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theory. Controllable and observable subspaces are characterized by factorizing the monodromy
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factorization, and the period-specific realization are also discussed.
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1. INTRODUCTION

In this note, a new approach to computing the periodic
Kalman canonical decomposition is presented. Firstly, con-
trollable and observable subspaces are characterized by
factorizing the monodromy matrix into a four-by-four up-
per triangular matrix. Then, the conditions for the exis-
tence of several periodic Kalman canonical decompositions
are extensively studied. In particular, a new necessary
and sufficient condition for the existence of the periodic
Kalman canonical decomposition with the same period
of the given system is obtained. A key technical tool is
computation of matrix logarithms of the upper triangular
matrix. The condition is reduced to the positiveness of
determinants of the block diagonal elements of the up-
per triangular matrix; therefore, the computational diffi-
culty has been significantly reduced. The relations to the
Floquet-like factorization [9, 10, 11] and the period-specific
realization [16] are also discussed; the proposed compu-
tation algorithm simultaneously achieves the Floquet-like
factorization as well as the periodic Kalman canonical de-
composition and shares the common realization technique.
Similar arguments are also discussed for the other types
of decompositions. Finally, it is shown that it is always
possible to construct a periodic coordinate transformation
with the double period of the given periodic system. All
proofs are omitted due to page limitations.

We use the following notations. X := Y and Y =: X
denote that X is defined by Y . R (respectively, C, Z, N)
denotes the set of all real numbers (respectively, complex
numbers, integers, natural numbers). Rn denotes the set of
all vectors whose elements consist of R with n-rows. Rn×m

denotes the set of all matrices whose elements consist of
R with n-rows and m-columns. 0n×m ∈ Rn×m denotes
the zero matrix. In ∈ Rn×n denotes the identity matrix.
If the sizes are clear from the context, 0n×m and In are

simply denoted by 0 and I, respectively. In the case of
block matrices, zero matrix components might be omitted
for notational simplicity. XT denotes the transpose of X ∈
Kn×m. det X (respectively, X−1) denotes the determinant
(respectively, inverse) of a matrix X ∈ Rn×n. X−T :=
(X−1)T denotes the transpose of a matrix X−1. Im X :=
{Xξ : ξ ∈ Km} (respectively, Ker X = {ξ ∈ Km : Xξ =
0}) denotes the image (respectively, kernel) of a matrix
X ∈ Rn×m. dimV denotes a dimension of a subspace
V ⊂ Rn, i.e., a number of linearly independent vectors
in V. XV := {Xv : v ∈ V} denotes a subspace for a
matrix X ∈ Rn×m and a subspace V ⊂ Rm. V⊥ := {u :
uTv = 0, ∀v ∈ V} denotes the annihilator of a subspace
V ∈ Rn. Ck(R, Rn×m) denotes the set of all Ck-functions,
i.e., k-times continuously differentiable functions, from R
to Rn×m. Ck

inv(R, Rn×n) denotes the set of all invertible
functions in Ck(R, Rn×n). If the function P (t) is periodic
with a period T > 0, i.e., P (t + T ) = P (t) for t ∈ R, it
is called T -periodic. The set of all T -periodic functions in
Ck(R, Rn×m) is denoted by Ck

T (R, Rn×m). The set of all
invertible T -periodic functions in Ck(R, Rn×m) is denoted
by Ck

T,inv(R, Rn×m).

2. PROBLEM FORMULATION

Consider a linear T -periodic system

ẋ = A(t)x + B(t)u, ẋ :=
dx

dt
(1)

y = C(t)x (2)
where t ∈ R is a time, x(t) ∈ Rn is a state vector,
u(t) ∈ Rm is and input, and y(t) ∈ Rp is an output
for certain nonnegative integers n,m, p. Matrix-valued
functions A ∈ C0

T (R, Rn×n), B ∈ C0
T (R, Rn×m), C ∈

C0
T (R, Rp×n) denote the coefficient matrices. In this paper,

A, B, and C are supposed to be continuous for simplicity.
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An extension to more general class is possible by minor
modifications. Let Φ denote the state transition matrix of
(1) with u = 0, i.e., the unique solution of ∂

∂sΦ(s, t) =
A(s)Φ(s, t), Φ(t, t) = 0, ∀s, t ∈ R.

Consider a kT -periodic coordinate transformation
ξ = Z(t)x (3)

for certain integer k, where Z ∈ C1
kT,inv(R, Rn×n) is said

to be a kT -periodic coordinate transformation matrix. The
reason considering kT -periodic Z(t) instead of T -periodic
Z(t) will be clear later. By applying (3), the system (1)-(2)
are transformed to another linear kT -peirodic system

ξ̇ = Ã(t)ξ + B̃(t)u, (4)

y = C̃(t)ξ, (5)
where

Ã(t) := (Ż(t) + Z(t)A(t))Z(t)−1, (6)

B̃(t) := Z(t)B(t), (7)

C̃(t) := C(t)Z(t)−1. (8)

This problem is to find a kT -periodic coordinate transfor-
mation Z(t) such that the triplet (C̃, Ã, B̃) has a certain
block structure.
Definition 1. A transformed linear kT -periodic system
(4)-(5) and the triplet (C̃, Ã, B̃) are said to be a kT -
periodic Kalman canonical decomposition of (1)-(2) if
there exists a kT -periodic coordinate transformation ma-
trix Z ∈ C1

kT,inv(R, Rn×n) satisfying the following three
conditions:
(i) The triplet (C̃, Ã, B̃) takes on the following from

Ã(t) =


Ã11(t) Ã12(t) Ã13(t) Ã14(t)

0 Ã22(t) 0 Ã24(t)
0 0 Ã33(t) Ã34(t)
0 0 0 Ã44(t)

 , (9)

B̃(t) =


B̃1(t)
B̃2(t)

0
0

 , (10)

C̃(t) =
[
0 C̃2(t) 0 C̃4(t)

]
. (11)

(ii) The pair
(
Ãc, B̃c

)
is controllable, where

Ãc(t) :=
[
Ã11(t) Ã12(t)

0 Ã22(t)

]
, (12)

B̃c(t) :=
[
B̃1(t)
B̃2(t)

]
. (13)

(iii) The pair
(
C̃o, Ão

)
is observable, where

C̃o(t) :=
[
C̃2(t) C̃4(t)

]
, (14)

Ão(t) :=
[
Ã22(t) Ã24(t)

0 Ã44(t)

]
. (15)

3. STRUCTURE OF SUBSPACES

3.1 Controllable Subspace

A set of all controllable state at time t is denoted by

C(t) :=
∪

p∈[t,∞)

{∫ p

t

Φ(t, τ)B(τ)u(τ)dτ : u ∈ U
}

,

where U denotes the set of all piecewise continuous control
inputs on [t, p]. C(t) becomes a subspace of Rn at each time
t and therefore is said to be a controllable subspace at
time t [5]. C(t) satisfies the following conditions for linear
T -periodic systems.
Lemma 2. [8, 15] (i) C(t) is given by
C(t) = Im Wc(t, t + nT ), ∀t ∈ R, (16)

where Wc is the controllability Gramian given by

Wc(t, s) :=
∫ s

t

Φ(t, τ)B(τ)B(τ)TΦ(t, τ)Tdτ. (17)

(ii) C(t) is Φ-invariant, i.e.,
C(t) = Φ(t, s)C(s), ∀t, s ∈ R. (18)

(iii) C(t) is T -periodic, i.e.,
C(t) = C(t + T ), ∀t ∈ R. (19)

(iv) the dimension of C(t) is constant, i.e.,
dim C(t) = dim C(0), ∀t ∈ R. (20)

3.2 Observable Subspace

A set of all observable state at time t is denoted by

O(t) :=
∪

p∈[t,∞)

{∫ p

t

Φ(τ, t)TC(τ)Ty(τ)dτ : y ∈ Y
}

,

where Y denotes the set of all piecewise continuous control
inputs on [t, p]. O(t) becomes a subspace of Rn at each
time t and therefore is said to be a observable subspace
at time t [5]. O(t)⊥ satisfies the following conditions for
linear T -periodic systems.
Lemma 3. [15] (i) O(t)⊥ is given by

O(t)⊥ = Ker Wo(t, t + nT ), ∀t ∈ R, (21)
where Wo is the observability Gramian given by

Wo(t, s) :=
∫ s

t

Φ(τ, t)TC(τ)TC(τ)Φ(τ, t)dτ. (22)

(ii) O(t)⊥ is Φ-invariant, i.e.,

O(t)⊥ = Φ(t, s)O(s)⊥, ∀t, s ∈ R. (23)

(iii) O⊥(t) is T -periodic, i.e.,
O(t) = O(t + T ), ∀t ∈ R. (24)

(iv) the dimension of O(t)⊥ is constant, i.e.,

dimO(t)⊥ = dimO(0)⊥, ∀t ∈ R. (25)

3.3 Intersection Subspace

Among four intersection subspaces, only C(t) ∩ O⊥(t) is
Φ-invariant as well as T -periodic.
Lemma 4. [15] (i) C(t) ∩ O(t)⊥ is Φ-invariant, i.e.,

C(t) ∩ O(t)⊥ = Φ(t, s){C(s) ∩ O(s)⊥}, ∀t, s ∈ R. (26)

(ii) C(t) ∩ O(t)⊥ is T -periodic, i.e.,
C(t) ∩ O(t) = C(t + T ) ∩ O(t + T ), ∀t ∈ R. (27)

(iii) the dimension of C(t) ∩ O(t)⊥ is constant, i.e.,

dim{C(t) ∩ O(t)⊥} = dim{C(0) ∩ O(0)⊥}, ∀t ∈ R. (28)

From Lemma 2(iv), Lemma 3(iv), and Lemma 4(iii), the
dimensions of all intersection subspaces are constant.
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Lemma 5. [15]

dim{C(t) ∩ O(t)⊥} =: n1, ∀t ∈ R, (29)
dim{C(t) ∩ O(t)} =: n2, ∀t ∈ R, (30)

dim{C(t)⊥ ∩ O(t)⊥} =: n3, ∀t ∈ R, (31)

dim{C(t)⊥ ∩ O(t)} =: n4, ∀t ∈ R, (32)
where n1 + n2 + n3 + n4 = n.

The conditions (29)-(32) are the necessary and sufficient
condition for the existence of the Kalman canonical decom-
position for linear time-varying systems [12, 13]. However,
the conditions (29)-(32) does not immediately imply the
existence of the periodic Kalman canonical decomposition
for linear periodic systems [8, 15].

The authors have presented a counterexample to the ex-
istence of a T -periodic Kalman canonical decomposition
for a given linear T -periodic system [8, 15]. Then, the
authors have shown that there is a 2T -periodic Kalman
canonical decomposition for the (A,B)-pair of linear T -
periodic system [8]. The authors have shown that there
is a 8T -periodic Kalman canonical decomposition for the
(C,A, B)-triple of linear T -periodic system [15]. It is still
unclear whether there is a 2T - or 4T -periodic Kalman
canonical decomposition for the (C, A, B)-triple of linear
T -periodic system. We notice that the previous approach
[8, 15] is a modification of Weiss [5] from linear time-
varying systems to linear periodic systems. Only the peri-
odicity of the system has been utilized to solve the block
diagonalization of the controllability Gramian [8] (or the
simultaneous block diagonalization of the controllability
and the observability Gramians [15]), and therefore, the
other detailed structure of the linear periodic system such
as the Floquet theory has not been utilized in the previous
approach.

This paper presents a new approach, which has been
partially presented for the (A,B)-pair in [14], for comput-
ing the periodic Kalman canonical decomposition of the
(C,A, B)-triple by extending the Floquest theory. Several
new conditions for the existence of the periodic Kalman
canonical decomposition will be presented. The relations
to the Floquet factorization, the Floquet-like factorization
and the period-specific realization will be also discussed.

3.4 Factorization of the Monodromy Matrix

The first step in the new approach is the construction
of bases of Φ-invariant subspaces. They are collected in
accordance with the dimensions of intersection subspaces.
Lemma 6. There exist an orthogonal matrix V whose
block components are divided by V1 ∈ Rn×n1 , V2 ∈ Rn×n2 ,
V3 ∈ Rn×n3 , V4 ∈ Rn×n4 as follows

V := [V1 V2 V3 V4] (33)
and satisfy the relations

Im V1 = C(0) ∩ O(0)⊥, (34)
Im [ V1 V2 ] = C(0), (35)

Im [ V1 V3 ] = O(0)⊥, (36)
Im V = Rn. (37)

The monodromy matrix Φ(T, 0) is then transformed to a
block upper triangular matrix.

Lemma 7. There exist invertible matrices Ψ11 ∈ Rn1×n1 ,
Ψ22 ∈ Rn2×n2 , Ψ33 ∈ Rn3×n3 , Ψ44 ∈ Rn4×n4 , and
matrices Ψ12 ∈ Rn1×n2 , Ψ13 ∈ Rn1×n3 , Ψ14 ∈ Rn1×n4 ,
Ψ24 ∈ Rn2×n4 , Ψ34 ∈ Rn3×n4 such that

Φ(T, 0)V = V

Ψ11 Ψ12 Ψ13 Ψ14

0 Ψ22 0 Ψ24

0 0 Ψ33 Ψ34

0 0 0 Ψ44

 , (38)

where V is given in Lemma 6.

4. T -PERIODIC DECOMPOSITION

4.1 T -periodic decomposition with non-constant A-matrix

Let us recall the necessary and sufficient condition of the
existence of T -periodic Kalman canonical decomposition.
Theorem 8. [15] Consider the linear T -periodic system
(1)-(2). Then there exists a T -periodic coordinate trans-
formation Z ∈ C1

T,inv(R, Rn×n) such that the transformed
system (4)-(5) takes on the T -periodic Kalman canonical
decomposition in R if and only if there exists a T -periodic
Z(t) ∈ C1

T,inv(R, Rn×n) satisfying

Z(t)Wc(t, t + nT )Z(t)T

=


P̃11(t) P̃12(t)
P̃12(t)T P̃22(t)

0n3×n3

0n4×n4

 , (39)

Z(t)−TWo(t, t + nT )Z(t)−1

=


0n1×n1

Q̃22(t) Q̃24(t)
0n3×n3

Q̃24(t)T Q̃44(t)

 , (40)

for certain matrix-valued functions P̃11 ∈ C1(R, Rn1×n1),
P̃12 ∈ C1(R, Rn1×n2), P̃22 ∈ C1(R, Rn2×n2), Q̃22 ∈
C1(R, Rn2×n2), Q̃24 ∈ C1(R, Rn2×n4), Q̃44 ∈
C1(R, Rn4×n4), where the submatrices

P̃sub :=
[

P̃11(t) P̃12(t)
P̃12(t)T P̃22(t)

]
,

Q̃sub :=
[

Q̃22(t) Q̃24(t)
Q̃24(t)T Q̃44(t)

]
are positive definite for t ∈ R.

The conditions (39)-(40) in Theorem 8 correspond to fac-
torization of matrix-valued functions. These conditions are
difficult to compute. This paper proposes an alternative
condition for the existence of T -periodic Kalman canonical
decomposition.
Theorem 9. Consider the linear T -periodic system (1)-(2).
Let Ψ11 ∈ Rn1×n1 , Ψ22 ∈ Rn2×n2 , Ψ33 ∈ Rn3×n3 , Ψ44 ∈
Rn4×n4 denote invertible matrices in Lemma 7. Then
there exists a T -periodic coordinate transformation Z ∈
C1

T,inv(R, Rn×n) such that the transformed system (4)-(5)
takes on the T -periodic Kalman canonical decomposition
in R if and only if

detΨ11 > 0, (41)
detΨ22 > 0, (42)
detΨ33 > 0, (43)
detΨ44 > 0. (44)
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Remark 10. Consider the block diagonal component ξ̇1 =
Ã11(t)ξ1 in (9). Then, the determinant of its monodromy
matrix is positive. The condition (41) is entirely due to this
positiveness. The other conditions (42)-(44) can be also
obtained from the positiveness of the monodromy matrices
of the block diagonal components. Hence, the conditions
(41)-(44) are trivial necessary condition.
Remark 11. (38) in Lemma 7 is similar to the monodromy
matrix Φ(T, 0). Because the determinant of the mon-
odromy matrix is positive, the multiplication of all deter-
minants of block components Ψii is positive

detΨ11 detΨ22 detΨ33 detΨ44 = det Φ(T, 0) > 0.

However, we notice that conditions (41)-(44) are not
always satisfied; specifically, two or all of det Ψii can be
negative. Indeed, the counterexample in [8, 15] satisfies
detΨ11 = −1 and det Ψ22 = −1. Hence, from the authors
point of view, the conditions (41)-(44) are nontrivial
sufficient condition.
Remark 12. The conditions (41)-(44) require the compu-
tation of the state transition matrix Φ and the integral
calculuses of Wc(t, nT ) and Φ(t, 0). These computations
are not always analytically tractable but can be reduced
to the numerical computations. Hence, from the authors
point of view, Theorem 9 is drastically simplified from
Theorem 8.

4.2 Relation to the Floquet-like factorization

The periodic Kalman canonical decomposition and the
Floquet factorization (or the Floquet-like factorization by
the authors) [9, 10, 11] have been independently investi-
gated; specifically, the periodic Kalman canonical decom-
position in [8] is based on the factorization of matrix-
valued functions due to Sibuya and the Floquet factor-
ization (or the Floquet-like factorization) is based on the
computation of matrix logarithms. The proof of Theorem 9
is based on the computation of matrix logarithms and is
analogous to the computation procedure of the Floquet-
like factorization. Indeed, the Floquet-like factorization as
well as the T -periodic Kalman canonical decomposition is
simultaneously achieved as follows.
Corollary 13. Consider the linear T -periodic system (1)-
(2). Let Ψ11 ∈ Rn1×n1 , Ψ22 ∈ Rn2×n2 , Ψ33 ∈ Rn3×n3 ,
Ψ44 ∈ Rn4×n4 denote invertible matrices in Lemma 7. Sup-
pose that the conditions (41)-(44) are satisfied. Then, the
A-matrix of the transformed system consist of constants
and the trigonometric functions with the fundamental
frequency 2π

T .

4.3 T -periodic decomposition with constant A-matrix

The A-matrix of the transformed system in (9) becomes
non-constant in Theorem 9. The following theorem is a
sufficient condition for the existence of T -periodic Kalman
canonical decomposition with a constant A-matrix.
Corollary 14. Consider the linear T -periodic system (1)-
(2). Suppose that the monodromy matrix Φ(T, 0) does
not have negative real eigenvalues. Then there exists a T -
periodic coordinate transformation Z ∈ C1

T,inv(R, Rn×n)
such that the transformed system (4)-(5) takes on the T -
periodic Kalman canonical decomposition and that Ã(t)
in (9) is constant.

4.4 Controllable and/or Observable Decomposition

There does not always exist a T -periodic Kalman canonical
decomposition as discussed in Theorem 9. Even if there ex-
ists no T -periodic Kalman canonical decomposition, there
might be a T -periodic Kalman canonical decomposition
partially with respect to the (A,B)-pair or partially with
respect to the (C, A)-pair.
Definition 15. A transformed linear kT -periodic system
(4)-(5) and the triplet (C̃, Ã, B̃) are said to be a control-
lable kT -periodic Kalman canonical decomposition of (1)-
(2) if there exists a kT -periodic coordinate transformation
matrix Z ∈ C1

kT,inv(R, Rn×n) satisfying the following two
conditions:
(i) The triplet (C̃, Ã, B̃) takes on the following from

Ã(t) =
[
Ã11(t) Ã12(t)

0 Ã22(t)

]
, (45)

B̃(t) =
[
B̃1(t)

0

]
, (46)

C̃(t) =
[
C̃1(t) C̃2(t)

]
. (47)

(ii) The pair
(
Ã11, B̃1

)
is controllable.

Definition 16. A transformed linear kT -periodic system
(4)-(5) and the triplet (C̃, Ã, B̃) are said to be an observ-
able kT -periodic Kalman canonical decomposition of (1)-
(2) if there exists a kT -periodic coordinate transformation
matrix Z ∈ C1

kT,inv(R, Rn×n) satisfying the following two
conditions:
(i) The triplet (C̃, Ã, B̃) takes on the following from

Ã(t) =
[
Ã11(t) Ã12(t)

0 Ã22(t)

]
, (48)

B̃(t) =
[
B̃1(t)
B̃2(t)

]
, (49)

C̃(t) =
[
0 C̃2(t)

]
. (50)

(ii) The pair
(
C̃22, Ã22

)
is observable.

Depending on the signs of det Ψii, the T -periodic system
can be transferred to a controllable canonical decomposi-
tion or an observable Kalman canonical decomposition.
Corollary 17. Consider the linear T -periodic system (1)-
(2). Let Ψ11 ∈ Rn1×n1 , Ψ22 ∈ Rn2×n2 , Ψ33 ∈ Rn3×n3 ,
Ψ44 ∈ Rn4×n4 denote invertible matrices in Lemma 7.
Then there exists a T -periodic coordinate transformation
Z ∈ C1

T,inv(R, Rn×n) such that the transformed system
(4)-(5) takes on the controllable T -periodic Kalman canon-
ical decomposition in R if and only if

detΨ11 detΨ22 > 0. (51)
Corollary 18. Consider the linear T -periodic system (1)-
(2). Let Ψ11 ∈ Rn1×n1 , Ψ22 ∈ Rn2×n2 , Ψ33 ∈ Rn3×n3 ,
Ψ44 ∈ Rn4×n4 denote invertible matrices in Lemma 7.
Then there exists a T -periodic coordinate transformation
Z ∈ C1

T,inv(R, Rn×n) such that the transformed system
(4)-(5) takes on the observable T -periodic Kalman canon-
ical decomposition in R if and only if

detΨ11 detΨ33 > 0. (52)

Corollary 17 is an alternative condition for the existence
of T -periodic decomposition for the (A,B)-pair and Corol-
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lary 18 is its dual for the (C, A)-pair. Theorem 9, Corol-
lary 17, and Corollary 18 are summarized as follows.
Corollary 19. Consider the cases I to VIII in Table. 1
depending on the signs of det Ψii (i = 1, 2, 3, 4) in Theo-
rem 9. Case I shows that, if all signs of det Ψii are positive,
there exist a T -periodic Kalman canonical decomposition
(Can.=+), a controllable T -periodic Kalman canonical de-
composition (Con.=+), an observable T -periodic Kalman
canonical decomposition(Obs.=+). Case II shows that, if
signs of det Ψ33 and det Ψ44 are positive, there exists a
controllable T -periodic Kalman canonical decomposition
(Con.=+). Similar arguments are valid for the other cases
III to VII. Case VIII shows that, if all signs of detΨii

are negative, there exists only one of a controllable T -
periodic Kalman canonical decomposition or an observable
T -periodic Kalman canonical decomposition (Con.=−/+,
Obs.=+/−).

Case detΨ11detΨ22detΨ33det Ψ44Can. Con. Obs.

I + + + + + + +
II − − + + − + −
III − + − + − − +
IV − + + − − − −
V + − − + − − −
VI + − + − − − +
VII + + − − − + −
VIII − − − − − −/+ +/−

Table 1. Possible decompositions for each com-
bination of detΨii.

4.5 Relation to the Period-specific Realization

The proof of Theorem 9 shares the common realization
technique in the period-specific realization by the authors
[16]. In the period-specific realization problem, the weight-
ing pattern pattern matrix W (t, p) = C(t)Φ(t, p)B(p)
is given and is supposed to be factored as W (t, p) =
L0(t)R0(p) in the globally reduced form. This means that
L0(t) = C̃2(t)Φ̃22(t, 0) and R0(p) = Φ̃22(0, p)B̃2(p) are
supposed to be known without knowing the (C̃2, Ã22, B̃2)-
triple of the controllable and observable subsystem. There
is a T -periodic controllable and observable subsystem if
and only if the index q, which correspond to the mon-
odromy matrix det Φ̃22(T, 0) of the unknown subsystem,
satisfies q > 0. If this condition q > 0 is satisfied, the
computation procedure in the period-specific realization
[16] recovers the unknown (C̃2, Ã22, B̃2)-triple from L0(t)
and R0(p). In other words, the dimension of the system
is reduced in advance, and then, the minimal realization
(C̃2, Ã22, B̃2) is computed based on the computation of the
matrix logarithms G22 and F22 in the proof of Theorem 9.
If the condition q < 0 is satisfied, the computation proce-
dure in the period-specific realization [16] generates the
non-minimal (C, A, B)-triple by augmenting the system
dimension.

5. 2T -PERIODIC DECOMPOSITION

Let us recall the existence of periodic Kalman canonical
decomposition. Two types of solutions has been presented

by the authors. For the (A,B)-pair, it has been shown
that 2T -periodic decomposition is always possible. For
the (C, A, B)-triple, it is has been shown that 8T -periodic
decomposition is always possible.
Theorem 20. [8] Consider a linear T -periodic systems in
(1). Then, there exists a 2T -periodic Kalman canonical
decomposition.
Theorem 21. [15] Consider a linear T -periodic systems in
(1)-(2). Then, there exists a 8T -periodic Kalman canonical
decomposition.

Both solutions have been obtained based on the 2T -
periodic decomposition of the T -periodic matrix-valued
function due to Sibuya [17]. One 2T -periodic decomposi-
tion of the controllability Gramian assures 2T -periodic de-
composition for the (A,B)-pair. Triple 2T -periodic decom-
position of the controllability and the observability Grami-
ans assure 23T -periodic decomposition for the (C, A,B)-
triple. Further investigation is difficult along this ap-
proach. This paper proposes an alternative approach based
on Theorem 9 and prove that 2T -periodic decomposition
is actually always possible for the (C,A, B)-triple.

Theorem 22. Consider a linear T -periodic systems in (1)-
(2). Then, there exists a 2T -periodic Kalman canonical
decomposition.

6. CONCLUSIONS

This note has presented a new approach for computing the
periodic Kalman canonical decomposition by extending
the Floquet theory. The structure of linear linear periodic
systems has been clarified in a unified framework by con-
necting the periodic Kalman canonical decomposition, the
Floqeut factorization, the Floquet-like factorization, and
the period-specific realization. Several new conditions for
the existence of periodic Kalman canonical decompositions
are obtained. The computational procedure is reduced to
the factorization of the monodromy matrix, and therefore,
is drastically simplified compared with the factorization of
the controllability and the observability Gramians in the
previous works.

A development of more numerically reliable methods is one
of the future topic of this note. An extension to discrete-
time systems, which may have a degenerate state transi-
tion matrix and require modification from continuous-time
systems, is also one of the future topic of this note.
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