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Abstract: Many biomolecular networks are still widely unknown. With high structural
uncertainties, bottom-up identification based on model discrimination tends to fail because
of combinatorially many possible model structures. Top-down approaches, in contrast, describe
general signal processing properties, rather than specific mechanisms. Most of these approaches
originated in engineering disciplines where linearity is commonly (approximately) given, but
naturally evolved networks exhibit a rather high degree of nonlinearity. Here, we present a
top-down structural identification method that is not only applicable to nonlinear biomolecular
networks, but indeed requires the network under study to be nonlinear. Similar to traditional
frequency domain analysis, we apply an oscillatory input signal to a biomolecular network.
However, instead of varying the frequency, we vary the mean value of the oscillatory signal to
detect, discriminate, and partly characterize single feedback and feedforward loops in nonlinear
networks.
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1. INTRODUCTION

The underlying signal transduction and processing mecha-
nisms of many biomolecular networks are still only poorly
characterized. Often, whole sub-networks are unknown
and the roles of key players are not understood. Typ-
ically, identification in systems biology uses bottom-up
approaches, for example by large-scale experimental mea-
surements and detailed mechanistic modeling. However,
current experimental technologies do not allow quantifi-
cation of all relevant components and–even if this was
the case–properties emerging by their interplay have to
be understood and characterized a posteriori. In contrast,
in top-down approaches one conducts systematic exper-
iments to identify structural properties of the network
prior to the construction of detailed models. System be-
haviors such as multi-stability or autonomous oscillations
can be directly identified by specific experiments; they
significantly reduce the space of possible model structures
by requiring certain topological network features (e.g.,
positive feedback for multi-stability), and do not require
specific prior knowledge of the respective network.

To generalize such concepts, we here present a novel struc-
tural identification approach based on experimentally ob-
servable input-output relations of an inducible biomolec-
ular system that can deduce the existence of nonlinear
dynamic feedback or feedforward loops without requiring
these loops to lead to oscillations or multi-stability. Impor-
tantly, our method can distinguish between feedforward
and feedback loops, and it provides information on their
(relative) strengths.

We utilize an approach similar to traditional frequency
domain analysis in which the amplification and the phase
delay of an oscillatory signal transmitted through a dy-
namic system are measured for different frequencies of the
input signal [Lipan and Wong, 2005, Mettetal et al., 2008,
Bennett et al., 2008, Hersen et al., 2008]. Based on this
data, a (minimal) state space representation of the system
can be reconstructed. However, frequency domain analysis
is essentially a linear method; it requires the linearization
of typically nonlinear biological networks [see Schoukens
et al., 1998, on how to discriminate nonlinearities from
unmodeled linear dynamics]. Furthermore, typically the
frequency of the input signal has to be changed over several
orders of magnitude, and the output oscillations have to be
distinguishable from stochastic noise even for very low am-
plifications. Limitations in biological experiments and high
levels of stochastic noise often imply that these require-
ments cannot be fulfilled in biomolecular research [Lipan
and Wong, 2005, Tan et al., 2007]. Finally, the mapping
from a transfer function to a state space representation is
not unique. In particular, feedback and feedforward loops
are often difficult or impossible to distinguish using such
a linear approach (see examples below).

Instead of varying the frequency of the oscillatory input
signal, we vary its mean value, while keeping the frequency
fixed close to the network’s bandwidth. For different mean
values, we measure amplification and phase delay of the
oscillations of the output, as well as its mean value. Ampli-
fication and phase delay of linear systems are independent
of the mean input level, whereas the mean value of the
output is linear in the mean value of the input. However,
in nonlinear systems, these measures co-vary: amplifica-
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tion and phase delay can change depending on the mean
input level. We show that these variations have specific,
distinguishable properties if a nonlinear dynamic feedback
or a feedforward loop exists in the network, which can be
used for structural systems identification.

Here, we represent the differential equations describing
a biological system as higher-order, possibly parallel,
cascades of block-oriented Wiener-Hammerstein (LNL)
systems including feedbacks. Around the 1980’s, several
methods were developed to identify mainly small cascades
of LNL systems using white and colored noise, or sinu-
soidal inputs [Giannakis and Serpedin, 2001, Haber and
Unbehauen, 1990]. However, only few methods can deal
with non-cascade models. Billings and Fakhouri [1978,
1982] analyzed unity feedback LNL models, Baumgart-
ner and Rugh [1975] parallel LNL systems with distinct
integer power nonlinearities (SM systems), Billings and
Fakhouri [1979] and Pawlak and Hasiewicz [1998] model
classes including Hammerstein systems in parallel with
linear dynamics, and Chen [1994] parallel LNL, as well
as LNL models with static nonlinear feedbacks. These
methods typically require a priori that the system under
study belongs to a specific class of networks (cascade,
feedforward, unity feedback; an exception is the method
of Chen [1994]), and often additional information such
as the order of the linear dynamics has to be specified
[Baumgartner and Rugh, 1975]. However, note that these
methods can usually detect if a network belongs to a
certain sub-class; a method applicable for LNL systems
might detect if a network is a Hammerstein, Wiener, or
linear network.

Our approach is based on the work of Singh and Subra-
manian [1980], who analyzed general block-oriented sys-
tems with exactly one odd nonlinearity. Using zero mean
sinusoidal input signals with varying amplitudes and the
describing function of the nonlinearity, Singh and Subra-
manian [1980] showed that the complex gain of the output
oscillations with respect to the input oscillations qualita-
tively differs for LNL systems with a linear feedback, a
linear feedforward, both, or none. Here, we extend this
idea to a method applicable in the context of biomolecular
research. Specifically, we allow for more than one mixed
(odd and even) nonlinearity. We change the mean value of
the input oscillations rather than the amplitude to effec-
tively decouple the effect of the linear dynamics from the
nonlinearities, and to enable the application to biological
systems with typically only non-negative inputs. Finally,
we express the complex gain in relation to the derivative
of the static input/output function to discriminate be-
tween networks with a nonlinear-dynamic (ND) feedback,
a ND-feedforward, a combination thereof, none of both,
and linear systems. The ability to reliably detect these
topological network features promises to be especially
useful in the context of naturally evolved biomolecular
networks, where–typically nonlinear–feedback [Brandman
and Meyer, 2008] and feedforward [Mangan and Alon,
2003] loops are abundant.
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Fig. 1. Example WH-graph of the transcriptional network
with non-competitive self-inhibition as described by
(1). Blue vertices represent static nonlinearities, green
linear dynamics, circles junctions, and yellow the
input and the output. The symbol (.) denotes the
respective input of the static nonlinearities.

2. RESULTS

2.1 Network Representation

We utilize that the ordinary differential equations (ODEs)
of most biomolecular systems can be expressed as block
oriented models. Here, we describe a block-oriented model
as a Wiener-Hammerstein graph (WH-graph; see Fig. 1
for an example), a directed graph with vertices represent-
ing single-input, single-output (SISO) static nonlinearities,
linear dynamics, and additive junctions. Static nonlinear-
ities are single-valued differentiable functions M : R→ R,
z = M(v) without memory, that is, ∀t1, t2 : v(t1) =
v(t2) ⇒ z(t1) = z(t2). Linear dynamics are sets of expo-
nentially stable linear ODEs with one input and one out-
put. The input-output relationship of linear dynamics can
be expressed–after decay of the initial conditions–in the
Laplace space as Z(s) = G(s)V (s), with V (s) = L(v(t)),
Z(s) = L(z(t)), L(.) the Laplace operator, s = jω the
Laplace variable, and G(s) the transfer function in the
Laplace space. In the following, we assume that the system
under study does not contain any linear high-pass filters
(G(0) 6= 0), which is given for most biomolecular networks.
Junctions are the only vertices that have an indegree larger

than one: J : Rk → R, z = J(v1, . . . , vk) =
∑k
j=1±vj . Fi-

nally, two vertices represent the input (indegree zero) and
the output (outdegree zero) of the network, respectively.

The requirement that the junctions of a WH graph have to
be additive might seem as a strong limitation since many
reactions in biomolecular networks have reaction rates
including multiplicative terms. However, multiplications
become additions in log-space; they can be expressed
as an additive junction with static nonlinearities at the
inputs and at the output. For example, the ODE for a
transcriptional network with non-competitive feedback

d

dt
x = v

u

u+Ku

K2
x

x2 +K2
x

− kDx (1)

can be rewritten as

(
1

kD

d

dt
+ 1

)
︸ ︷︷ ︸

=:G�1

x =
v

kD
exp︸ ︷︷ ︸

:=M3

=:J︷ ︸︸ ︷[
log

u

u+Ku︸ ︷︷ ︸
=:M1

− log

(
1 +

x2

K2
x

)]
︸ ︷︷ ︸

=:M2

and represented as a WH graph (Fig. 1).

A feedback is a simple directed cycle in a WH-graph. A
feedback is static if it only contains static nonlinearities,
linear if it only contains linear dynamics, and ND if it
contains both and is not reducible to a static or linear
feedback. A feedback is simple if it does not contain any
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additional junction. Similarly, a feedforward is a set of
two distinct directed paths starting at the same vertex
and ending at the same junction. It is simple if the two
paths do not contain any additional junctions, and the
other classifications for feedback apply accordingly.

We define the operations on a WH-graph that do not
change the input-output dynamics of a network as shown
in Fig. 2. Thus, the WH-graphs before and after such an
operation are not distinguishable in terms of structural
systems identification. Similar to the operations in Figs. 2e
and 2f, it is also possible to join a static or a linear
feedforward into one vertex, or to join successive junctions
(not shown).
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Fig. 2. Elementary operations on a WH-graph. (a) Merging
two successive linear dynamics or (b) static nonlin-
earities; (c) pushing a junction to the right of a linear
dynamic by using the distributive law; (d) copying
linear dynamics or static nonlinearities to move splits
of the path upstream; and (e) transformation of a
simple linear feedback into a linear dynamic, or (f)
a simple static feedback into a static nonlinearity.

These elementary operations can be applied successively
to convert a WH-graph into its normal form (Fig. 3).
A WH-graph is in its normal form if all feedbacks and
feedforwards are nonlinear-dynamic, feedforwards are not
reducible to be static or linear, no two directly connected
vertices are both static nonlinearities or both linear dy-
namics, all vertices with an outdegree greater or equal to
two are either junctions or the input vertex, and every
junction is directly connected to at least one static non-
linearity or the output vertex. Furthermore, the transfer
functions of all linear dynamics have to be one for zero
frequency (Gi(0) = 1).

In the following, we apply system inputs of the type

u(t) = u0 + u1 cos(ωt), (2)

with a static part u0 overlayed with a harmonic oscillation
with period T = 2π

ω and amplitude u1, and we require
u0, u1 > 0, u0 ≥ u1, u1 � 1, and ω > 0. With u1 small,

(a)

+ 
MU GU 

MF GF 

MY GY 

* 

* * 

u y

(b)

+ M1 G1 

MY GY 

* 
* 

u y
M2 

* 

G2 
+ 

Fig. 3. Normal forms of a WH-graph containing (a) only
one ND-feedback, or (b) only one ND-feedforward.
Vertices denoted by a star can occur in arbitrarily
long alternating cascades. Combining the networks by
using the output of the feedforward model as the input
of the feedback model results in another WH-graph in
normal form, but vice versa this holds only if the set
of vertices GY and MY of the feedback network is
empty.

the oscillations can be considered as a small perturbation.
The output y of the system will then have the form

y(t) = F0(u0) +F1(u0, ω)u1 cos(ωt+φ1(ω)) +O(u21). (3)

In traditional frequency domain analysis, the same setup
is used to generate Bode diagrams or Nyquist plots.
However, there the frequency ω is typically varied while
keeping u0 and u1 constant, thus effectively linearizing the
network around the steady state set by u0 and determining
the linear transfer function. Here, we will instead keep
the frequency ω constant while varying u0 to determine
structural network properties.

2.2 Systems with one ND-Feedback

In this section, we assume to have a WH-graph in its
normal form with exactly one ND-feedback and no ND-
feedforward (Fig. 3a). The network consists of greater
or equal to zero alternating linear dynamics and static
nonlinearities before (GU ,MU ) and after (GY ,MY ) the
feedback, and greater or equal to one alternating static
nonlinearities and linear dynamics in the feedback. For
inputs of type (2), the relationship H between the input
u(t) and the output y(t) is given by

y =

1∏
i=nY

(GY,i ◦MY,i◦)

[
1 +

1∏
i=nF

(GF,i ◦MF,i◦)

]−1

1∏
i=nU

(GU,i ◦MU,i◦)u,

with ◦ denoting the non-commutative application of the
linear transfer functions GX,i, respectively the nonlinear
static functions MX,i on the element to the right.

In the following, we will refer to the function
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Hω(u0) = L
(
F1(u0, ω)eφ1j

)
, (4a)

=

∏nY

i=1GY,iNY,i(u0)
∏nU

i=1 (GU,iNU,i(u0))

1 +
∏nF

i=1 (GF,iNF,i(u0))
(4b)

= NY (u0)GY
1

1 +NF (u0)GF
GUNU (u0), (4c)

with j =
√
−1, as the amplitude-transfer function for a

given frequency ω. Since u1 � 1, the derivatives

NY,i(u0) =
d

dv
MY,i(v)

∣∣∣∣
v=v0(u0)

(5)

of the static nonlinearities MY,i(v) with respect to their
input v, evaluated at the steady state v0(u0) corresponding
to a constant input u(t) = u0 approximate the amplifica-
tion of the oscillations by the static nonlinearities. For a
given value of u0, these amplifications are constant (albeit
unknown), such that the order of the static nonlinearities
and the linear dynamics can be switched, leading to (4c)
with generalized static nonlinearities NX and generalized
linear dynamics GX , X ∈ {U, Y, F}, at the input (X = U),
output (X = Y ), and feedback (X = F ) defined by

NX(u0) =

nX∏
i=1

NX,i(u0) (6a)

GX(jω) =

nX∏
i=1

GX,i(jω). (6b)

For a linear system, the amplitude-transfer function is
equivalent to the linear transfer function G(s = jω),
evaluated at a specific value of the Laplace variable s. The
phase delay of the output vanishes for small frequencies,
and the amplitude-transfer function becomes the first
derivative of the static input-output function F0(u0) with
respect to u0 (H0(u0) = d

du0
F0(u0)).

The inverse of the transfer functions H−1
0 for frequencies

close to zero, and H−1
ω for larger frequencies ω can then

be written as

H−1
0 = N−1

U N−1
Y +NFN

−1
U N−1

Y

= N−1
η [1 +Nδ] (7a)

H−1
ω = N−1

U N−1
Y G−1

U G−1
Y +NFN

−1
U N−1

Y GFG
−1
U G−1

Y

= N−1
η G−1

η [1 +Nδ +Nδ(Gδ − 1)] . (7b)

The transformations are based on arbitrarily selecting
a reference input uref = const, leading to a reference
strength of the nonlinearity in the feedback Nref =
NF (uref). The relative dynamics and nonlinearities of the
system are then expressed by

Gη :=
1 +Nref

1 +NrefGF
GUGY (8a)

Nη(u0) :=
NUNY
1 +Nref

(8b)

Gδ :=
1 +Nref

1 +NrefGF
GF (8c)

Nδ(u0) :=
NF −Nref

1 +Nref
. (8d)

These substitutions correspond to a rearrangement of the
system as shown in Fig. 4.

H0(uref) and Hω(uref) can be measured directly, and the
value of Gη is given by

1
δ
G
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N
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Fig. 4. Visualization of the definitions of Gη, Nη, Gδ,
and Nδ (8a–8d), and of the terms appearing in the
definitions of Tω and Vω (10a–10b). Note that Nδ is
zero for the reference input uref, and Gδ − 1 is zero
for frequency zero (H0).

Gη =
Hω(uref)

H0(uref)
. (9)

Thus, for a nonlinear-dynamic feedback the following
equalities hold:

Tω(u0) :=H−1
ω Gη −H−1

0 =
Nδ
Nη

[Gδ − 1] (10a)

Vω(u0) :=
H0Gη
Hω

− 1 =
Nδ

1 +Nδ
[Gδ − 1] , (10b)

If the feedback is nonlinear (Nδ(u0) 6= 0) and dynamic
(∠Gδ(u0) 6= 0), the functions Tω(u0) and Vω(u0) corre-
spond to lines in the complex space through the origin
(Tω(uref) = Vω(uref) = 0, ∠T = ∠V = const). In contrast,
without a ND-feedback, Tω(u0) and Vω(u0) are zero, and
for more than one feedback or a feedforward (or a combi-
nation thereof), the phase of Tω(u0) and Vω(u0) will not
be constant in general.

Since Tω(u0) can be obtained from measurement data
alone without knowledge of the underlying network, it
can be used as an indicator if the network contains a
ND-feedback; the absolute values of Tω(u0) and Vω(u0)
indicate the change of the strength of the feedback (Vω),
respectively the change of the strength relative to the
open-loop system (Tω).

2.3 Systems with one ND-Feedforward

Similar to Section 2.2, the amplitude transfer functions
for a WH-graph in normal form with the only loop being
a ND-feedforward (Fig. 3b) can be written as

H0 =NY (N1 +N2) (11a)

Hω =NYGY (N1G1 +N2G2)

=NY (N1 +N2)Gη

[
1 +

Nδ
N1 +N2

(Gδ − 1)

]
, (11b)

with

Gη := GY
Nref,1G1 +Nref,2G2

Nref,1 +Nref,2
(12a)

Nδ := N1 −N2
Nref,1

Nref,2
(12b)

Gδ :=
(Nref,1 +Nref,2)G1

Nref,1G1 +Nref,2G2
. (12c)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

799



(a)

x1 v1 
kD1 x3 v3 

kD3 

x2 v2 
kD2 

u y Kx1, nx1 

Kx2, nx2 

Ku, nu 

(b)

x1 v1 
kD1 x3 v3 

kD3 

x21 v21 
kD21 

u y Kx1, nx1 

Kx22, nx22 

Ku, nu 

x22 v22 
kD22 

Kx21, nx21 

(c)

10
−2

10
−1

10
0

10
1

−60

−40

−20

0
u

0
=0.05

u
0
=1

Frequency (rad/h)

M
ag

ni
tu

de
 (

db
)

 

 

Feedback
Feedforward

(d)

0 2 4 6 8

−1

−0.5

0

0.5

1

 0.05

 0.1

 0.2
 0.4
 1

 2
 3
 4
 5

 6

Re

Im

 

 

Hω
−1G

0

H
0
−1

Tω

(e)

0 0.5 1 1.5

−0.1

0

0.1

0.2

0.3

0.4

 0.1  0.2  0.3  0.4 0.5  0.6
 0.8

 1

 1.25

 1.5

 1.75
 2

 2.5 3
 4

 5
 6

Re

Im

 

 
HωG

0
−1

H
0

Sω

(f)

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

u
0

|V
ω
|

(g)

0 2 4 6 8

−0.5

0

0.5

1

 0.05

 0.1

 0.2
 0.4

 1

 2
 3

 4  5  6

Re

Im

 

 

Hω
−1G

0

H
0
−1

Tω

(h)

0 0.5 1 1.5

−0.1

0

0.1

0.2

0.3

 0.1
 0.2

 0.3 0.4 0.5  0.6
 0.8

 1

 1.25

 1.5

 1.75 2
 2.5

 3

 4
 5

 6

Re

Im

 

 
HωG

0
−1

H
0

Sω

(i)

0 1 2 3 4 5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

u
0

|W
ω
|

Fig. 5. Example feedback (a,d,e,f) and feedforward (b,g,h,i) networks and their dynamic responses. (a,b) Network
structures in standard notation, with degradation rate constants kDX , maximal production rates vX , dissociation
constants Kx, and Hill coefficients nx. The coregulation of the expression of x1 (feedback) and x3 (feedforward)
is non-competitive. (c) Bode magnitude plots for input oscillations with constant mean (u0 = 0.05µM or 1µM)
and amplitude (u1 = 0.1u0), and varying frequency (ω = 10−2–102rad/h). (d,g) H−1

ω G0 (black), H−1
0 (blue), Tω

(green) using simulated measurement data (10a). (e,h) HωG
−1
0 (black), H0 (blue), Sω (green) for the same data

(13a). (f) |Vω| for the feedback and (i) |Wω| for the feedforward system (sign corrected for 180◦ phase shift at
u0 = uref). Parameters feedback (concentration units in µM , time units in h): Ku = 10, nu = 1, v1 = 18.03,
kD1 = 1.5, Kx1 = 8, nx1 = 2, v2 = 32.5, kD2 = 0.5, Kx2 = 3.29, nx2 = 2, v3 = 65, and kD3 = 1; parameters
feedforward: Ku = 10, nu = 1, v1 = 16.5, kD1 = 1.5, Kx1 = 8, nx1 = 2, v21 = 65, kD21 = 1, Kx21 = 8, nx21 = 1,
v22 = 9, kD22 = 1, Kx22 = 2.47, nx22 = 2, v3 = 75.64, and kD3 = 1.

For this transformation, we arbitrarily select a reference
input uref for which the strengths of the nonlinearities
in the two branches of the feedforward become Nref,1 :=
N1(uref) and Nref,2 := N2(uref). Note that Nδ(uref) = 0,
and that Gη can be measured directly (9).

Thus, for a ND-feedforward the following equations have
to hold:

Sω := HωG
−1
η −H0 (13a)

= NYNδ(Gδ − 1) (13b)

Wω :=
Hω

H0Gη
− 1 (13c)

=
Nδ

N1 +N2
(Gδ − 1). (13d)

If the nonlinearities (Nδ(u0) 6= 0) and the linear dynamics
(∠Gδ 6= 0) in the branches of the feedforward loop are
different, the functions Sω(u0) and Wω(u0) correspond to
lines through the origin in the complex space (Sω(uref) =
Wω(uref) = 0, ∠Sω = ∠Wω = const). Without any
nonlinear-dynamic loop, Sω(u0) and Wω(u0) become zero
for all u0, and for more than one feedforward or a feedback

(or a combination thereof), generally the phase of Sω(u0)
and Wω(u0) will be non-constant.

3. EXAMPLES

To exemplify our approach, we consider a transcrip-
tional feedback (Fig. 5a) and a transcriptional feedforward
(Fig. 5b) network. Traditional linear frequency domain
analysis using oscillatory inputs with constant mean and
amplitude, and varying frequency cannot distinguish these
networks because the state space representation of linear
transfer functions is not unique (Fig. 5c). Here, we created
artificial measurement data for both networks by simulat-
ing their respective ODE models. The mean of the input
oscillations (frequency ω = 1h−1) was slowly increased
from 0.05µM to 6.1µM , and the amplitude was set to 10%
of the mean. The mean, the amplitude, and the phase delay
of the output were measured by fitting the time-series data
to a sine curve. H0 was derived from the mean values of y
by central derivatives, and Hω by utilizing (4a). For both
networks, we used the reference input uref = 1µM .

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

800



We then used (10a,13a) to calculate the curves Tω and Sω
(Figs. 5d, 5e, 5g, and 5h) for both networks. From these
measurement data alone, we conclude the following on the
network structures: (i) H0 and Hω are not constant, hence,
both systems are not linear; (ii) with non-constant Sω and
Tω, both networks clearly contain at least one feedback
or feedforward loop; (iii) only the phase of Tω (Sω)
for the feedback (feedforward) model is approximately
constant, whereas it varies for the feedforward (feedback)
model. Since a ND-feedback (ND-feedforward) implies
a constant phase of Tω (Sω), the respective types of
loops in both models as identified by the measurement
data alone are consistent with the known underlying
network structures, demonstrating that our method is able
to correctly identify nonlinear-dynamic feedforward and
feedback loops in biomolecular networks.

It is possible to further qualitatively characterize the re-
spective networks using our method. The magnitude of Vω
(Wω) provides information about the relative strength of a
ND-feedback (ND-feedforward). For our negative feedback
circuit, the magnitude of Vω increases for increasing means
u0 of the input (Fig. 5f). Since the strength NF of a ND-
feedback increases monotonously with increasing magni-
tudes of Vω (10b), this indicates either a negative ND-
feedback with increasing, or a positive ND-feedback with
decreasing strength, but approximately constant strength–
probably zero–at low mean input concentrations. This
agrees with the known model structure, in which the
negative feedback decreases expression of species x1 non-
competetively with a Hill coefficient of nx2 = 2. Note
that the two alternatives (decreasing positive or increasing
negative ND-feedback) are in general not uniquely dis-
tinguishable, albeit additional analysis might render one
explanation more likely than the other.

The magnitude of Wω of the positive ND-feedforward
example (Fig. 5i) is also approximately constant for low
mean inputs u0; it decreases with u0 for median mean
inputs, before increasing again. As above, this either indi-
cates an incoherent feedforward with a maximal relative
strength at around u0 = 2.8µM , or a coherent feedforward
with a minimal relative strength at the same mean input
concentration. This result is consistent with the known
model structure, an incoherent feedforward inhibiting non-
competitively x3 with a Hill coefficient of nx22 = 2.
The decreasing relative strength above 2.8µM of the ND-
feedforward results from saturation of the negative branch
for high input concentrations, while the positive branch of
the feedforward is not yet saturated.

4. CONCLUSION

We developed a simple structural identification method
for biomolecular networks with which one can distinguish
between networks with a ND-feedback, a ND-feedforward,
none of both, or a combination of both. Different to
traditional frequency domain analysis, our approach does
not imply a linearization of the underlying network. It
only works for nonlinear networks, utilizing that phase
delay and amplification of oscillations of the output in
response to oscillations of the input not only depend on
the frequency–as for linear systems–but also on the mean
value of the input.

Fig. 6. Decision diagram to classify an unknown biomolec-
ular network based on its nonlinear dynamics. Note,
that all conclusions depend on the input range
[umin, umax] 3 u0, and on the tested time-scale given
by 2πω−1. Thus, a system classified as linear might
show nonlinear behavior for input concentrations out-
side the tested range, and might have feedbacks or
feedforward loops with significantly different time
constants.

We consider this a first step toward an exhaustive method-
ology with which a large class of nonlinear networks can
be structurally identified. The approach currently only
applies to distinguishing networks that include only one
ND-feedback or one ND-feedforward from networks with
more than one or no loop (see decision diagram in Fig. 6).
Because large biomolecular networks usually contain sev-
eral loops, the current method might be most helpful
to structurally identify smaller gaps in well-characterized
networks, or to analyze larger networks with only few loops
that operate at different timescales.

Several future extensions are possible: one could mea-
sure several amplitude-transfer functions at various fre-
quencies to extend the method’s applicability to networks
with more loops. Combinations with traditional linear fre-
quency domain methods to further specify the dynamics in
the loops, or with Volterra kernels and similar approaches
[Billings, 1980, Haber and Unbehauen, 1990] to specify
the order of the nonlinearities and linear dynamics in
the loops appear possible. Finally, our method should be
evaluated on real in vivo experimental measurement data,
for example using synthetic networks with a priori known
structure and microfluidics [Mettetal et al., 2008] or light-
induced transcription factors [Lipan and Wong, 2005] to
generate the required dynamic inputs.
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