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Abstract: A repetitive control scheme for asymptotic tracking of the fundamental frequency of
periodic signals is presented. The method uses an adaptive orthogonal signals generator based
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1. INTRODUCTION

Most of the classical fundamental frequency estimators
do not assume a model for the periodic signal(s), i.e.,
they are classified as non-parametric methods. A popular
approach has been to compare the observed signal with
a delayed version of the self-same signal by a similarity
measure. The rationale behind doing this is that, when
the delay corresponds to the reciprocal of the fundamental
frequency, the similarity measure should be maximized
since the desired signal is periodic. Some of the first
methods utilizing this approach used the autocorrelation
function Rabiner (1977) and the average magnitude dif-
ference function Ross et al. (1974) as similarity measures.
More recent variants of methods using the delay approach
can be found in Combescure et al. (1982); Medan et al.
(1991); Tolonen et al. (2000). Another subclass of non-
parametric fundamental frequency estimators is based on
peak detection. These methods exploits the fact that the
peaks of, e.g., the time-series representation Gold et al.
(1969) or the cepstrum Noll (1967) of the observed signal
should appear in fixed intervals, where the length of the
intervals can be mapped to a fundamental frequency es-
timate. A third approach to non-parametric fundamental
frequency estimation is based on the harmonic product
spectrum. In methods based on this approach, the spec-
trum at the fundamental frequency and multiples thereof
are multiplied for different candidate fundamental frequen-
cies Noll (1969); Schroeder (1968). Then, the fundamental
frequency estimate is obtained from the maximizer of the
so-called harmonic product spectrum. For an overview
of the above and other non-parametric fundamental fre-
quency estimators, see, e.g., Hess (1983). While the non-
parametric methods are intuitively sound, they are often
relying on several heuristics and suffer from poor resolu-
tion. To tackle these issues, research in parametric fun-
damental frequency estimators has attracted considerable

attention in the recent years. In general, the parametric
estimators can be divided into three groups of methods
Christensen et al. (2009):

• statistical methods,
• subspace methods,
• filtering methods.

In the statistical methods, the likelihood or probability of
the fundamental frequency is maximized possibly under
some noise assumptions (e.g., the noise being white and
Gaussian). Examples of maximum likelihood and maxi-
mum a posteriori probability approaches can be found in
Christensen et al. (2008a, 2009). Moreover, examples of
other Bayesian approaches can be found in Cemgil et al.
(2006); Davy et al. (2006); Godsill et al. (2002). The statis-
tical methods do often provide efficient estimates, however,
they are rather computationally demanding. This has mo-
tivated research in other groups of parametric methods
such as the subspace methods. The subspace methods
utilize the fact that the space spanned by the observed
signal covariance matrix can be divided into two subspaces
spanning the signal and the noise subspaces, respectively.
The properties of these subspaces can then be exploited
for various estimation and identification tasks Krim et al.
(1996); Vary et al. (2006); Viberg et al. (1991). A third
group of parametric fundamental frequency estimators is
the filtering methods. The idea behind these methods is
to design a filter that passes a periodic signal undistorted
and apply it on the observed signal. More specifically,
the filter is designed such that it passes the harmonics
of the periodic signal while the noise is attenuated Moorer
(1974); Medan et al. (1991). Some optimal filtering based
methods were proposed recently Christensen et al. (2008b,
2011). In these methods, the filters are designed to pass
the desired periodic signal undistorted, while minimizing
the filter output power. This paper presents a new and
alternative approach to the fundamental frequency esti-
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mation of a periodic signal based on a repetitive control
(RC) methodology. The signal with unknown period is
considered as a periodic disturbance acting on a system
which is an approximate linearization of a derivative block.
The addition of a pole to the ideal derivative block filters
the signal before differentiating reducing the effect of noise.
A modified RC is then adaptively tuned to cancel the effect
of the periodic signal on the system output. The adaption
scheme to tune the period of RC makes use of an adaptive
orthogonal signals generator based on second order gen-
eralized integrator, namely OSG-SOGI, see Fedele et al.
(2009a,b); Fedele (2012a); Fedele et al. (2012b,c, 2013) and
the references therein. OSG-SOGI is used to estimate the
period of the signal with a predefined level of uncertainty
and to provide the correct input signal to the frequency
estimator system. In fact, once the periodic components
are sufficiently suppressed in the output system, excitation
of the estimation algorithm is lost, resulting in a bad
estimate of the period. Therefore internal signals of OSG-
SOGI are used to correct power the frequency estimator
system. RC is then used to refine such an estimate reducing
the harmonic components at the output of the derivative
block. At this stage, the input to the frequency estimator
system is a purely sinusoid with the same period of the
periodic signal. Other approaches for frequency estimation
in case of periodic signals with known components number
and/or bounded high frequency noise term can be found
also in Bobtsov et al. (2012); Marino et al. (2002); Wu
et al. (2003); Xia (2002). The paper is organized as follows:
Section 2 presents the proposed scheme with the quasi
repetitive controller; the characteristics of the OSG-SOGI
are discussed in Section 3. The robustness of the method is
established in Section 4. Section 5 presents some numerical
simulations while the last section is devoted to conclusions.

2. PROBLEM STATEMENT AND PROPOSED
APPROACH

This paper addresses the problem of estimating the fun-
damental frequency ωc of a periodic signal d(t) which can
be expressed in the form of Fourier series:

d(t) = a0 +

∞∑
n=1

(an cos(nωct) + bn sin(nωct)) , (1)

where n denotes the harmonic index, and an, bn(n =
1, 2, ...) are the Fourier coefficients of the nth harmonic;
a0 is the signal dc component. Even if finite harmonics are
generally substituted for the infinite harmonics in practice,
here no assumptions are made on the largest harmonic
index, i.e. the method does not require the number of
harmonics to run properly.

A possible approach to the tracking and/or disturbance
rejection problem is to use the internal model principle
which states that for asymptotically reject a disturbance,
a model of the disturbance generating system should be
included in the feedback loop. The idea discussed in this
paper is to use a “quasi” repetitive controller (QRC) to
cancel the effect of a periodic unknown disturbance d(t)
at the output of a linear block which is the approximate
linearization of a derivative block (see Fig. 1). The Fre-
quency estimator system (FES) tunes the QRC with an
estimate of the fundamental signal period. In particular,
it uses an adaptive orthogonal signals generator based on

a second order generalized integrator, namely OSG-SOGI,
to estimate the fundamental frequency with a predefined
level of uncertainty depending on the parameter γ as it will
be shown in the next section. OSG-SOGI also provides an
input signal to FES which asymptotically tends to a pure
sinusoid with frequency equal to the fundamental of d(t).
In this case, FES refines the estimate of the frequency by
converging asymptotically to the unknown value.
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Fig. 1. Quasi repetitive control scheme.

The transfer function from e(t) to u(t) is

R(s) =
1

1− e−sT̂c + ε
. (2)

For frequencies ω = 2πk/T̂c the magnitude of the denom-
inator of R(s) is equal to ε. Clearly, if ε tends to zero then
the gain of the transfer function tends to infinite, obtaining
the classical repetitive controller whose principle is to have
infinite loop gain at the harmonics of the disturbance.
For ε 6= 0 it is possible to choose the (finite) gain at
the harmonics frequencies, from which the term “quasi”
repetitive controller (see Fig. 2, where QRC is set with

T̂c = 1).

The transfer function between d(t) and y(t) is

Wdy(s) =
s(1− e−sT̂c + ε)

(βs+ 1)(1− e−sT̂c + ε) + γcs
, (3)

with β > 0, and it can be rewritten as

Wdy(s) =

1
γc

(1− e−sT̂c + ε)

1 + L(s)
, (4)

where
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Fig. 2. Magnitude frequency response of QRC.
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L(s) =
1

γc

βs+ 1

s
(1− e−sT̂c + ε). (5)

Proposition 1. The function γcL(ω) has no intersections
with the negative real axis.

Proof It must be proved that the system

βω
[
1 + ε− cos(ωT̂c)

]
+ sin(ωT̂c) = −α2ω, (6)

βω sin(ωT̂c) + cos(ωT̂c)− (1 + ε) = 0, (7)

with α ∈ R, has no solutions ∀ω > 0.

From (7)

ω sin(ωT̂c) =
1

β

[
1 + ε− cos(ωT̂c)

]
(8)

which substituted in (6) gives(
βω2 +

1

β

)[
1 + ε− cos(ωT̂c)

]
= −α2ω. (9)

The proof follows since 1 + ε− cos(ωT̂c) > 0 for all ω > 0.
2

Corollary 1. The closed loop system with transfer func-
tion Wdy(s) is asymptotically stable.

Proof By Proposition 1, the Nyquist diagram of L(s) has
no intersection with the negative real axis and then it does
not encircle the critical point −1 + 0. 2

3. FREQUENCY ESTIMATOR SYSTEM

The OSG-SOGI block in Fig. 1 is a second-order filter
characterized by a resonant frequency ωs and a gain Ks.
The frequency estimator system is then composed by an
OSG-SOGI system and a frequency adaptive block capable
to tune the resonant frequency ωs

OSG-SOGI provides two orthogonal signals v1(t) and
v2(t), according to the following differential equations

ẋ1(t) = x2(t), (10)

ẋ2(t) =−ω2
sx1(t)−Ksωsx2(t) +Ksv(t) (11)

with v(t) as input and outputs defined as v1(t) =
Ksωsx2(t) and v2(t) = Ksω

2
sx1(t). For ωs constant, signals

v1(t) and v2(t) are the outputs of linear time-invariant
systems with transfer functions

F1(s) =
K2
sωss

s2 +Ksωss+ ω2
s

, (12)

F2(s) =
K2
sω

2
s

s2 +Ksωss+ ω2
s

. (13)

F1(s) and F2(s) represent second order filters with a band-
width depending on the gain Ks and a resonant frequency
equal to ωs. In particular, F2(s) presents second order
low-pass filtering characteristics with static gain Ks and
F1 behaves as a second order band-pass filter with no
attenuation and no phase shift at the resonant frequency.
If Ks decreases, the bandwidth of the filter F1(s) becomes
narrower resulting a heavy filtering, nevertheless this en-
tails a slowdown on the dynamic response of the system

increasing oscillations and the stabilization time. In Figs.
3 - 4 the Bode diagrams of the F1(s) and F2(s) filters are
reported respectively with the same resonant frequency
ωs = 100 rad/sec and with different values of gain Ks.
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Fig. 3. Bode diagrams of F1(s) for Ks = 1/10, 1/4, 1.
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Fig. 4. Bode diagrams of F2(s) for Ks = 1/10, 1/4, 1.

Thus, for a signal

v(t) = Av sin(ωct+ φv), (14)

v1(t) and v2(t) converge exponentially to

v1∞(t) = m1Av sin(ωct+ φv + φ), (15)

v2∞(t) = −m2Av cos(ωct+ φv + φ), (16)

where

m1 =
K2
sωsωc√

(ω2
s − ω2

c )
2

+K2
sω

2
sω

2
c

, (17)

m2 =m1
ωs
ωc
, (18)

φ= sign (ωs − ωc)
π

2
− arctan

Ksωsωc
ω2
s − ω2

c

(19)

and the sign(·) function is defined as

sign(x) =

{
1 iff x ≥ 0,
−1 otherwise.

(20)

These results imply that, for sinusoidal excitation and
constant ωs, the IS-OSG-SOGI generates two orthogonal
sinusoidal signals v1(t) and v2(t). Further, if the input
frequency is equal to ωs (ωc ≡ ωs), the IS-OSG-SOGI
generates sin/cos waves that have the same magnitude as
v(t) and with v1(t) in phase with the input signal. In order
to determine the unknown frequency ωc, the resonant
frequency ωs can be adapted according to the following
differential equation

ω̇s = −γKsωs (Ksv(t)− v1(t)) v2(t) (21)
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where γ > 0 is the adaptation gain. In Fedele et al. (2009a),
a similar adaptive law has been proposed where the input
v(t) is not pre-scaled by the term Ks. However, the
analysis in Fedele et al. (2009a) assumes a pure sinusoidal
signal as input for the OSG-SOGI. As stated in the next
Theorem, the convergence properties of the adapted law
(21) are still valid in a neighborhood of the nominal one
even if an harmonic signal is assumed in input.

Theorem 1. Let us assume a Tc-periodic input, with Tc =
2π
ωc

, v(t) = A1 sin(ωct) + A2 cos(ωct) + n(t), where n(t) is
an arbitrary function that has no frequency component at
ωc. Then the adaptive law (21) has an equilibrium point
at an O(γ) neighborhood of the input frequency ωc.

Proof The proof is reported in Appendix A. 2

4. SENSITIVITY OF THE QUASI REPETITIVE
CONTROL

Here the sensitivity of the signal v(t) with respect to
the inaccurate estimate of the fundamental frequency ωc
is analyzed Steinbuch (2002); Tsao et al. (1998). Let us
consider the transfer function between d(t) and v(t):

Wdv(s) =
s(1 − e−sT̂c + ε)(s2 +Ksωss+ ω2

s)[
(βs+ 1)(1 − e−sT̂c + ε) + γcs

]
(s2 + ω2

s)
. (22)

From Theorem 1 it follows that, after the transient, the
OSG-SOGI resonant frequency ωs is ωs = ωc + δω, where
δω is O(γ). Therefore δω can be made arbitrarily small
by an opportune choice of γ. We would like that the
Wdv(s) acts as a filter that passes the fundamental at ωc
and attenuates the other harmonics at kωc with k ≥ 2.
Therefore we investigate the filter response when T̂c =
2π/(ωc + δω) and s = kωc. Substitution of these values
into Eq. (22) and Taylor expansion with δω → 0 give

|Wdv(kωc)| = c0 + c1δω +O(δω2), (23)

where
c0 =

εkωc

(k2 − 1)

√
ε2+(βε+γc)2k2ω

2
c

(k2−1)2+K2
sk

2

, (24)

c1 =
2εk3γcωcπ

√
(k2 − 1)2 +K2

sk
2

(k2 − 1) [ε2 + (βε+ γc)2k2ω2
c ]3/2

+

+
εK2

sk
3

(k2 − 1)
√

[(k2 − 1)2 +K2
sk

2] [ε2 + (βε+ γc)2k2ω2
c ]
. (25)

Remark 1. It is straightforward to note that other terms
in the Taylor expansion, as c0 and c1, contains k2 − 1 in
the denominator. This means that |Wdv(kωc)| is infinite
only for k = 1. Therefore the OSG-SOGI input v(t) is
actually constituted by a single sinusoid at the fundamen-
tal frequency of the periodic signal and then its adaptive
regulation makes the resonant frequency converging to the
correct value.

5. NUMERICAL SIMULATIONS

In this section two numerical simulations are reported to
show the characteristics of the proposed method.

Example 1. A square signal with starting frequency
10 rad/sec and duty-cycle of 50% is here considered. The

3 5 7 9 11 13 15 17 19

5% 6% 5% 1.5% 3.5% 3% 0.5% 2% 1.5%

Table 1. Harmonic order and amplitude ex-
pressed as percentage of the first harmonic.

signal is affected by a white noise with normal distribution
N (0, 0.01). The simulation time is 40 sec with a sampling
time equal to 4 · 10−5 sec. At time t = 20 sec, a frequency
step occurs passing from 10 rad/sec to 12 rad/sec. The
OSG-SOGI parameters are Ks = 1, γ = 10−3. The
parameter ε is chosen as 10−6 while γc = 10−1 and β = 0.1.
The method is compared with a bank of five SOGIs as in
Fedele et al. (2009a) and the estimation approach in Wu
et al. (2003), namely MS and WB methods, respectively.
In SOGIs-bank, only the first SOGI block is adapted with
an adaptive gain equal to 1, while the others are tuned
with multiple frequencies. The gain Ks = 1 is set for
all blocks. WB approach is set up with gm = gφ =
10, gw = 1.75 and Kf = 2.5. The same number of
component blocks, as in MS, has been considered for WB
method. All the estimators start with an initial frequency
condition equal to 75.4 rad/sec. Parameters are chosen
in order to guarantee that all methods present the same
settling-time approximatively, in the first sub-interval. WB
performs better in steady-state conditions. However its
convergence time becomes too slow if the initial condition
is not close enough to the frequency to be estimated. The
frequency estimate of the proposed method, namely ωRCs ,
MS estimate, namely ωMS

s , and WB one, namely ωWB
s ,

are depicted in Fig. 5.

0 5 10 15 20 25 30 35 40

58

60

62

64

66

68

70

72

74

76

78

time (sec)

fr
e
q
u
e
n
c
y
 (

ra
d
/s

e
c
)

 

 

ω
c

ω
s

MS

ω
s

RC

ω
s

WB

Fig. 5. Example 1. Fundamental frequency estimation.

Example 2. In this example a 50Hz sinusoidal signal
is distorted with 9 odd harmonics. Each component of
the signal has a random phase uniformly distributed in
[0, 2π]. The fundamental amplitude is 230

√
2 while the

other harmonics amplitudes are expressed as a percentage
of the first harmonic amplitude as reported in Table I. In
this example the observation time is 1 sec with a sampling
time equal to 10−5 sec. The initial value of the OSG-SOGI
resonant frequency is ωs(0) = 377 rad/sec, γ = 10−6 while
the other parameters are the same of the previous example.
The frequency estimate is depicted in Fig. 6.

6. CONCLUSIONS

In this paper a novel method to estimate the fundamental
frequency of a periodic signal has been presented. An
adaptive orthogonal signals generator is coupled with a
quasi repetitive controller to mitigate the effects of the
harmonics in the frequency estimation process. After a
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Fig. 6. Example 2. Fundamental frequency estimation.

transient the orthogonal signals generator is excited by
a pure sinusoidal signal at the fundamental frequency
since the transfer function between the periodic signal and
the input to the orthogonal signals generator is a quasi
resonant filter with bandwidth centered at the frequency
of interest.

Appendix A. PROOF OF THEOREM 1

The proof is based on the one reported in Mojiri et al.
(2004, 2007a,b). Let us consider the system defined by
(10)-(11) plus the frequency adaptation (21). Note that
such a system has a periodic orbit for pure nominal sinu-
soidal input at the frequency ωc, i.e. vn(t) = A1 sin(ωct) +
A2 cos(ωct). By taking into account such facts, the follow-
ing change of variables has been considered(

x1
x2
ωs

)
=

(
− sin(ωct) − cos(ωct) 0

−ωc cos(ωct) ωc sin(ωct) 0
0 0 1

)(
ξ1
ξ2
ωs

)
. (A.1)

The transformation (A.1) is referred as a stability preserv-
ing map. It brings the dynamics near the desired periodic
orbit and it preserves the stability properties of the original
dynamical system Khalil (2002). Note that the transforma-
tion matrix in (A.1) and its time-derivative are continuous
and bounded on R. Moreover, the determinant of matrix in
(A.1) is constantly equal to −ωc,∀t ∈ R. Applying trans-
formation (A.1) to (10)-(11) and (21), yields the following
dynamical system that is equivalent to the original one, in
the sense of Lyapunov:

ξ̇1(t) = −
1

ωc
cos(ωct) [cs(t) + cc(t) +Ksv(t)] , (A.2)

ξ̇2(t) =
1

ωc
sin(ωct) [cs(t) + cc(t) +Ksv(t)] , (A.3)

ω̇s(t) = γK3
sω

3
s(t) (sin(ωct)ξ1(t) + cos(ωct)ξ2(t)) ×

× [ωcωs(t) (cos(ωct)ξ1(t) − sin(ωct)ξ2(t)) + v(t)] , (A.4)

where

cs(t) = −
[
(ω2
c − ω2

s(t))ξ1(t) +Ksωcωs(t)ξ2(t)
]

sin(ωct), (A.5)

cc(t) =
[
Ksωcωs(t)ξ1(t) − (ω2

c − ω2
s(t))ξ2(t)

]
cos(ωct). (A.6)

Let us consider 0 < ε � 1 a constant parameter and
Ks = εK̂s, ε

2γ = γ̂ and εΩ(t) = (ω2
s(t)− ω2

c )/ωc.

Therefore, the system (A.2)-(A.4) can be rewritten as:

ξ̇1(t) = −
ε

ωc
cos(ωct)

[
ĉs(t) + ĉc(t) + K̂sv(t)

]
, (A.7)

ξ̇2(t) =
ε

ωc
sin(ωct)

[
ĉs(t) + ĉc(t) + K̂sv(t)

]
, (A.8)

Ω̇(t) = εγ̂K̂3
s×

× [ωc(ωc + εΩ(t))]3/2 (sin(ωct)ξ1(t) + cos(ωct)ξ2(t))×

×
[
ωc
√
ωc(ωc + εΩ(t)) (cos(ωct)ξ1(t) − sin(ωct)ξ2(t)) + v(t)

]
,

(A.9)
where

ĉs(t) =

[
ωcΩ(t)ξ1(t) − K̂sωc

√
ωc(ωc + εΩ(t))ξ2(t)

]
sin(ωct),

ĉc(t) =

[
K̂sωc

√
ωc(ωc + εΩ(t))ξ1(t) + ωcΩ(t)ξ2(t)

]
cos(ωct).

An averaging method is here provided to prove the stabil-
ity of the system in Eq. (A.7)-(A.9). The averaging method
permits to analyze the solutions of a T -periodic dynamical
system into the form Ẋ = εF (x, t, ε) by investigating the

solutions of the averaged value Xav = ε 1
T

∫ T
0
F (Xav, t, 0)dt

for T → ∞. In particular, averaging results indicate that
the periodic orbits of the original system are related to the
fixed points of the averaged one which may be much easier
to analyze. The input of the system is here assumed to be
composed by the nominal part at the frequency ωc and a
periodic term n(t) that has no frequency component at ωc,
i.e, v(t) = vn(t) +n(t). Note that the input v(t) multiplies
Tc−periodic terms (sin(ωct) and cos(ωct)). Within the as-
sumptions of the averaging analysis, the term n(t) vanishes

since 1
Tc

∫ Tc

0
n(t) sin(ωct)dt = 1

Tc

∫ Tc

0
n(t) cos(ωct)dt = 0

and, as a consequence, n(t) does not influence the fre-
quency estimator process. The averaged system of (A.7)-
(A.9) is then

ξ̇1av =
ε

2
ωc

[
−
A2

ω2
c

K̂s − K̂sξ1av − Ωavξ2av

]
, (A.10)

ξ̇2av =
ε

2
ωc

[
A1

ω2
c

K̂s − K̂sξ2av + Ωavξ1av

]
, (A.11)

Ω̇av =
ε

2
γ̂K̂3

sω
3
c (A1ξ1av +A2ξ2av ) , (A.12)

where the notation (·)av indicates the averaged value of
the signal of interest and the time dependence is omitted
for brevity.

The averaged system has an equilibrium point at ξ1av
=

−A2/ω
2
c , ξ2av

= A1/ω
2
c and ωsav

= ωc. Such an equilib-
rium point is transferred to the origin by the following
change of variables z1(t) = ξ1av

(t) + A2

ω2
c

, z2(t) = ξ2av
(t)−

A1

ω2
c

, z3(t) = Ωav, obtaining the following differential non-

linear system

ż1 = −
ε

2

(
K̂sωcz1 + z2z3 +

A1

ω2
c

z3

)
, (A.13)

ż2 = −
ε

2

(
K̂sωcz2 − z1z3 +

A2

ω2
c

z3

)
, (A.14)

ż3 =
ε

2
γ̂K̂3

sω
3
c (A1z1 +A2z2) . (A.15)

The following candidate Lyapunov function is here pro-
posed V (z) = z21 + z22 + 1

γ̂K̂3
sω

5
c

z23 . V (z) is a continu-

ously differentiable positive definite function with time-
derivative equal to V̇ (z) = −εK̂sωc(z

2
1 + z22). V̇ (z) is

negative semi-definite in an arbitrary neighborhood of the
origin, namely D. The set S associated with Barbashin-
Krasovskii theorem Khalil (2002), is characterized by S ={

(z1, z2, z3)T ∈ D, z1 = 0, z2 = 0
}
. The largest invariant

set in S is the origin, hence the zero equilibrium point
is asymptotically stable.
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