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Abstract:  Patient and nurse interaction in the Intensive Care Unit (ICU) is important as it influences the 

patient outcomes. Optimizing the nurse-to-patient ratio can reduce the mortality of patient, prevent nurse 

burnout, and reduce costs in the ICU. However, there is a lack of methods to quantify and evaluate these 

bedside interactions. This paper presents a Clinical Activity Tracking System (CATS), which was 

designed to track and evaluate nursing motion at the patient bedside, aiming to quantify how nurses spent 

their working time. CATS utilizes the Microsoft Kinect, a motion sensing device containing an embedded 

camera and infrared sensor. For CATS, the Kinect is fixed on the ceiling, facing downwards to track 

clinical activity at the patient bedside. The system was set up in an experimental environment to simulate 

the ICU bedside activity, and different motion paths and test candidates were tested over 5 iterations to 

evaluate the performance of the system. The total tracking area for the CATS can reach 2.3 m × 1.6 m, 

which mimics to the ICU bedside area. The system can track candidates with different heights from 1.52 m 

to 1.90 m. The system can also track different motion patterns consistently, with median percentage 

tracking error 2.30% (Inter-quartile range (IQR): [0.72%, 4.25%]). The system can also track multiple 

candidates with median percentage error 1.75% (Inter-quartile range (IQR): 0.97%, 4.57%).  The results 

show that the system can be used in real-time applications to track bedside clinical activity. This system is 

capable of evaluating the ICU nursing activity, with the ultimate aim to generate appropriate nurse-to-

patient ratio to prevent nurse burnout and increase patient care. Also, it is able to track different candidate 

heights, adapt to different motion paths, different dwell time, and identify multiple people simultaneously. 

The results revealed that the system can be used to quantify and evaluate bedside clinical activity.  



1. INTRODUCTION 

Patient and nurse interaction in the Intensive Care Unit (ICU) 

influences patient care, recovery and outcome (Egerod et al., 

2013, Kim et al., 2012, Rose et al., 2011).  Low nurse-to-

patient ratio is associated with high mortality (Aiken et al., 

2010, Tourangeau et al., 2007). In addition, low nurse-to-

patient ratio increases nurses workload, resulting in burnout 

and job dissatisfaction (Aiken et al., 2002). Alternatively, 

higher nurse-to-patient ratios lead to significant financial 

burden (Walleck, 1994), and it is reported that up to 50% of 

hospital expenditure is spent on nursing labour (Reis Miranda 

and Jegers, 2012). For these reason, it is important to 

determine an optimal nurse-to-patient ratio system for ICU. 

It is difficult to establish optimal nurse-to-patient ratios for 

acute care hospital units. The ideal goal is to provide each 

patient with the level of care from nurses to their illness and 

condition demands. However, measuring illness level is an 

inexact science. Existing evaluation systems, such as SAPS-

II (Le Gall et al., 1993), SOFA (Vincent et al., 1998) or 

TISS-28 (Reis Miranda et al., 1996) can provide useful 

information in guiding nurse-to-patient ratio. However most 

of these systems are solely patient oriented, focusing on 

assessing a basic level of patient condition without any 

resolution between levels. Other nurse-to-patient ratio 

systems, such as EURICU-1 (first European intensive care 

unit) (Adomat and Hewison, 2004) or the OMEGA system 

(Carayon and Gurses, 2005), are also developed based on 

variety of severity of illness scoring systems to optimise 

nurse-to-patient ratio. The assumption made in these 

evaluation systems is that the sicker the patient, the higher 

nursing care provision is required, however these systems are 

broad and general checklists cannot easily differentiate 

patients needing more or less care. Finally, there is no 

standard method to consistently quantify patient and bedside 

nurse interaction, where the level of interaction is important 

and may better reflect the actual patient’s nursing 

requirement. 

Adomat et at. used a video camera to record nursing activity 

in ICU (Adomat and Hicks, 2003) and concluded that nurses 

may spend less time with more critically ill patients. Thus, 

there is a clear contradiction in the existing evaluation system 

to optimise patient-nurse ratio, based on severity scores. 

Adomat et al. were able to provide a novel method to classify 

patient-nurse interaction. However, this technique remains 

intuitive and qualitative. It requires experienced nurses to 

classify the nursing activity and behaviour. Thus, there is a 

clear need of an automated system that can measure activity 

non-invasively and without identity to overcome these 

obstacles. 

In this paper, a Clinical Activity Tracking System (CATS) 

which aimed to address this issue is presented. This system is 
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developed to track and evaluate nursing activity at the patient 

bedside. It aims to quantify the time nurses spend on nursing 

activities, such as nursing interventions, observing the 

patients, and talking with visitors based on motion and 

location around the bedside. The ultimate target is to assess 

activity with respect to quantitative and qualitative 

assessment of patient illness severity. This paper presents the 

system setup and design, and validates its ability to track 

nurse motion in a bedside area. Several clinically relevant 

nursing activity evaluation metrics are developed and 

presented in the validation tests. This validation is a required 

first step before being able to test the situation clinically with 

patients and nurses. 

2. PROPOSED METHOD 

2.1   The Clinical Activity Tracking System (CATS) 

The Clinical Activity Tracking System (CATS) utilizes the 

Microsoft Kinect, a motion sensing input device with an 

embedded camera and infrared sensor. In this system, the 

Kinect is fixed on the ceiling facing downwards. A schematic 

drawing of the experimental set up for CATS and 

corresponding system variables is shown in Fig. 1. In this 

study, the system is set up in a laboratory environment to 

simulate the patient bedside area excluding the bed, as the 

aim is to target the nursing motion around the bed, rather than 

the patient. 

 

Fig. 1. CATS configuration and geometry 

The total distance from the ceiling to the floor is 2.7 m, 

which corresponds to the actual height of the Christchurch 

hospital Intensive Care Unit (ICU). Several important system 

variables in Fig. 1 affect the total tracking area: 

1. Height: Refers the test candidate height from the floor, 

which realistically varies from 1.50 to 1.90 m, including 90% 

of the adult population. In New Zealand, the average female 

height is 1.65 m and the average male height is 1.77 m 

(Wilson et al., 1993). 

2. Depth: The Kinect depth sensor can maintain tracking 

through an extended range of approximately from Minimum 

Depth of 0.7 m (from the ceiling) to a Maximum Depth of 6 

m. However, to capture test candidates, the Maximum Depth 

was set to the height of a shorter person’s chest, 1.04 m from 

the ground, and the Minimum Depth was set above a taller 

test candidate’s chest, 2.7-0.96=1.74 m from the ground. 

3. Blob size: The contiguous objects of interest in the covered 

zone are filtered using several empirically determined values. 

Any blob size > 35000 pixels (0.5 m × 0.5 m) or < 5500 

pixels (0.2 m × 0.2 m) are removed. This filtering thus only 

captures blobs similar to human size, and ignores any others. 

The total tracking area for the CATS can reach 2.1 m × 1.5 m 

(Length × Width), when the depth is set as 0.96-1.66 m from 

the ceiling (1.04-1.74 m from the ground). If any object 

shows up between 0.96-1.66 m high and the size of the object 

is similar to human, CATS records the objects as several 

blobs. Fig. 2(a) shows a sample image captured by the 

CATS, where three candidates were identified. Then the 

colour image is processed as depth image, with only blobs in 

a special height range and similar as human size. Every blob 

is identified by enclosing its contour with a rectangle, as well 

as a centre point. Fig. 2(b) show that when one candidate 

bends over, which means he is out of the detection height, the 

blob disappears.  This function can prevent CATS detecting 

patients at any time to protect their privacy. Up to 4 blobs 

may be detected and tracked simultaneously, which is a 

realistic maximum for the area and intended scenario. The 

centre positions of the blobs and the time are recorded for 

further analysing. 

 

Fig. 2. Transfer the colour image into depth image and filter 

the blobs in a special height range and similar as human size. 

2.2 Metrics: 

Two metrics were developed to assess ICU nurse motion in 

the patient bedside area: 

1. Distance  

Distance is defined as the distance between the nurses and a 

Fixed Point, as shown in Fig. 3. This Fixed Point is set near 
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to the patient head, which is where the ventilator and infusion 

pumps are typically located. Distance can be tracked every 

frame, creating a full trajectory for each interaction in the 

space. The distance Metric is quantified in Pixels instead of 

meters. Fig. 3 schematically shows an example view of 

CATS in an ICU bed space with the captured area of interest 

and the distance recorded.  

 

Fig. 3. The distance between each nurse and the fixed point 

2. Dwell time 

Time is recorded along with object’s position if any object 

shows up in the depth image. Dwell time can be calculated 

when a test candidate is not moving in the area of interest. 

The main purpose is to capture those locations and time 

periods spent stationary at a fixed location, such as adjusting 

the ventilator, as these periods may capture severity and 

difficulty managing the patient. These two metrics can be 

further processed for each event to assess nursing activity and 

effort, to eventually determine individual patient nursing 

demands. 

2.3 Walking patterns for test candidate: 

To test and validate CATS performance, three candidates 

with different heights of 1.74 m, 1.52 m and 1.90 m 

performed several motion patterns in the tracking. The 

optimal CATS settings were determined using a test 

candidate with height of 1.74 m. After the optimal settings 

are found, 2 other test candidates of 1.52 m and 1.90 m 

performed several motion patterns to test the system 

consistency. 

The tracking area is divided into 4 zones, and labelled as A, 

B, C and D, as shown in Fig. 4.  In the tracking area, 9 

distinct feature points are labelled, which are used to help 

indicate where to stop for each pattern. Test candidate 

performed several different walking patterns, with each 

pattern repeated 5 times. The times in each region indicate 

times where the person stopped walking at a specified 

location and was assessed as dwell time. 

For two candidates, the first candidate walked along the solid 

arrow, and the second candidate walked along the dash 

arrow. There are 4 different walking patterns are designed to 

test the system, as shown in Fig. 5. The comparison between 

Fig. 5 (a) (b) and (c) can test the system consistency about 

different dwell time. The comparison between Fig. 5 (b) and 

(d) is to test system consistency to different paths. The 

system consistency for different candidate’s heights is tested 

with pattern in Fig. 5 (a).  

 

Fig. 4. The walking pattern for multiple candidates. 

 

Fig. 5. Different motion paths and timing for the single 

candidate tests. The time in each region indicate times where 

the person stopped walking and will be assessed as dwell 

time.  

2.4 Testing Process 

The test regime was designed as follows: 

1. Find the tracking area and find the best system parameters: 

A test candidate with 1.74 m height performed the walking 

pattern shown in Fig. 5(a). The pattern was walked as 

consistently as possible and dwell times were held using a 

stopwatch and directed by an external person. Several 

optimal system parameters were found, such as Maximum 

Depth, Minimum Depth and blob filter. 

2. Validation for different walking paths: To prove CATS 

suits for different walking paths, the optimal settings 

obtained from steps 1 were used to test different patterns in 
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Fig. 5 (b) (d), calculating the consistency, using one test 

candidate with 1.74 m height. 

3. Validating CATS suit for different heights: After 

optimisation with the 1.74m tall person in steps 1-2, the 

system was tested for heights ranging from 1.50-1.90 m using 

the pattern of Fig. 5 (a). The results were used to determine a 

system setting would work for the majority of the population. 

4. Validating CATS suit for multiple tracking: To test the 

system for multiple concurrent people, the optimal setting 

was tested for the 1.67 m and 1.90 m candidate 

simultaneously using the patterns shown in Fig. 4. 

2.5 Absolute percentage error (APE) of motion tracking 

The system’s ability to capture motion information during the 

conditions of different heights and other simulated situations 

was investigated using absolute percentage error (APE): 

%100
(t)  DistanceAverage

(t)  DistanceAverage -(t) Distance
)( tAPE    (1) 

The Distance (t) represents the distance between the 

candidate and the fixed point at time of ‘t’. There are 5 

iterations, which generates 5 distances. Each person repeat 

the movement 5 time.  The Average Distance is the average 

of 5 iterations, and it is used to normalize error as a deviation 

from expected. 

The Median, inter-quartile range (IQR) and 90% confidence 

interval (CI) of the APE are calculated. These metrics, along 

with dwell time, assess the system’s ability to accurately and 

consistently capture the test candidates or nurses trajectory 

when moving in the space. 

3. RESULTS 

3.1 Area covered and system parameters 

In this study, the size of the tracking area varies depending on 

the value of the Maximum Depth. Several combinations of 

minimum and maximum depth were tested and the optimal 

parameters are found. This study was performed with a test 

candidate at the height of 1.74 m. Table 1 shows the 

combinations tested and their resulting total tracking area. 

Table 1.  Tracking area based on maximum and 

minimum depth variables 

Candidates 

Body Part 

Depth Total 

Tracking 

Area(m 

×m) 

Minimum 

Depth(m) 

Maximum 

Depth (m) 

Head (0.96 

m-1.16 m) 

2.7-1.74=0.96 2.7-1.54=1.16 1.38×1.00 

Chest (0.96 

m-1.46 m) 

2.7-1.74=0.96 2.7-1.24=1.46 1.90×1.40 

Thigh (0.96 

m-1.96 m) 

2.7-1.74=0.96 2.7-0.74=1.96 2.30×1.60 

 

From the results above, the optimal Minimum and Maximum 

Depth was set as 0.96-1.66 m from the ceiling. The optimal 

blob filter is found as 5500-35000 pixels to filter blobs too 

large or too small, only keep blobs similar as human size. 

3.2 Validation of different paths: 

Two different walking patterns, as shown in Fig. 6 (a) (b), 

were used to compare the consistency of different walking 

paths and different dwell times. The results are shown in Fig. 

6, demonstrating the ability of CATS motion tracking to 

adapt to different walking patterns. Fig. 6 (c) (d) shows the 

consistency of the system. The Y-axis indicates the distance 

from the fixed point A measured pixels. Each test-iteration is 

represented by an individual line. Fig. 6(e) (f) shows the 

dwell time of first trial. For example, in Fig. 6 (e), test 

candidate stay in Area A for 20 seconds, Area B for 30 

seconds, Area C for 30 seconds and Area D for 40 seconds, 

this is corresponding with the design. The bottom row shows 

the Median, IQR and 90% CI of Error from 5 trials. 

 

Fig. 6. The consistency of tracking with different paths 

3.3 Validation of candidate heights 

The walking pattern in Fig. 5 (a) was used to test system 

consistency for different candidate heights. The results for the 

two different candidate heights of 1.52 m and 1.90 m are 

shown in Fig. 7. The results show that the CATS was able to 

map motion paths of two candidates with different heights. 

Fig. 7 (a) (b) shows the distance between candidate and the 

fixed point. Fig. 7 (c) (d) shows the dwell time of the first 
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trial. The bottom row shows the Median, IQR and 90% CI of 

Error. 

3.4 Validation for multiple candidates tracking 

Fig. 8 shows the result for two candidates simultaneously 

walking along the path in Fig. 4. The candidates were 1.90 m 

and 1.67 m in height. Fig. 8 clearly shows the system’s 

ability to track two candidates simultaneously. In addition, it 

was able to differentiate the path of each candidate clearly. 

Fig. 8 (a) shows the distance between candidate and the fixed 

point, one is 1.90 m and one is 1.67 m. Fig. 8 (b) (c) shows 

the dwell time of the first trial. The Median, IQR and 90% CI 

of Error were also calculated in the bottom row. 

 

Fig. 7. The consistency of tracking different heights 

 

 Fig. 8. Multiple candidates monitoring using walking pattern 

from Fig. 4 

4. DISCUSSION 

This study has shown that CATS can be used to accurately 

track test candidate motion and dwell time inside the tracking 

area. The system is mounted on the ceiling, reducing 

interruption to staff movements. Another significant 

advantage of the CATS is that no image or identifying data 

was stored, protecting nurse and patient privacy, which can 

impact ICU working environments. As found in Table 1, the 

system can cover an area bigger than 1.90 m × 1.40 m. This 

area corresponds to the actual patient bedside area where 

most nursing activities occur. 

Also, CATS was able to detect different walking patterns, 

people of different heights, as well as multiple simultaneous 

candidates, as shown in Figures 6-8. For people with 

different heights, CATS can adapt to a range from 1.50 -1.90 

m. For multiple candidates, CATS is capable of identifying 

each person by retrospectively analysing the data and record 

each person’s trajectory. 

In this study, two evaluation metrics were developed to 

monitor patient-nurse interaction. The first metric was the 

distance of the nurse from a fixed point. If the distance is 

small, it is an indication that nurse is near patient. If the 

measured distance is larger, it may be an indicator that the 

nursing activity is focused on medical data recording, or 

other less intensive preparation. The second metric is dwell 

time. By retrospectively analysing the dwell time, the 

relationship between nursing activities and patient situation 

can be determined. Hence, for patients with different illness 

scores, it is possible to know how much labour each patient 

needs. Hence, it is possible to calculate how many nurses an 

ICU needs in total, relative to the number and illness of the 

patients. In particular, for patients with the same illness score, 

it is possible to determine why they need different amounts of 

care and thus which type of diseases requires more nursing 

staff. 

There are several limitations of the CATS that need to be 

addressed before clinical deployment: 

1. CATS cannot identify the person in the tracking area 

because of the health and privacy issue of the working area. 

Thus, the system tracks everyone, including non ICU staff 

such as technicians and family members. This global tracking 

may potentially affect the data recording. However, as the 

occurrence of non ICU staff in the tracking area is limited, 

CATS can easily separate nursing activities and non nursing 

activities. In particular, in Christchurch Hospital ICU, family 

members typically sit outside the proposed tracking area, and 

the tracking area can be adapted to minimize this effect. It is 

important to note that this system is a motion tracking system 

and more detailed nursing activities, such as that described in 

the literature were not distinguishable (Adomat and Hicks, 

2003, Miranda, 2003, Vincent et al., 1998). 

2. CATS can only detect some of nursing activities because 

of the limitation of detection area. However, this problem can 

be solved through using multiple systems to cover larger 

areas of interest if needed. It is also important to note that 

nurse-patient interactions occur primarily in the area near the 
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patient. Thus, CATS will correspond to the more ‘interactive’ 

area. 

5.  CONCLUSION 

A system to monitor nursing activities near the ICU patient 

bedside was developed and tested in a simulated 

experimental environment. The results showed that CATS is 

able to track candidate of different heights, adapt to different 

motion paths and identify multiple people simultaneously. 

The CATS uses two metrics, distance and dwell time, to 

evaluate nurse-patient interaction. The system performance 

indicates that it will work for actual clinical usage. This 

system can be implemented to evaluate nursing time and 

activities in ICU, helping the ICU to find more appropriate 

nurse-to-patient ratio, divide the work force based on care 

required, prevent nurse burnout, reduce operational costs and 

decrease patient mortality. 
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