ ≤ t ≤ 0}. Ci stands for the set of
all functions with continuous ith-order partial derivative.
C2,1(Rn × [−τ,∞) × Sm;R+) represents the family of all
nonnegative functions V (x(t), t, r(t)) on (Rn × [−τ,∞) ×
Sm) which are C2 in x and C1 in t, and S = {1, 2, · · · , N} is
a finite set. The notation a∧ b means taking the minimum
of a and b. We sometimes drop the arguments of functions
without causing confusion.

2. PRELIMINARY RESULTS

Consider the following nonlinear system with Markovian
jump parameters and time-delay

ẋ(t) = f(x(t), x(t− τ), t, r(t)) (1)

on t > 0, where x(t) ∈ Rn is the state with initial data
{x(t) : −τ ≤ t ≤ 0} = ξ ∈ Cb

F0
([−τ, 0];Rn), τ > 0 is the

time delay, and f : Rn × Rn × R+ × Sm → Rn is locally
Lipschitz in (x(t), x(t−τ)) uniformly in t which vanishes at
(x(t), x(t− τ)) = (0, 0). r(t) = (r1(t), r2(t), · · · , rm(t)) is a
Markovian vector and for i = 1, 2, · · · ,m, ri(t) is a right-
continuous homogeneous irreducible Markovian process on
the probability space taking values in a finite set S =
{1, 2, · · · , N}.
Firstly, the multi-Markovian variables and time-delay
based infinitesimal generator is derived and presented as
in Lemma 1, which will play a key role in the development
of a state-feedback controller for the system (1).

Lemma 1. For a function V ∈ C2,1(Rn × [−τ,∞) ×
Sm;R+), the infinitesimal generator LV from Rn × Rn ×
[−τ,∞)×Sm to R at the specified mode (p1, p2, · · · , pm) ∈
Sm subject to (1) is given as below.

LV (x, y, t, p1, p2, · · · , pm)

= Vt(x, t, p1, p2, · · · , pm)

+ Vx(x, t, p1, p2, · · · , pm)f(x, y, t, p1, p2, · · · , pm)

+

m∑
k=1

N∑
qk=1

γpkqkV (x, t, p1, p2, · · · , qk, · · · , pm)

where Vt(x, t, p1, · · · , pm) = ∂V (x,t,p1,··· ,pm)
∂t , Vx(x, t, p1,

· · · , pm) =
(∂V (x,t,p1,p2,··· ,pm)

∂x1
, · · · , ∂V (x,t,p1,p2,··· ,pm)

∂xn

)
,

γpkqk > 0 is the transition rate from mode pk to mode

qk if pk ̸= qk, and γpkpk
= −

N∑
qk=1,qk ̸=pk

γpkqk .

Proof : The proof is following the similar line as in [18],
and is thus omitted. �
Remark 2. Noting that function f is not only related to
argument x, but also argument y, that is, x(t − τ) for
system (1), therefore, it should be emphasized that the
function V has three arguments (x, t, r(t)) defined on Rn×
[−τ,∞)×Sm, whereas the infinitesimal generator LV has
four arguments (x, y, t, r(t)) defined on Rn×Rn×[−τ,∞)×
Sm.

Then, based on the infinitesimal generator LV established
in Lemma 1, two useful properties are given as follows.
Property 3.

E
[
V (x, τ2, r(τ2))− V (x, τ1, r(τ1))

]
=E

∫ τ2

τ1

LV (x, y, t, r(t))dt

as long as V (x, t, r(t)) and LV (x, y, t, r(t)) are bounded
a.s. on t ∈ [τ1, τ2], where τ1, τ2 are bounded stopping times
and 0 ≤ τ1 ≤ τ2.
Property 4.

E
(
LV (x, y, t, r(t))

)
=

N∑
p1=1

· · ·
N∑

pm=1

E
(
LV (x, y, t, p1, · · · , pm)

)
πp1 · · ·πpm

as long as the expectations involved exist and are bounded
a.s., where πi = (π1i , π2i , · · · , πNi) is the stationary
distribution of the ith Markovian variable ri(t), that is, for

each t ≥ 0, πpi = P (ri(t) = p), p ∈ S. Clearly
N∑

p=1
πpi = 1

and πpi > 0.

The following lemma presents a sufficient condition to
ensure the existence and uniqueness of the solution for
the system (1).

Lemma 5. Assume that f is locally Lipschitz in (x(t), x(t−
τ)) for all t ≥ 0. For any l > 0, define the stopping time
ηl = inf{t : t > 0, ∥x(t)∥ ≥ l}. Assume that there is a
function V (x, t, r(t)) ∈ C2,1(Rn × [−τ,∞) × Sm;R+) and
parameters k and K ≥ 0 such that

lim
∥x∥→∞

inf
t≥0

V (x, t, r(t)) = ∞ (2)

and

EV (x(ηl ∧ t), ηl ∧ t, r(ηl ∧ t)) ≤ Kek(ηl∧t) (3)

hold.
Then, for any initial data {x(t) : −τ ≤ t ≤ 0} = ξ ∈
Cb
F0

([−τ, 0];Rn) and r(0) ∈ Sm, system (1) has a unique
solution x(t; ξ, r(0)).

Proof : It is noted that ηl is increasing along l so it
has a limit η∞ = lim

l→∞
ηl. By the known existence-and-
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uniqueness Theorem 7.12 in [20], the locally Lipschitz
condition guarantees that there exists a unique maximal
local solution to system (1) for t ∈ [−τ, η∞), where η∞ is
the explosion time. Therefore, in order to prove that the
maximal local solution is in fact a unique global solution,
we only need to show that P{η∞ = ∞} = 1.

According to the formula for expectation, it yields

P{ηl ≤ t} ≤
EV (x(ηl ∧ t), ηl ∧ t, r(ηl ∧ t))

inf
∥x∥>l,t≥0,pi∈S

V (x, t, p1, · · · , pm)
.

Letting l → ∞ and using (2) and (3), we can obtain
P{η∞ ≤ t} = 0. Since t is arbitrary, it has

P{η∞ = ∞} = 1.

The proof is therefore complete. �
In order to analyze the stability of closed-loop systems, the
notion of stability is introduced as follows which can be
regarded as an generalization of the counterpart without
time delay in [21].

Definition 6. A stochastic process x(t; ξ, r(0)) is said to
be bounded in probability if for all ξ ∈ Cb

F0
([−τ, 0];Rn)

and r(0) ∈ Sm, the stochastic variables ∥x(t; ξ, r(0))∥ are
bounded in probability uniformly in t, i.e.

lim
l→∞

sup
t>0

P
{
∥x(t; ξ, r(0))∥ > l

}
= 0. (4)

Moreover, the criterion about boundedness in probability
for nonlinear systems with multi-Markovian variables and
time-delay is presented as below.

Theorem 7. Assume that system (1) has a unique solution
in almost surely sense for t ∈ [−τ,∞) and there exist a
positive function V ∈ C2,1(Rn × [−τ,∞) × Sm;R+) and
dc > 0 such that

EV
(
x, t, r(t)

)
≤ dc (5)

and (2) hold.
Then, for any initial data {x(t) : −τ ≤ t ≤ 0} = ξ ∈
Cb
F0

([−τ, 0];Rn) and r(0) ∈ Sm, the solution x(t; ξ, r(0))
of system (1) is bounded in probability.

Proof : By the generalized Chebyshev’s inequality, i.e.
Lemma 1.4 in [21], and from (5), it follows that

P
{
∥x(t; ξ, r(0))∥ > l

}
≤

EV (x, t, r(t))

inf
∥x∥>l,t≥0

V (x, t, r(t))

≤
dc

inf
∥x∥>l,t≥0

V (x, t, r(t))
, (6)

which together with (2), indicates that (4) holds. �

3. SYSTEM MODEL

Consider a class of time-delay nonlinear systems with m
actuators described by

ẋi(t) = xi+1(t) + fi(x̄i(t)) + φi(x̄i(t− τ)),

i = 1, 2, · · · , n− 1 (7a)

ẋn(t) = fn(x(t)) + φn(x(t− τ)) +

m∑
j=1

gj(rj(t))uj(t) (7b)

where for i = 1, 2, · · · , n, xi(t) ∈ R is the state variable
with initial data xi(t) = ξi(t) for −τ ≤ t ≤ 0 and
rj(0) ∈ S, x̄i(t) = [x1(t), x2(t), · · · , xi(t)]

T is the state
vector, x̄i(t − τ) = [x1(t − τ), x2(t − τ), · · · , xi(t − τ)]T

is the delayed state vector, τ > 0 is a constant time
delay, uj(t) ∈ R for j = 1, 2, · · · ,m, is the jth input
of the system, fi ∈ R and φi ∈ R are locally Lipschitz
continuous functions, which vanish at x = 0, rj(t) is a
Markovian variable which has been described in section
2. In addition, gj(rj(t)) ∈ [0, 1] is a stochastic function
related to Markovian variable rj(t) and may change at
any time triggered by abrupt actuator failures.

In our paper, the adopted stochastic function gj(rj(t))
denotes the jth actuator failure scaling factor which can
be classified into the following three cases.

Case 1. gj(rj(t)) = 1 ⇒ the jth actuator works normally
in the failure-free case;

Case 2. gj(rj(t)) = 0 ⇒ the jth actuator has failed
completely;

Case 3. gj(rj(t)) ∈ (0 1) ⇒ there is partial loss of effec-
tiveness of the jth actuator.

Before proposing the control strategy, we introduce the
following assumptions for system (7a)-(7b).

Assumption 8. The m actuators cannot fail completely
simultaneously which indicates that at least one actuator

remains activeness. Denoting h = 1/
m∑
j=1

gj(rj(t)), we

assume that h is bounded.
Assumption 9. For i = 1, 2, · · · , n, there exists a positive
constant aj such that

|φi(x̄i(t− τ))| ≤
ni∑
j=1

aj |x1(t− τ)|j

where ni is a positive integer.

4. CONTROLLER DESIGN

In this section, we will deal with a state feedback stabiliz-
ing problem for the time-delay nonlinear system (7a)-(7b)
subject to stochastic actuator failures.

Firstly, introduce the following transformations

z1(x1(t), r(t)) = x1(t),

zi(x̄i(t), r(t)) = xi(t)− αi−1(x̄i−1(t), r(t)), i = 2, · · · , n (8)

where αi−1(x̄i−1(t), r(t)) for i = 2, · · · , n, is a virtual
controller which will be determined later.

Construct a Lyapunov-Krasovskii functional as

V (x(t), r(t)) =
1

2

n∑
i=1

z2i (x̄i(t), r(t)) +
1

2h
h̃TΓ−1

h
h̃

+

∫ t

t−τ

eλ(s−t)q(s)ds (9)

where h̃ = h−ĥ, ĥ is the estimate of h given in Assumption
8, Γh is a positive definite matrix, λ is a positive constant
and q(s) is a positive function yet to be determined.

Without loss of generality, here and hereafter it is assumed
that: at instant t, ri(t) = pi with pi ∈ S, i = 1, 2, · · · ,m.

Now we will investigate LV at the mode of r(t) =
(p1, p2, · · · , pm).

For the sake of simplicity, the following notations are
introduced.

zi,p = zi(x̄i(t), p1, · · · , pm), αi,p = αi(x̄i(t), p1, · · · , pm),
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hp = h(p1, · · · , pm), ĥp = ĥ(p1, · · · , pm).

By Lemma 1, the infinitesimal generator of the functional
V (x(t), r(t)) is shown as

LV (x(t), x(t− τ), p1, p2, · · · , pm)

= z1,p
(
z2,p + α1,p + f1 + φ1

)
+

n−1∑
i=2

zi,p

[
zi+1,p + αi,p + fi

+ φi −
i−1∑
j=1

∂αi−1,p

∂xj
(xj+1 + fj + φj)

]
+ zn,p

[
fn + φn

+

m∑
j=1

gj(pj)uj(t)−
n−1∑
j=1

∂αn−1,p

∂xj
(xj+1 + fj + φj)

]
−

1

hp
h̃T
pΓ−1

h
˙̂
hp + q(t)− e−λτ q(t− τ)− λ

∫ t

t−τ

eλ(s−t)q(s)ds

+

m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, p2, · · · , qk, · · · , pm

)
. (10)

Considering the existing delayed terms φi(x̄i(t − τ)) in
(10), we apply the Young’s inequality [22] and obtain the
following inequalities

n∑
i=1

zi,pφi(x̄i(t− τ))

≤
n∑

i=1

1

2
ε2i z

2
i,p +

n∑
i=1

1

2ε2i
φ2
i (x̄i(t− τ))

≤
n∑

i=1

1

2
ε2i z

2
i,p +

n∑
i=1

1

2ε2i
ni

ni∑
j=1

a2j |x1(t− τ)|2j , (11)

−
n∑

i=2

zi,p

i−1∑
j=1

∂αi−1,p

∂xj
φj(x̄j(t− τ))

≤
n∑

i=2

z2i,p

i−1∑
j=1

1

2
ε2ij(

∂αi−1,p

∂xj
)2 +

n∑
i=2

i−1∑
j=1

1

2ε2ij
φ2
j (x̄j(t− τ))

≤
n∑

i=2

z2i,p

i−1∑
j=1

1

2
ε2ij(

∂αi−1,p

∂xj
)2

+

n∑
i=2

i−1∑
j=1

1

2ε2ij
nj

nj∑
k=1

a2k|x1(t− τ)|2k, (12)

where εi, εij , i = 1, 2, · · · , n, j = 1, 2, · · · , n−1 are positive
constants to be chosen by the designer.

Substitute the inequalities (11), (12) into (10), it yields

LV
(
x(t), x(t− τ), p1, p2, · · · , pm

)
≤ z1,p

(
α1,p + Ξ1

)
+

n−1∑
i=2

zi,p
(
αi,p + Ξi

)
+ zn,p

( m∑
j=1

gj(pj)uj(t)

+ Ξn

)
+ z1,p(t− τ)

n∑
i=1

1

2ε2i
ni

ni∑
j=1

a2jz
2j−1
1,p (t− τ)

+ z1,p(t− τ)

n∑
i=2

i−1∑
j=1

1

2ε2ij
nj

nj∑
k=1

a2kz
2k−1
1,p (t− τ)

−
1

hp
h̃T
pΓ−1

h
˙̂
hp + q(t)− e−λτ q(t− τ)− λ

∫ t

t−τ

eλ(s−t)q(s)ds

+

m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, p2, · · · , qk, · · · , pm

)
(13)

where

Ξ1 = f1 +
1

2
ε21z1,p,

Ξi = zi−1,p + fi +
1

2
ε2i zi,p −

i−1∑
j=1

∂αi−1,p

∂xj
(xj+1 + fj)

+ zi,p

i−1∑
j=1

1

2
ε2ij

(∂αi−1,p

∂xj

)2
, i = 2, · · · , n− 1

Ξn = zn−1,p + fn +
1

2
ε2nzn,p −

n−1∑
j=1

∂αn−1,p

∂xj
(xj+1 + fj)

+ zn,p

n−1∑
j=1

1

2
ε2nj

(∂αn−1,p

∂xj

)2
.

Then, we design the positive function q(t) to compensate
for the delayed terms in (13). To this end, define q(t) as

q(t) = eλτ
[ n∑

i=1

1

2ε2i
ni

ni∑
j=1

a2jz
2j
1,p(t)

+

n∑
i=2

i−1∑
j=1

1

2ε2ij
nj

nj∑
k=1

a2kz
2k
1,p(t)

]
. (14)

Thus, the virtual controllers, the actual controller and the
parameter update law are obtained as follows.

α1,p = − c1z1,p − Ξ1 − eλτ
n∑

i=1

1

2ε2i
ni

ni∑
j=1

a2jz
2j−1
1,p

− eλτ
n∑

i=2

i−1∑
j=1

1

2ε2ij
nj

nj∑
k=1

a2kz
2k−1
1,p ,

αi,p = − cizi,p − Ξi, i = 2, · · · , n− 1 (15)

uj = ĥp(−cnzn,p − Ξn), j = 1, 2, · · · ,m (16)

˙̂
hp = Γhzn,p(cnzn,p + Ξn)− 2chĥp, (17)

where c1, c2, · · · , cn, ch are positive constants.

Substitute (14)-(17) into (13), it yields

LV
(
x(t), x(t− τ), p1, p2, · · · , pm

)
≤ −

n∑
i=1

ciz
2
i,p + 2ch

1

hp
h̃T
pΓ−1

h
ĥp − λ

∫ t

t−τ

eλ(s−t)q(s)ds

+

m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, p2, · · · , qk, · · · , pm

)
. (18)

Remark 10. From the above design procedure, we can see
that there is an extra transition rate related term in the
infinitesimal generator LV . Moreover, this term cannot be
incorporated into other terms simply, which will make the
stability analysis much more difficult.

5. STABILITY ANALYSIS

Considering the extra transition rate related term, firstly

by adding the positive term ch
1
hp

ĥT
pΓ

−1
h ĥp to the right

hand side of (18), we obtain that

LV
(
x(t), x(t− τ), p1, p2, · · · , pm

)
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≤ −
n∑

i=1

ciz
2
i,p + 2ch

1

hp
h̃T
pΓ−1

h
ĥp − λ

∫ t

t−τ

eλ(s−t)q(s)ds

+ ch
1

hp
ĥT
pΓ−1

h
ĥp

+

m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, p2, · · · , qk, · · · , pm

)
≤ − cV

(
x(t), p1, p2, · · · , pm

)
+ δ

+

m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, p2, · · · , qk, · · · , pm

)
(19)

where c = min{2c1, 2c2, · · · , 2cn, 2ch, λ}, δ = ch
∥Γ−1

h
∥∥hp∥2

hp
.

Eq. (8), (15)-(17) show that boundedness of zi implies the
boundedness of xi, and vice versa, which indicates that

lim
∥x∥→∞

inf
t≥0

V
(
x(t), r(t)

)
= ∞. (20)

Denote tl = ηl ∧ t for any t ≥ 0, where ηl is the stopping
time defined in Lemma 5. Then it can be obtained that
∥x(t)∥ < l in the interval [−τ, tl] a.s., which implies
that V (x(t), p1, p2, · · · , pm) is bounded on [−τ, tl] a.s.
by (20). From (19), it is obvious that LV (x(t), x(t −
τ), p1, p2, · · · , pm) is also bounded on [−τ, tl] a.s.. Then
according to Property 4 and (19), we obtain

E

(
LV

(
x(t), x(t− τ), r(t)

))
=

N∑
p1=1

· · ·
N∑

pm=1

E

(
LV

(
x(t), x(t− τ), p1, · · · , pm

))
πp1 · · ·πpm

≤ − c

N∑
p1=1

· · ·
N∑

pm=1

EV
(
x(t), p1, · · · , pm

)
πp1 · · ·πpm + δ

+

N∑
p1=1

· · ·
N∑

pm=1

E

( m∑
k=1

N∑
qk=1

γpkqkV
(
x(t), p1, · · · , qk, · · · ,

pm
))

πp1 · · ·πpm

≤ − cEV
(
x(t), r(t)

)
+ δ +N

( m∑
k=1

N
max

pk,qk=1

{
γpkqk

πpk

πqk

})
× EV

(
x(t), r(t)

)
= −

(
c− d

′)
EV

(
x(t), r(t)

)
+ δ,

where d
′
= N

( m∑
k=1

N
max

pk,qk=1

{
γpkqk

πpk

πqk

})
, and c1, c2, · · · , cn,

ch, λ, are appropriately chosen such that c > d
′
.

According to Property 3, it follows that

EV
(
x(tl), r(tl)

)
= V

(
x(0), r(0)

)
+ E

∫ tl

0

LV
(
x(s), x(s− τ), r(s)

)
ds

≤ V
(
x(0), r(0)

)
+ δ · tl − (c− d

′
)

∫ tl

0

EV
(
x(s), r(s)

)
ds

≤ V
(
x(0), r(0)

)
+ δ · tl. (21)

From (16), for i = 1, 2, · · · , n, we can verify that
∂uj

∂xi
is

continuous, which implies that uj is C1. Meanwhile fi
and φi are locally Lipschitz. Therefore, the local Lipschitz
condition of the closed-loop system consisting of (7a), (7b),

(15)-(17) is guaranteed. Then according to (20), (21) and
Lemma 5, we can obtain that for any initial conditions
{x(t) : −τ ≤ t ≤ 0} = ξ ∈ Cb

F0
([−τ, 0];Rn) and r(0) ∈ Sm,

there exists a unique solution x(t; ξ, r(0)) to the closed-
loop system.

Furthermore, choosing c
′

= c − d
′
and according to

Property 3, it yields

E

(
ec

′
tlV

(
x(tl), r(tl)

))
− E

(
V
(
x(0), r(0)

))
= E

∫ tl

0

ec
′
sLV

(
x(s), x(s− τ), r(s)

)
ds

+ c
′
E

∫ tl

0

ec
′
sV

(
x(s), r(s)

)
ds

≤ − c
′
E

∫ tl

0

ec
′
sV

(
x(s), r(s)

)
ds+

∫ tl

0

δec
′
sds

+ c
′
E

∫ tl

0

ec
′
sV

(
x(s), r(s)

)
ds.

That is,

E

(
ec

′
tlV

(
x(tl), r(tl)

))
≤ V

(
x(0), r(0)

)
+ δ

∫ tl

0

ec
′
sds

= V
(
x(0), r(0)

)
+

δ

c′
(
ec

′
tl − 1

)
,

which implies that

EV
(
x(tl), r(tl)

)
≤ e−c

′
tlV

(
x(0), r(0)

)
+

δ

c
′

(
1− e−c

′
tl
)
.

Lemma 5 shows that ηl → ∞ a.s. when l → ∞. Then
letting l → ∞ gives

EV
(
x(t), r(t)

)
≤ e−c

′
tV

(
x(0), r(0)

)
+

δ

c′
(
1− e−c

′
t
)
≤ dc, (22)

where dc = V
(
x(0), r(0)

)
+ δ

c′
.

From (22) and Theorem 7, we can conclude that all the sig-
nals in the closed-loop system are bounded in probability.
That is, the stability of the closed-loop nonlinear system
in the presence of possible Markovian jumping actuator
failures and state-delay can be ensured by the designed
controller (16).

6. AN ILLUSTRATIVE EXAMPLE

In this section, we consider the following second-order sys-
tem with double actuators to demonstrate the effectiveness
of our proposed scheme.

ẋ1(t) =x2(t) + x1(t) sin(x1(t)) + cos(x1(t− τ))x1(t− τ)

ẋ2(t) =x1(t)x2(t) + sin(x2(t− τ))x1(t− τ) + r1(t)u1 + r2(t)u2

where g1(r1) = r1(t), g2(r2) = r2(t). ri(t), i = 1, 2, is
a homogeneous irreducible Markovian process, with S =

{0, 1}. For r1(t), generator Γ = (γpq)2×2 =

[
−4 4
3 −3

]
. For

r2(t), generator Γ = (γpq)2×2 =

[
−3 3
4 −4

]
.

The initial states and parameter estimates are set as

x1(0) = 0.1, x2(0) = −0.1, ĥ(0) = 0.1, the delay is chosen
as τ = 0.1, the rest parameters are chosen as c1 = 8.5,
c2 = 8.9, Γh = 0.01, ch = 9.1, and all the ε are equal to 1.

By the proposed adaptive fault tolerant control scheme,
we present the states of the system in Fig. 1, from which
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we can see that both states of the system are bounded
in probability. The corresponding control signals are pre-
sented in Fig. 2. The results demonstrate the effectiveness
of the proposed adaptive compensation scheme.
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Fig. 1. System states
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Fig. 2. Control input

7. CONCLUSION

In this paper, adaptive fault-tolerant control problem has
been addressed for a class of time-delay nonlinear systems
with Markovian jumping actuator failures. Basic proper-
ties on the stabilization of systems involving Markovian
jumping actuator failures and time-delay have been estab-
lished and the existence and uniqueness of the solution has
been discussed, based on which, an adaptive state-feedback
backstepping controller has been proposed, which ensures
all closed-loop signals boundedness in probability.

REFERENCES

[1] J. Richard. Time-delay systems: an overview of some
recent advances and open problems. Automatica, 39:
1667-1694, 2003.

[2] M. Krstic. Delay Compensation for Nonlinear, Adap-
tive, and PDE Systems. Boston, MA: Birkhäuser,
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