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Abstract: The leader-following output consensus problem of multi-agent systems (MAS) is
studied in this paper. Each agent is modeled by a single-input single-output (SISO) system
which can be further described by a controllable and observable linear state space model. An
observer is constructed to estimate the agent’s state, and the estimated state is shared with
neighbor agents via the noisy communication channels. Similar to the previous work, in the
proposed protocol a time-varying gain is employed to attenuate the noise’s effect. However, in
this paper, each agent is allowed to have its own time-varying gain. Some sufficient conditions
on the time-varying gain are given for ensuring the consensus in the mean square sense. Finally,
a simulation example is presented to verify the theoretical results.

1. INTRODUCTION

The last decade has witnessed a rapid development of
studies on the consensus of multi-agent systems (MASs).
Solving a consensus problem means to design a distributed
control protocol such that all agents’ states are convergent
to a same value. To this end, agents must share their
information through the communication network which
is unavoidably corrupted by noises. Recently, a growing
number of works have been reported to address the issue of
communication noises. To deal with the uncertainties such
as communication noises, Hou et al. [2009] and Cheng et al.
[2010] proposed some adaptive consensus protocols based
on neural networks. Another common way to attenuate
noises is to employ a time-varying gain a(t) in the con-
sensus protocol. This idea was first introduced in [Huang
et al., 2009] to solve the mean square/almost sure consen-
sus problem of first-order integral MASs. And the time-
varying gain should satisfy two conditions:

∫∞

0 a(t)dt = ∞

and
∫∞

0
a2(t)dt < ∞, which are called the stochastic-

approximation type conditions. These conditions were also
proved to be necessary for the mean square consensus
in [Li and Zhang, 2009]. Extensions to the mean square
consensus of second-order integral MASs and generic linear
MASs were made in [Cheng et al., 2011b] and [Cheng
et al., 2013a], respectively. The aforementioned papers all
consider the consensus of leaderless MASs, while many
scholars also paid attention to the consensus of leader-
following MASs with communication noises, for exam-
ple [Ma and Zhang, 2010, Hu et al., 2010, Wang et al.,
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2013a]. In [Ma and Zhang, 2010], the leader-followingmean
square consensus problem of first-order integral MASs
with communication noises can still be solved by the proto-
col including the stochastic-approximation type gain. Hu
et al. [2010] extended the results to the switching topology
case. However, the stochastic-approximation type condi-
tions can only be proved sufficient for ensuring the leader-
following consensus. To find the necessary and sufficient
conditions, Wang et al. [2013a] studied the continuous-
time first-order integral MAS. They proved that if a(t) is
a uniformly continuous function, then the necessary and
sufficient conditions for the leader-following mean square
consensus were:

∫∞

0 a(t)dt = ∞ and limt→∞ a(t) = 0. The
counterpart results in the discrete-time domain were given
in [Wang et al., 2013b].

By reviewing the current literature, it can be found that:
(1) studies on the consensus with communication noises
mainly focus on the first-order integral agent or the second-
order integral agent; and (2) the time-varying gain is
assumed to be identical for all agents. There are very few
papers regarding the generic linear agent except [Cheng
et al., 2013a, Wang et al., 2013b], where the agent’s
full state is assumed to be available for the consensus
protocol design. However, the agent’s full state may not be
available in practical applications. Moreover, it is relatively
difficult to perfectly synchronize the time-varying gain
among agents in practice. These observations make the
motivation of the study in this paper.

The leader-following output consensus of MASs with com-
munication noises is considered in this paper. The dy-
namical behavior of each agent is modeled by a single-
input single-output (SISO) system. The control objective
is to design the distributed control protocol for MASs such
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that outputs of following agents can all be convergent to
the leader’s output in the mean square sense. In addition,
only the agent’s output information is available for the
protocol design. To this end, the agent’s SISO dynamics
is equivalently written as the controllable and observable
linear state space model. And inspired by the previous
work [Cheng et al., 2013b], an observer is constructed to
estimate each agent’s full state. Then agents exchange
their estimated states with their neighbor agents in the
noisy communication environment. To attenuate the noise
effect, the time-varying gain technique is employed in
the proposed consensus protocol. However, each agent is
allowed to have its own time-varying gain in this paper.
It is proved that under the proposed protocol, outputs
of following agents can reach a consensus on the leader’s
output in the mean square sense if the following conditions
hold: (1) the communication topology has a spanning tree;
(2)

∫∞

0
ā(t)dt = ∞ where ai(t) is the time-varying gain of

agent i and ā(t) = maxi∈VG
{ai(t)}; (3) all the time-varying

gains {a1(t), · · · , aN (t)} are infinitesimal of the same order
as time goes to infinity, and for ∀β > 0, e−βt = o(ā(t));
and (4) all roots of a polynomial, whose coefficients are
the parameters in the proposed protocol, have negative
real parts.

The following notations will be used throughout this
paper: 1n = (1, · · · , 1) ∈ Rn; 0n = (0, · · · , 0) ∈ Rn; In
denotes the n × n dimensional identity matrix; Θm×n ∈
Rn×m denotes the m × n dimensional zero matrix (Θn

denotes the n×n dimensional zero matrix); ⊗ denotes the
Kronecker product. For a given matrix X , ‖X‖2 denotes
its 2-norm. diag(·) denotes a block diagonal matrix formed
by its inputs. For the random variable x, E{x} denotes its
mathematical expectation. For a complex number c, ℜ(c)
denotes its real part.

2. PROBLEM FORMULATION & PRELIMINARIES

Consider a MAS composed of N agents which are sparsely
connected by the communication network. In the litera-
ture, this communication network is usually modeled by
a digraph G = {VG , EG ,AG}, where VG = {1, · · · , N},
EG ⊂ VG × VG , and AG = [αij ] ∈ RN×N are the node
set, edge set and adjacency matrix, respectively. Node i
denotes agent i. The directed edge eij ∈ EG denotes the
communication link from agent j to agent i. And eij ∈ EG
if and only if there is a communication link from agent j
to i. If eij ∈ EG , the agent j is called the parent of agent
i. It is assumed that eii /∈ EG . The neighbor set of agent
i is defined by Ni , {j|eij ∈ EG}. The element αij of AG

represents the communication quality of the communica-
tion channel eij . It is assume that eij ∈ EG ⇔ αij > 0 and
eij /∈ EG ⇔ αij = 0. The Laplacian matrix of G is defined
by LG = DG −AG where DG = diag(deg1, · · · , degN ) and
degi =

∑

j∈Ni
αij .

A path from node n0 to nk is a sequence of end-to-
end directed edge {eni+1ni

|i = 0, · · · , k − 1} such that
eni+1ni

∈ EG (i = 0, · · · , k − 1). A node is called root,
if there is at least one path from this node to any other
nodes. A subgraph of the G is a digraph whose node set is
a subset of that of G, and whose edge set is a subset of that
of G. A subgraph Gs of G is called a spanning subgraph, if
Gs has the same node set as G. A tree is a digraph which

has a root, and whose every node, except the root, has
exactly one parent node. If a spanning subgraph of G a
tree, then it is called a spanning tree.

An agent is called a “leader” if its neighbor set is null. An
agent is called a “follower” if it has at least one parent
agent. The MAS considered in this paper is assumed to
contain only one leader whose label is 1. Then it is easy
to see that e1i /∈ EG and α1i = 0 (i ∈ VG). Therefore, the
Laplacian matrix of G has the following form

LG =

[

0 0TN−1
L1 L2

]

. (1)

Lemma 1. (Wang et al. [2013a]). If G has a spanning tree,
then all eigenvalues of L2 have positive real parts and
L−1
2 L1 = −1N−1.

Lemma 2. For any diagonal matrix D = diag(d1, · · · , dN )
∈ RN×N with positive diagonal elements, DLG is the

Laplacian matrix of a digraph Ĝ. If G has a spanning tree,
then Ĝ also has a spanning tree, and all eigenvalues of
D2L2 (D2 = diag(d2, · · · , dN )) have positive real parts.

The ith agent’s dynamics is described by the following
SISO system

y
(n)
i (t)+an−1y

(n−1)
i (t)+ · · ·+a1ẏ(t)+a0y(t) = ui(t), (2)

where ui(t) and yi(t) are input and output of agent i,
respectively.

Since agents exchange information in the noisy communi-
cation network, the consensus can not be reached in the
deterministic sense. The following definition introduce the
concept of mean square leader-following output consensus
which is the control objective of this paper.

Definition 1. The control protocol {u1(t), · · · , uN (t)} is
said to solve the distributed mean square leader-following
output consensus problem of the MAS described by (2)
if limt→∞E{(yi(t) − y1(t))

2} = 0, i = 2, · · · , N , and
each agent’s control ui(t) only uses the information of its
neighbor agents Ni.

Before closing this section, some definitions and results
of the Dini derivative are presented. For a continuous
function f(t, x(t)), its derivative may not exist at some
points. But we can always define its upper Dini derivative
as follows

D+f(t) = lim sup
h→0+

f(t+ h, x(t+ h))− f(t, x(t))

h
.

Lemma 3. (Lin et al. [2007]). Let I0 = {1, 2, · · · , n} and
suppose for ∀i ∈ I0, fi(t, x(t)) : R× Rm → R is derivable

and its derivative ḟi(t, x(t)) is a continuous function; let
f(t, x(t)) = maxi∈I0

{fi(t, x(t))}; and let I(t) = {i ∈
I0|fi(t, x) = f(t, x)}. Then,

D+f(t, x(t)) = max
i∈I(t)

{ḟi(t, x(t))}.

3. PROTOCOL DESIGN

The SISO system defined by (2) can be further described
by the following controllable and observable linear state
space model
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{

ẋi(t) = Axi(t) +Bui(t),

yi(t) = Cxi(t),
(3)

where xi(t) = (yi(t), y
(1)
i (t), · · · , y(n−1)(t))T is the state

vector;

A =









0 1
...

. . .
0 1

−a0 −a1 · · · −an−1









∈ R
n×n,

B = (0, · · · , 0, 1)T ∈ Rn, and C = (1, 0, · · · , 0) ∈ R1×n.

Since only the agent’s output yi(t) is accessible to con-
troller design, inspired by the previous work in the noise-
free environment [Cheng et at., 2011a, Cheng et al., 2013b],
the following observer is constructed to estimate the agen-
t’s full state.

˙̂xi(t) = (A+K3C)x̂i(t) +Bui(t)−K3yi(t), (4)

where K3 ∈ Rn is selected in such a way that A + K3C
is Hurwitz since (A,C) is observable. It is easy to see that
limt→∞ xi(t) − x̂i(t) = limt→∞ exp((A + K3C)t)(xi(0) −
x̂i(0)) = 0n. Then each agent sends its estimated state
x̂i(t) to neighbor agents through the communication net-
work. However, the communication network is corrupted
by additive communication noises. And the real informa-
tion that agent i receives from its neighbor agent j is
assumed to be υij(t) = x̂j(t) + ρijηij(t), where ηij(t) =
(ηij1(t), · · · , ηijn(t))T is the n-dimensional standard white
noise, ρij = diag(ρij1, · · · , ρijn) and {ρijk > 0| k =
1, · · · , n} are finite noise intensities. It is also assumed
that {ηijk(t)|i, j = 1 · · · , N ; k = 1, · · · , n} are mutually
independent.

By the time-varying gain technique, the following protocol
is proposed for agent i (i = 1, · · · , N)

ui(t) = K1x̂i(t) + ai(t)
∑

j∈Ni

αijK2(υij(t)− x̂i(t)), (5)

where ai(t) > 0 is a continuous function, K1 = (a0, a1 −
b1, · · · , an−1 − bn−1) and K2 = (b1, · · · , bn−1, 1). And
{b1, · · · , bn−1} are control parameters which are selected
in such a way that all roots of the following parameter
polynomial have negative real parts.

ζn−1 + bn−1ζ
n−2 + · · ·+ b2ζ + b1 = 0. (6)

Remark 1. Employing the time-varying gain is a common
way to attenuate the noises’ effect in the literature. Howev-
er, in most exist papers, all agents are assumed to have the
same time-varying gain. This is a restrictive assumption
because the perfect synchronization of the time-varying
gain is hard to be achieved especially in the distributed
computation fashion. The protocol defined by (5) allows
the agent-dependant gain ai(t), which is the main contri-
bution of this paper to the current literature.

4. MAIN RESULTS

Substituting (3) and (5) into (4) obtains that the following
stochastic system driven by the white noise

˙̂
X(t) = (In ⊗ (A+BK1))X̂(t)− (A(t)LG)⊗ (BK2)X̂(t)

+ (A(t)⊗ In)Ση(t) − (IN ⊗ (K3C))∆(t), (7)

where X̂(t) = (x̂T1 (t), · · · , x̂
T
n (t))

T , A(t) = diag(a1(t), · · · ,
aN (t)), Σ = diag(R1, · · · , RN ), Ri = BK2(αi1ρi1, · · · ,
αiNρiN ), η(t) is an nN2-dimensional standard white noise
vector, and

∆(t) , X(t)− X̂(t) =

(IN ⊗ exp((A +K3C)t))(X(0) − X̂(0)).

Let ξi(t) = K2x̂i(t) and Ξ(t) = (ξ1(t), · · · , ξN (t))T , then
we have the following auxiliary system

Ξ̇(t) = −A(t)LGΞ(t)− (IN ⊗ (K2K3C))∆(t)

+ A(t)Σ̄η(t), (8)

where Σ̄ = diag(R̄1, · · · , R̄N ) and R̄i = K2Ri. By the
knowledge of stochastic process, this stochastic system
is equivalent to the following Itô stochastic differential
equation:

dΞ(t) = −A(t)LGΞ(t)dt − (IN ⊗ (K2K3C))∆(t)dt

+ A(t)Σ̄dW (t). (9)

where W (t) is the nN2-dimensional standard Brownian
motion.

In the rest of this section, we first studies the convergence
of the auxiliary system (8). Then, based on the conver-
gence of (8), some sufficient conditions are given for en-
suring the mean square leader-following output consensus.

Before further discussion, the following four conditions are
presented.

(C1). G has a spanning tree.

(C2).
∫∞

0
ā(t)dt = ∞ where ā(t) = maxi=1,··· ,N{ai(t)}.

(C3). All the time-varying gains {a1(t), · · · , aN (t)} are in-
finitesimal of the same order as time goes to infin-
ity [Canuto and Tabacco , 2008]. And for ∀β > 0,
e−βt = o(ā(t)).

(C4). All roots of the parameter polynomial defined by (6)
have the negative real parts.

Lemma 4. If Condition (C3) holds, then for any i ∈
VG , there exists a positive constant c∗i < ∞ such that
limt→∞ ai(t)/ā(t) = c∗i .

Proof. By Condition (C3), we know that ∀ i, j ∈ VG ,
there exists a positive constant cij < ∞ such that
limt→∞ ai(t)/aj(t) = cij . Therefore, ∀i ∈ VG

lim
t→∞

ai(t)

ā(t)
= lim

t→∞
min
j∈VG

{

ai(t)

aj(t)

}

= min
j∈VG

lim
t→∞

{

ai(t)

aj(t)

}

= min
j∈VG

{cij} , ci > 0.

4.1 Convergence of the Auxiliary System (8)

The main result in this subsection is based on the following
two Lemmas.

Lemma 5. If Condition (C1) and (C2) hold, and ‖Ξ(0)‖2 is
bounded, then |E{ξi(t)}| (i = 1, · · · , N) and E{‖Ξ(t)‖22}
are bounded.

Proof. See Appendix A.
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Lemma 6. (Wang et al. [2013a]). Consider the differential
equation

ζ̇(t) = −a(t)Jr(λ)ζ(t),

where ζ(t) = (ζ1(t), · · · , ζr(t))T ∈ Rr, a(t) > 0, λ ∈ C,
ℜ(λ) > 0, and Jr(λ) ∈ Rr×r is a Jordan block with
diagonal element λ. Its state transition matrix is

Φλ(t, t0) =











Pλ
0 (t, t0) P

λ
1 (t, t0) · · · Pλ

r (t, t0)
0 Pλ

0 (t, t0) · · · Pλ
r−1(t, t0)

...
...

. . .
...

0 0 · · · Pλ
0 (t, t0)











,

where Pλ
0 (t, t0) = exp(−λ

∫ t

t0
a(τ)dτ) and Pλ

i (t, t0) =

−
∫ t

t0
a(τ)Pλ

0 (t, τ)P
λ
i−1(τ, t0)dτ , i = 1, 2, · · · , r − 1. More-

over, if
∫∞

0 a(t)dt = 0, then limt→∞ Φλ(t, t0) = Θr.

Theorem 7. If Conditions (C1), (C2) and (C3) hold, there
exists a deterministic value ξ∗ such that limt→∞ ξ1(t) = ξ∗

and limt→∞E{(ξi(t)− ξ∗)2} = 0, i = 2, · · · , N .

Proof. By (1), the Itô stochastic differential equation (9)
can be rewritten as

dξ1(t) = −K2K3C∆1(t)dt, (10a)

dΞ2(t) =−A2(t)L1ξ1(t)− A2(t)L2Ξ2(t) + A2(t)Σ̄2dW2(t)

−(IN−1 ⊗ (K2K3C))∆2(t)dt, (10b)

where ∆1(t) = x1(t) − x̂1(t), Ξ2(t) = (ξ2(t), · · · , ξN (t))T ,
A2(t) = diag(a2(t), · · · , aN (t)), Σ̄2 = diag(R̄2, · · · , R̄N ),
∆2(t) = (xT2 (t) − x̂T2 (t), · · · , x

T
N (t) − x̂TN (t))T , and W2(t)

is the nN(N − 1)-dimensional standard Brownian motion.

By (10a), it follows that ξ1(t) is convergent to ξ
∗ = ξ1(0)+

∫∞

0 K2K3C exp((A+K3C)t)(x1(0)− x̂1(0))dt. Since A+
K3C is Hurwitz, it is easy to see that |ξ∗| <∞.

Let Ξ̂2(t) = Ξ2(t) − 1N−1ξ1(t) and ci(t) = ai(t)/ā(t) (i =
1, · · · , N), it can be obtained by (10b) and Lemma 1 that

dΞ̂2 = −ā(t)C∗L2Ξ̂2(t)+ā(t)(C
∗−C2(t))L2Ξ̂2(t)+∆̂(t)dt

+ A2(t)Σ̄2dW2(t), (11)

where C2(t) = diag(c2(t), · · · , cN (t)); C∗
2 = diag(c∗2, · · · , c

∗
N );

and ∆̂(t) = (IN−1 ⊗K2K3C)∆2(t)− 1N−1K2K3C∆1(t).

By Itô formula, the solution to stochastic differential
equation (11) is

Ξ̂2(t) = Π1(t) + Π2(t) + Π3(t) + Π4(t).

where

Π1(t)= Φ(t, 0)Ξ̂2(0);

Π2(t)=

∫ t

0

Φ(t, τ)ā(τ)(C∗
2 − C2(τ))L2Ξ̂2(τ)dτ ;

Π3(t)=

∫ t

0

Φ(t, τ)∆̂(τ)dτ ;

Π4(t)=

∫ t

0

Φ(t, τ)A2(τ)Σ̄2dW2(τ);

and Φ(·, ·) is the state transition matrix of dX(t) =
−ā(t)C∗

2L2X(t)dt. In the rest of this proof, the convergence
of Π1(t), Π2(t), Π3(t), and Π4(t) are analyzed, respectively.

Firstly, the convergence of Π1(t) is studied. Let T be a
nonsingular matrix such that T−1C∗

2L2T = diag(Jr1(λ1),
· · · , Jrs(λs)) where Jri(λi) ∈ Rri×ri is Jordan block

whose diagonal element is λi, and {λ1, · · · , λs} are the
eigenvalues of C

∗
2L2. By Lemma 2 and Condition (C1),

ℜ(λi) > 0 (i = 1, · · · , s). Therefore,

Φ(t, t0) = Tdiag(Φλ1
(t, t0), · · · ,Φλs

(t, t0))T
−1, (12)

where Φλi
(t, t0) (i = 1, · · · , s) are defined in Lemma 6

with a(t) = ā(t), r = ri, and λ = λi. By Lemma 6
and Condition (C2), it is obtained that limt→∞ Φ(t, t0) =
ΘN−1 which indicates limt→∞ Π1(t) = 0N−1.

Secondly, the convergence of Π2(t) is analyzed. By (12)
and Lemma 6, the elements of Π2(t) are linear combina-
tions of following terms:

Iijkl(t) =

∫ t

0

ā(t)P
λj

i (t, τ)(c∗k − ck(τ))ξl(τ)dτ,

where 0 ≤ i ≤ N − 1, 1 ≤ j ≤ s, 2 ≤ k ≤ N , 1 ≤ l ≤ N

and P
λj

j (t, t0) is defined in Lemma 6 with a(t) = ā(t). By
L’Hôspital rule and the knowledge of mean square integral,
it follows that

lim
t→∞

E
1
2 {|Iijkl(t)|

2} ≤
M

(ℜ(λj))i+1
lim
t→∞

(c∗k − ck(t)),

where M = maxi∈VG
supt≥0E

1
2 {|ξi(t)|2}, which is bound-

ed by Lemma 5. Hence, limt→∞E{|Iijkl(t)|2} = 0, which
implies that limt→∞E{‖Π2(t)‖22} = 0.

Thirdly, the convergence of Π3(t) is studied. Since A +
K3C is Hurwitz, there must exist two positive constants
L ≤ ∞ and γ such that ‖∆̂(t)‖2 < Le−γt. Then, it can be
proved that

lim
t→∞

∥

∥

∥

∥

Π3(t)−

∫ t

0

Φ∞∆̂(τ)dτ

∥

∥

∥

∥

2

= 0,

where Φ∞ = limt→∞ Φ(t, t0). By the analysis in the
first step, limt→∞ Φ(t, t0) = ΘN−1 which means that
limt→∞ Π3(t) = 0N−1.

Finally, the convergence of Π4(t) is analyzed. It is easy
to see that the elements of E{Π4(t)Π

T
4 (t)} are linear

combinations of the following terms:

Hijkl(λp, λq, t) =

∫ t

0

ai(τ)aj(τ)P
λp

k (t, τ)P
λq

l (t, τ)dτ,

where 2 ≤ i, j ≤ N ; 0 ≤ k, l ≤ N − 1; 1 ≤ p, q ≤ s. Then
by L’Hôspital rule and mathematical induction, it can be
proved that limt→∞Hijkl(λp, λq, t) = 0 which indicates
that Π4(t) is convergent in mean square to 0N−1.

By the above analysis, it can be obtained that Ξ̂2(t)
is convergent in mean square to 0N−1. Because ξ1(t) is

convergent to ξ∗ and Ξ̂2(t) = Ξ2 − 1N−1ξ1(t), it is proved
that limt→∞E{(ξi(t)− ξ∗i )

2} = 0, (i = 2, · · · , N).

4.2 Mean Square Leader-Following Output Consensus

Lemma 8. Consider the following differential equation

dϕ(t)

dt
= αϕ(t) + ψ(t),

where ℜ(a) < 0. If limt→∞ ψ(t) = ψ∗, then limt→∞ ϕ(t) =
−ψ∗/α. If ψ(t) is a mean square continuous random
process and convergent in mean square to ψ∗, then ϕ(t) is
convergent in mean square to −ψ∗/a.
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Proof. It can proved easily by the knowledge of stochastic
differential equation, which is omitted here due to the page
limit.

Theorem 9. If Conditions (C1), (C2), (C3) and (C4) hold,
then the mean square leader-following output consensus
problem can be solved by the proposed protocol defined
by (5).

Proof. Let {r1, · · · , rn−1} denote the roots of parameter
polynomial defined by (6), then by the definition of ξi(t),

it follows that
∏n−1

j=1 (D − rj)yi(t) = ξi(t) (i = 1, · · · , N),

whereD is the differential operator, i.e., Dkyi(t) = y
(k)
i (t).

By Theorem 7, if Conditions (C1), (C2), and (C3) hold,
then ξ1(t) is convergent to a deterministic value ξ∗. This
together with Lemma 8 and Condition (C4) implies that
∏n−1

i=2 (D− ri)y1(t) is convergent to −ξ∗/r1. By repeating
this procedure n−1 times, we have that y1(t) is convergent

to ξ∗/(
∏n−1

i=1 (−ri)) = ξ∗/b1.

By the similar procedure, it can be proved that yi(t) (i =
2, · · · , N) are convergent in mean square to ξ∗/b1. There-
fore, limt→∞ E{(yi(t)−y1(t))2} = 0 (i = 2, · · · , N), which
closes the proof.

5. SIMULATION

Consider a MAS composed of five agents whose communi-
cation network is shown in Fig. 1. From Fig. 1, we know
that the communication topology graph has a spanning
tree. And agent 1 is the leader and the others are followers.
The agent’s dynamics is modeled by the following SISO

system y
(4)
i (t) + 2y

(3)
i (t)− y

(1)
i (t) + yi(t) = ui(t).

According to Section 3 and Theorem 9, the parameter
vectorsK1,K2, andK3 are set to beK1 = (1,−2,−4,−3),
K2 = (1, 3, 3, 1), and K3 = (−17,−97,−196,−44)T. The
initial states of agents are set to be x1(0) = (10, 0, 0, 0)T ,
x2(0) = (5, 0, 0, 0)T , x3(0) = (12, 0, 0, 0)T , x4(0) =
(16, 0, 0, 0)T and x5(0) = (6, 0, 0, 0). The initial estimat-
ed states are set to be x̂1(0) = (9, 0, 0, 0)T , x̂2(0) =
(7, 0, 0, 0)T , x̂3(0) = (10, 0, 0, 0)T , x̂4(0) = (12, 0, 0, 0)T

and x̂4(0) = (8, 0, 0, 0), The time-varying gain of each
agent is given in Table 5. It is easy to see that

ā(t) = max
i=1,··· ,5

{ai(t)} =











5

3t+ 1
; 0 ≤ t <

1

7
4

t+ 1
; t ≥

1

7

.

Therefore, Conditions (C2) and (C3) hold. And it can
calculated that c∗1 = 1/8, c∗2 = 1, c∗3 = 5/12, c∗4 = 1/2
and c∗5 = 5/16 in Lemma 4.

The simulation result is shown in Fig. 2. We can see that
the leader’s output is convergent to y∗ = 6.7619 and all
followers’ outputs are convergent to y∗ in the mean square
sense. Therefore the proposed protocol defined by (5) is
capable of solving the mean square leader-following output
consensus of the MAS defined by (2).

6. CONCLUSION

This paper studies the leader-following output consensus
of linear MASs. The contribution of this paper can be sum-
marized as follows: (1) the agent’s dynamics is modeled by

2

Leader

1 3

4 5

Fig. 1. The communication topology of the MAS composed
of five agents.

Table 1. The time-varying gain ai(t) used in
the protocol defined by (5).

a1(t) a2(t) a3(t) a4(t) a5(t)
0.5

t+1

4

t+1

5

3t+1

2

t+2

5

4t+1

10−1 100 101 102

6

8

10

12

14

16

 

 

y1(t)
y2(t)

y3(t)
y4(t)

y5(t)

Fig. 2. The trajectories of five agents’ outputs.

an SISO system and only the agent’s output information is
available for the controller design; (2) the communication
network among agents is assumed to be corrupted by the
additive noises; (3) the time-varying gain is employed to
attenuate the noise’s effect and each agent is allowed to
have its own gain; and (4) some sufficient conditions are
given to ensure the mean square leader-following output
consensus. Finally, the theoretical results are verified by
the illustrative example.

REFERENCES

C. Canuto and A. Tabacco. (2008). Mathematical Analysis
I, Springer-Verlag, Milan.

L. Cheng, Z.-G. Hou, M. Tan, Y. Lin, and W. Zhang.
(2010). Neural-network-based adaptive leader-following
control for multiagent systems with uncertainties. IEEE
Transactions on Neural Networks, 21(8), 1351–1358.

L. Cheng, Z.-G Hou, Y. Lin, Min Tan, and W. Zhang.
(2011a). Solving a modified consensus problem of linear
multi-agent systems. Automatica, 47(10), 2218-222.

L. Cheng, Z.-G. Hou, M. Tan, and X. Wang. (2011b). Nec-
essary and sufficient conditions for consensus of double-
integrator multi-agent systems with measurement nois-
es. IEEE Transactions on Automitic Control, 56(8),
1958-1963.

L. Cheng, Z.-G. Hou, and M. Tan. (2013a). A mean
square consensus protocol for linear multi-agent systems
with communicaiton noises and fixed topologies. IEEE
Transactions on Automatic Control, 59(1), 261–267.

L. Cheng, Z.-G. Hou, and M. Tan. (2013b). Reaching
a consensus in networks of high-order integral agents
under switching directed topology. submitted to Inter-
national Journal of Systems Science for possible publi-
cation.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1829



J. Hu and G. Feng. (2010). Distributed tracking control
of leader-follower multi-agent systems under noisy mea-
surement. Automatica, 46(8), 1382-1387.

Z.-G. Hou, L. Cheng, M. Tan. (2009). Decentralized robust
adaptive control for the multiagent system consensus
problem using neural networks. IEEE Transactions
on Systems, Man and Cybernetics–Part B: Cybernetics,
39(3), 636–647.

M. Huang and J. H. Manton. (2009). Coordination and
consensus of networked agents with noisy measure-
ments: stochastic algorithms and asymptotic behavior.
SIAM Journal on Control and Optimization, 48(1), 134-
161.

V. Lakshmikantham and S. Leela. (1969). Differential and
Integral inequalities: Theory and Applications, volum I.
Academic Press, New York.

T. Li and J.-F. Zhang. (2009). Mean square average-
consensus under measurement noises and fixed topolo-
gies: Necessary and sufficient conditions. Automatica,
45(8),1929-1936.

Z. Lin, B. Francis, and M. Maggiore. (2007). State agree-
ment for continuous-time coupled nonlinear systems.
SIAM Journal on Control and Optimization, 46(1), 288-
307.

C.-Q. Ma and J.-F. Zhang. (2010). Consensus control
for leader-following multi-agent systems with measure-
ment noises. Jurnal of Systems Science & Complexity,
23(1),35-49.

Y. Wang, L. Cheng, Z.-G. Hou, H. Liu, and M. Tan.
(2013a). Necessary and sufficient conditions for solving
leader-following problem of multi-agent systems with
communication noises. In Proceedings of the 25th Chi-
nese Control and Decision Conference (pp. 778-783).

Y. Wang, L. Cheng, Z.-G. Hou, M. Tan, and M. Wang.
(2014) Containment control of multi-agent systems
in a noisy communicaiton environment. conditionally
accepted by Automatica.

Y. Wang, L. Cheng, Z.-G. Hou, M. Tan, and M.
Wang. (2013b). Consensus seeking in a network
of discrete-time linear agents with communication
noises. International Journal of Systems Science,
DOI:10.1080/00207721.2013.837544.

Appendix A. THE PROOF OF LEMMA 5

Firstly, it is proved that |E{ξi(t)}| (i = 1, · · · , N) are
bounded. Because A + K3C is Hurwitz, there must exist
two positive numbersM1, β <∞ such that ∀i = 1, · · · , N ,

|K2K3C(xi(t)−x̂i(t))| = |K2K3Ce
(A+K3C)t(xi(0)−x̂i(0))|

≤M1e
−βt. (A.1)

By (1) and (9), it is obtained that dξ1(t) = −K2K3C(x1(t)−
x̂1(t)dt, which together with (A.1) leads to that

|ξ1(t)| ≤ |ξ1(0)|+M1

∫ t

0

e−βτdτ ≤M2 <∞, (A.2)

where M2 = |ξ1(0)|+M1

∫∞

0
e−βtdt.

Let ξmax(t) = maxi=1,··· ,N{E{ξi(t)}}, then it follows by
(9) and Lemma 3, that

D+ξmax(t) ≤ max
i=1,··· ,N

(−K2K3C(xi(t)− x̂i(t))) ≤M1e
−βt.

This together with [Lakshmikantham and Leela , 1969]

implies that ξmax(t) ≤M1

∫∞

0
e−βτdτ ,M3 <∞.

ξmax(t) ≤M1

∫ ∞

0

e−βτdτ ,M3 <∞.

Similarly, it can be obtained that ξmin(t) ≥ −M3 where
ξmin(t) = mini=1,··· ,N{E{ξi(t)}}. Hence |E{ξi(t)}| ≤
M3, i = 1, · · · , N .

Secondly, it is proved that E{‖Ξ(t)‖22} is bounded. This
part of the proof is motivated by the proof of Lemma 3
in [Wang et al., 2014]. Let Vi(t) = E{ξ2i (t)} and V (t) =
E{‖Ξ(t)‖22}. By Itô formula, it is obtained that

dVi(t) = E{2(dξi(t)ξi(t) + (dξi(t))
2}

≤ ai(t)
∑

j∈Ni

αij(Vj(t)− Vi(t))dt+M1M3e
−βtdt

+a2i (t)
∑

j∈Ni

α2
ijK2ρ

2
ijK

T
2 dt+ o(dt). (A.3)

By (9) and (A.3), it can be proved that Vi(t) and V̇i(t)
(i = 1, · · · , N) are continuous functions.

Assume that V (t) is unbounded. Then, for ∀G >
maxi=1,··· ,N{Vi(0),M2

2 }, there must exist t0,∆t0 > 0 and
p0 ∈ VG such that: for ∀t ≤ t0, Vi(t) ≤ G (i = 1, · · · , N);

and for ∀t ∈ (t0, t0 + ∆t0), Vp0
(t) > G, V̇p0

(t) > 0, and
Vp0

(t) ≥ Vi(t) (i = 1, · · · , N). If Np0
= ∅, then agent p0

is the leader. However, by (A.2), V1(t) ≤ M2
2 < G which

causes a contradiction. The proof is closed. If Np0
6= ∅,

it follows by (A.3) that for ∀t ∈ (t0, t0 + ∆t0) and any
p1 ∈ Np0

Vp1
(t) > Vp0

(t)− ap0
(t)

∑

j∈Np0

α2
p0j
K2ρ

2
p0j
KT

2 /αp0p1

−
M1M3e

−βt

ai(t)
≥ G− C0. (A.4)

where C0 = maxi=1,··· ,N{M1M3e
−βt/ai(t)} < ∞ +

max
t≥0;i=1,··· ,N ;k∈Ni

{ai(t)
∑

j∈Ni
α2
ijK2ρ

2
ijK

T
2 /αik}.

Because G can be arbitrarily large, we can assume that
G − C0 > max{Vp1

(0),M2
2 }. There must exist t1 ∈ (0, t0)

and ∆t1 > 0 such that t1+∆t1 ≤ t0; ∀t ≤ t1, Vp1
(t) ≤ G−

C0; and ∀t ∈ (t1, t1+∆t1), Vp1
(t) > G−C0 and V̇p1

(t) > 0.
If Np1

= ∅, then agent p1 is the leader. However, by (A.2),
V1(t) ≤ M2

2 < G − C0 which causes a contradiction. The
proof is closed. If Np1

6= ∅, it follows by (A.3) that for
∀t ∈ (t1, t1 +∆t1) and any p2 ∈ Np1

Vp2
(t) >Vp1

(t)− ap1
(t)

∑

j∈Np1

α2
p1j
K2ρ

2
p1j
KT

2 /αp1p2

−
∑

j∈Np1
,j 6=p2

αp1j(Vj(t)− Vp1
(t))/(αp1p2

)

−M1M3e
−βt/ai(t) ≥ G− C1,

where C1 = 2C0+C0 maxi=1,··· ,N ;k∈Ni
{
∑

j∈Ni
αij/αik} <

∞.

Because Condition (C1) holds and there are finite agents
in the system, by repeating the above procedure at most
N−1 times, we can find the agent pN−1 is the leader (i.e.,
pN−1 = 1) and there exist tn−2 ∈ (0, t0) and ∆tn−2 > 0
such that tn−2 + ∆tn−2 < t0; and ∀t ∈ (tn−2, tn−2 +
∆tn−2), V1(t) > G−Cn−2, where Cn−2 = C0 + Cn−3(1 +
maxi=1,··· ,N ;k∈Ni

{
∑

j∈Ni
αij/αik}) < ∞. Because of the

arbitrariness of G, we know V1(t) can be arbitrarily large
which contradicts (A.2). Therefore, V (t) is bounded.
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