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Abstract: We present a method for obtaining a computationally efficient, sub-optimal energy
management of an electrified vehicle containing a planetary gear set. We first reformulate the
optimization problem to become separable in space (optimization variables). The problem is
then decomposed into two optimization problems. The first is a static problem that looks for
the optimal engine speed that maximizes efficiency of a compound unit, resembling an engine-
generator unit combining the planetary gear and kinetic energy converters connected to it. The
second is a dynamic optimization problem deciding the optimal power split between an electric
buffer and the compound unit. By approximating the losses of the compound unit as convex,
second order polynomial in generated power, we are able to solve the power split problem in
less than 2 seconds, when the engine on/off sequence is known in advance. By comparing results
with dynamic programming, we observed an approximation error of less than 0.2%.
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1. INTRODUCTION

Ample research has been devoted to improving vehicle’s
operational efficiency and decreasing its environmental
footprint. Suggested solutions, whose acceptance has been
accelerated recently, are hybrid electric vehicles (HEVs)
and plug-in HEVs [Guzzella and Sciarretta, 2013].

HEVs’ powertrains utilize an energy buffer, typically a
battery and/or a supercapacitor, and one or more elec-
tric machines (EMs) to supplement the output of the
internal combustion engine (ICE). The multiple power
sources open the possibility to further improve operational
efficiency and customize vehicle powertrains. However, this
also increases vehicle complexity, bringing into play many
vehicle attributes, such as design, operation, performance,
lifetime, and the interplay with the infrastructure, such as
systems for navigation, traffic information, and the electric
grid. Moreover, these attributes are strongly coupled as,
for example, the way the vehicle is operated may affect
the choice and size of powertrain components, and vice
versa.

HEV studies where many vehicle attributes are highly
intertwined are common in the early design phase of the
vehicle. Typical examples are estimation of total cost of
ownership, optimal sizing of powertrain components, case
studies over pricing scenarios, etc. A common bottleneck
that these studies encounter, in terms of computational
time, is optimization of the energy management. The en-
ergy management decides, among other things, the opti-
mal power split between the ICE and the EMs that mini-
mizes a certain performance index. A typical performance

index is fuel consumption that has to be minimized over a
certain driving cycle, or a set of such cycles.

In order to assess HEV studies that are not biased in
terms of HEV operation, the energy management problem
is typically re-optimized many times, for all studied driv-
ing cycles, charging infrastructures, performance require-
ments, pricing scenarios, and sizes and types of powertrain
components [Kim and Peng, 2007, Moura et al., 2010,
Murgovski et al., 2012c, Ebbesen et al., 2012, Pourabdol-
lah et al., 2013, Hu et al., 2014]. However, this inevitably
leads to a computational overload, if for example, energy
management is optimized with an algorithm that guaran-
tees global optimality, such as dynamic programming (DP)
[Bellman, 1957].

For the purpose of relaxing the computational burden,
researchers have sought sub-optimal control strategies. In
this category belong rule based and heuristic strategies
[Fellini et al., 1999, Galdi et al., 2001, Wu et al., 2011]. The
well known equivalent consumption minimization strategy
[Guzzella and Sciarretta, 2013] can also be seen as a sub-
optimal control strategy, besides its clear efficacy in real-
time control.

An alternative sub-optimal approach has been presented
by Murgovski et al. [2012c, 2014]. The strategy relies on
approximating component losses as convex in power and
energy, which enables convex optimization to be used to
simultaneously size powertrain components and optimize
energy management. Integer decisions, such as engine
on/off and gear selection, are decided by heuristics; initial
steps have been taken towards a more elaborate control
that may lead to a near optimal solution [Murgovski et al.,
2013, Elbert et al., 2014].
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Fig. 1. Series-parallel HEV powertrain model.

This paper extends the work of Murgovski et al. [2012c,
2014], by proposing modeling steps that allow convex op-
timization to be applied for obtaining the optimal power
split of an HEV with a planetary gear set. The energy
management problem is first reformulated to become sepa-
rable in space (optimization variables). Then, the problem
is decomposed into two optimization problems. The first
is a static problem that looks for the optimal engine speed
that maximizes efficiency of a compound unit, resembling
an engine-generator unit combining the planetary gear and
kinetic energy converters connected to it. The second is a
dynamic optimization problem deciding the optimal power
split between an electric buffer and the compound unit. By
approximating the losses of the compound unit as convex,
second order polynomial in generated power, we are able
to solve the power split problem in less than 2 seconds,
when the engine on/off sequence is known in advance. By
comparing results with DP, we observed an approximation
error of less than 0.2 %.

The paper is outlined as follows: problem formulation and
modeling details are described in Section 2; the convex
modeling steps are discussed in Section 3; an optimization
example is given in Section 4; and the paper is ended with
discussion and conclusion in Section 5.

2. MODELING AND PROBLEM FORMULATION

The vehicle powertrain is of a series-parallel topology in
which the torque coupling device is a planetary gear, as
illustrated in Fig. 1. The powertrain consists of an electric
buffer and three kinetic energy converters, including an
ICE connected to the planets carrier, and two EMs, one
attached to the sun gear, EM1, and the other to the ring
gear, EM2.

The vehicle is required to exactly follow a driving cycle
fully described by road altitude and demanded velocity at
each point in time. In the view of the vehicle powertrain
this can be translated to demanded speed ωd = ω2 and
torque Td on the shaft between the differential gear and
EM2. Likewise, we use the symbols ω and T to denote
speed and torque of the three kinetic energy converters
mentioned above, while P and B denote power, and power
losses, respectively. The subscripts E, 1, 2, and B, next to
these signals, identify the component they describe, that
is, ICE, EM1, EM2 and electric buffer, respectively. These
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Fig. 2. Kinetic energy converters. The contour lines show
efficiency in [%]. The thick lines are torque limits.

are time dependent signals, but we omit explicit notation,
in favor of increasing readability of equations that follow.

The losses of the kinetic energy converters are described
by static maps, BE(ωE , TE), B1(ω1, T1) and B2(ω2, T2).
Their speeds and torques are bounded by

ωE ∈ [ωidle, ωEmax] (1)

ω1 ∈ [−ω1max, ω1max] (2)

ω2 ∈ [0, ω2max] (3)

TE ∈ [0, TEmax(ωE)] (4)

T1 ∈ [T1min(ω1), T1max(ω1)] (5)

T2 ∈ [T2min(ω2), T2max(ω2)] (6)

with speed dependent torque limits (also given as static
maps, see Fig. 2). The engine idling speed is denoted by
ωidle.

When formulating the optimization problem below, we
consider only the case when the ICE is never turned off
along the driving mission. The possibility of turning the
ICE off is considered later, in Section 3.3. Furthermore, we
have neglected the rotational inertia of the kinetic energy
converters, since the dominating inertia is the vehicle itself.
Losses of the planetary gear are also neglected.

The electric buffer, which is considered here as either a
battery or a supercapacitor, is described by a total of n
identical cells (or modules), each represented by a voltage
source and constant internal resistance R. In the case of a
battery, it is assumed that the open circuit voltage is affine
in state of charge (SOC). This is a valid assumption, as
long as the battery is not operated at very low and high
SOC, which is typically the case with HEVs [Guzzella and
Sciarretta, 2013, Murgovski et al., 2012b]. Then, the buffer
energy described in terms of the cell’s terminal voltage u
is

EB = n
C

2
(u2 − u2

0)

where C is cell’s capacity in [F], and u0 is the battery cell
open circuit voltage at the minimum operating SOC. By
deriving the terminal voltage above as a function of energy,
the buffer losses and power limits can be formulated as
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BB(EB , PB) = RC
P 2
B

2EB + Cu2
0n

(7)

PB ∈ [imin, imax]

√
n

(
2

C
EB + u2

0n

)
(8)

where imin and imax are maximum charging and discharg-
ing current of a buffer cell, and PB is internal power of
the pack. By letting u0 = 0, these equations describe a
supercapacitor, while by letting C → ∞ they describe
a battery with a constant open circuit voltage. As the
dominator in (7) is positive, the losses are convex in
PB , EB and n (although in this study n is considered a
constant, rather than an optimization variable). Similarly,
the square root function in (8) is concave in EB and n.
More detailed derivation of the buffer model can be found
in [Murgovski et al., 2012b, Egardt et al., 2014].

The optimization objective is minimization of fuel con-
sumption, where fuel power is computed as

Pf (ωE , TE) = ωETE + BE(ωE , TE). (9)

Finally, the optimization problem can be formulated as

min
ωE ,TE ,PB

∫ tf

0

Pf (ωE , TE)dt

subject to: (1-6, 8),

ω1 = (1 + r)ωE − rω2 (10a)

TE = −(1 + r)T1 (10b)

ωETE + ω1T1 + ω2T2 = ω2(Td + Tbrk) (10c)

PB = ω1T1 + ω2T2 + B1(ω1, T1)

+ B2(ω2, T2) + BB(EB , PB) + Pa
(10d)

ĖB = −PB (10e)

EB ∈ n[EBmin, EBmax] (10f)

EB(0) = EB(tf ) = EB0 (10g)

Tbrk ≥ 0.

The constraints (10a) and (10b) arise from the speed and
torque coupling of the planetary gear, where r is a scalar
denoting the ratio of the number of teeth of the ring
gear, vs. number of teeth of the sun gear. The constraints
(10c) and (10d) represent mechanical and electrical power
balance, where Tbrk is torque applied to the friction brakes,
and Pa is power consumed by auxiliary devices. The buffer
energy limits are described by (10f), and (10g) is imposed
to sustain the initial battery energy EB0 at the end of
the driving cycle. The time the vehicle finishes the driving
mission is denoted by tf . We have chosen a minimal set
of optimization variables, ωE , TE and PB , considering
that all other signals can be derived from the equality
constraints. The time dependent signals ω2, Td, Pa, and
the scalars r, n, are pre-decided.

3. CONVEX MODELING

The problem (10) is a non-convex dynamic optimization
problem. Traditionally, this problem is solved by DP, but
in order to decrease computational time we seek a solution
based on convex optimization. A common convexifying
step that fits well original data is approximating the losses
of the kinetic energy converters as convex second order
polynomials in torque, with coefficients parameterized in
speed, [Murgovski et al., 2012c, Guzzella and Sciarretta,

2013]. Although this step has been successfully applied to
series and parallel powertrains [Murgovski et al., 2012c],
it is clear that it is not appropriate here, because in (10)
engine speed is not a known signal, but an optimization
variable that is yet to be determined. Hence, the first
step towards convexification, described below, attempts
decoupling ωE from the dynamic problem (10).

3.1 Separation in space

The signals ω1, T1 and T2 can be removed from (10) by
deriving them from (10a-10c) as functions of ωE , TE , ω2,
Td and Tbrk. The speed and torque limits of the kinetic
energy converters (1-6) will now translate to constraints on
ωE and TE . We present these constraints here, for didactic
reasons, although it will become clear to the end of this
section that they will not be explicitly needed in the final
problem reformulation.

The ICE speed and torque limits are now

ωE ≥ max

{
ωidle,

rω2 − ω1max

1 + r

}
ωE ≤ min

{
ωEmax,

rω2 + ω1max

1 + r

} (11)

TE ≥ max
{

0,
1 + r

r
(Td − T2max(ω2))

}
TE ≤ min

{
TEmax(ωE),

1 + r

r
(Td − T2min(ω2)),

− (1 + r)T1min((1 + r)ωE − rω2)
}
.

(12)

The braking torque Tbrk does not make a qualitative
difference in (12) and it has therefore been removed.
These constraints give a clearer picture of how the ICE
is operated. For example, (11) reveals that at high vehicle
speeds the ICE may have to be rotated with greater than
idling speed, even when no engine torque is required. From
(12) it is clear that the ICE has to deliver torque when
EM2 cannot satisfy the demands alone.

The power balance (10d) will also change, taking the form

PB = ω2(Td + Tbrk)− ωETE + B1(ω2, ωE , TE)

+ B2(ω2, TE , Td, Tbrk) + BB(EB , PB) + Pa.
(13)

Now, the same trick proposed by Murgovski et al. [2012c]
can be used, to relax (13) with inequality. This will enable
dropping off Tbrk from (13) without any loss of generality.
Namely, we allow the buffer to deliver more power than
needed by the right side of (13). At the optimum, this
constraint will hold with equality at each time instance
where Td is positive. In fact, the constraint will hold with
inequality only when Td is negative, and not all braking
energy can be recuperated because either the EM1 and
EM2 torque limits are active, or the battery charges with
maximum allowed current. More rigorous proof can be
found in [Egardt et al., 2014].

The energy management problem can now be summarized
as

min
ωE ,TE ,PB

∫ tf

0

Pf (ωE , TE)dt

subject to: (8, 10e, 10f, 10g, 11, 12),

PB ≥ ω2Td − ωETE + B1(ω2, ωE , TE)

+ B2(ω2, TE , Td) + BB(EB , PB) + Pa
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Next, we introduce a variable change

PC = ωETE −B1(ω2, ωE , TE)−B2(ω2, TE , Td) (14)

that replaces TE . The fuel power becomes a function of
four arguments, Pf (ω2, ωE , Td, PC), while the ICE torque
limits (12) transform to

PC ∈ [PCmin(ω2, ωE , Td), PCmax(ω2, ωE , Td)]. (15)

Since the power losses B1(·), B2(·) and BE(·) are given as
static maps, the functions Pf (·), PCmin(·), PCmax(·) are
also static maps. The important point here is to realize
that the fuel power can be written as

Pf (·) = PC + BC(·)
BC(·) = BE(·) + B1(·) + B2(·) (16)

resembling an energy converter that is a compound unit
including the ICE, EM1 and EM2 (hence, includes their
losses), whose power is limited both by the speed/torque
limits of the energy converters, and the speed/torque
driving demands. It becomes also evident that the engine
speed ωE resides only in the objective function and in
the boxing constraints (11, 15). Thus, it is possible to
reformulate the optimization problem as a bilevel program

min
PC ,PB

∫ tf

0

Pf (ω2, ω
∗
E , Td, PC)dt

subject to: (8, 10e, 10f, 10g),

PB + PC ≥ ω2Td + BB(EB , PB) + Pa

PC ∈ [PCmin(ω2, ω
∗
E , Td), PCmax(ω2, ω

∗
E , Td)]

ω∗
E = argmin

ωE

Pf (ω2, ωE , Td, PC)

subject to: (11),

PC ∈ [PCmin(ω2, ωE , Td), PCmax(ω2, ωE , Td)].

The lower-level task is a static optimization problem that
can be separated from the upper-level dynamic optimiza-
tion problem. Its optimal solution ω∗

E is not a value, but
rather a function of ω2, Td, PC . Given that the energy
converter losses are static maps, the lower-level optimiza-
tion task can be solved by first gridding the feasible sets
for ω2, Td, PC , and then obtaining ω∗

E for each gridded
combination. This is an exhaustive search procedure, but
it can be performed independently of the upper-level task.
The lower-level task can be formulated as

ω∗
E(ω2, Td, PC) = argmin

ωE

Pf (ω2, ωE , Td, PC)

subject to:

ωE ∈ WE ⊆

[
max

{
ωidle,

rω2 − ω1max

1 + r

}
,

min

{
ωEmax,

rω2 + ω1max

1 + r

}]
PC ∈ PC(ω2, ωE , Td)

ω2 ∈ W2 ⊆ [0, ω2max]

Td ∈ Td.

(17)

where the setsWE , PC ,W2, Td are discrete. This problem
is solved numerically; further detailed in Appendix A.

As a consequence, one dimension can be removed from the
fuel power function of the upper-level task

P̃f (ω2, Td, PC) = Pf (ω2, ω
∗
E(ω2, Td, PC), Td, PC), (18)

reflecting the compound unit operated at the optimal
speed ωE for any ω2, Td, PC . The power bounds PCmin(·),
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PCmax(·) are affected similarly, resulting in the following
dynamic optimization problem

min
PC ,PB

∫ tf

0

P̃f (ω2, Td, PC)dt

subject to: (8, 10e, 10f, 10g),

PB + PC ≥ ω2Td + BB(EB , PB) + Pa

PC ∈ [P̃Cmin(ω2, Td), P̃Cmax(ω2, Td)].

(19)

The optimization problem (19) shows some similarities to
the energy management problem for an HEV in a series
powertrain topology. The difference is that the compound
unit, which resembles an engine-generator unit in a series
powertrain, is here parameterized in ω2 and Td.

3.2 Approximation of power losses

Power losses of the compound unit, constructed from the
kinetic energy converters in Fig. 2, are depicted in Fig.
3. The figure illustrates losses for two different demanded
torques and four demanded speeds. It can be observed
that the losses appear convex in generated power. In fact,
the figure also illustrates losses of an approximated model,
quadratic in power, which fit well the original losses. Thus,
the fuel power of the compound unit can be expressed as

P̃f (·) ≈ a0(ω2, Td) + a1(ω2, Td)PC + a2(ω2, Td)P 2
C (20)

with coefficients parameterized in ω2, Td. For speed/torque
inputs that are not grid nodes inW2, Td, the values of these
coefficients are obtained by linear interpolation. Finally,
replacing (20) in (19) gives a convex second order cone
program that can be solved efficiently [Murgovski, 2012].

Obtaining the convex model (20) is not surprising. In fact,
similar procedure, and similar outcome, has been encoun-
tered previously, when approximating losses of engine-
generator units in series HEV powertrains [Murgovski
et al., 2012c].

3.3 Engine on/off control

A limitation of the convex power-split problem (19) is
that it cannot handle engine on/off control. Although
more elaborate procedures for solving this problem have
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already been published, [Murgovski et al., 2013, Elbert
et al., 2014], we propose here a simple heuristic decision
that tends to give near optimal results. First, we present
remaining modeling details for the scenario where ICE is
turned off.

Since the HEV powertrain presented in Fig. 1 is devoid
of clutch, the ICE cannot be mechanically decoupled from
the wheels. Hence, in cases where ICE is off and rotating, it
becomes a load to the system due to its friction losses. We
modeled this by a constant friction torque. Furthermore,
as the ICE friction losses are greater than the friction
losses of EM1, it is favorable to keep ICE still, and rotate
EM1 instead. This can be achieved as long as EM1 is not
overspeeded. Then, ICE’s speed is computed as

ωE = max

{
0,

rω2 − ω1max

1 + r

}
. (21)

However, when this speed exceeds a limit ωE ≥ ωEon, the
ICE friction losses become greater than its idling losses.
Then, it is beneficial to turn the ICE on, and let (19)
decide its power.

The speed limit ωEon can be translated to a limit on
demanded speed

ωon =
(1 + r)ωEon + ω1max

r
. (22)

This is the final ingredient for the ICE on/off heuristics,
which we formulate as follows

ICE is

{
on, ω2Td ≥ Pon or ω2 ≥ ωon,

off, otherwise.
(23)

The speed threshold ωon is easy to obtain from the static
ICE model. The power threshold Pon is obtained by solving
the convex problem (19) with on/off sequences generated
using several power threshold. Then, the power threshold
is chosen that minimizes fuel consumption for the studied
driving cycle.

At time instances where ICE is off, the optimization
variable PC is removed from the problem (19), and the
only remaining variable is PB .

4. OPTIMIZATION EXAMPLE

We apply the proposed optimization method to obtaining
the optimal energy management of a Toyota Prius hybrid,
driven on the New European Driving Cycle. The kinetic
energy converters are as described in Fig. 2, while the
remaining vehicle data has been obtained from ADVISOR
[2003]. The electric buffer is a battery with SOC confined
within 25-75 %, and initial and final charge of 50 %.

Three different scenarios are considered: first the ICE is
never turned off; second, we allow the ICE to be turned
off, but the on/off sequence is decided by the heuristics
presented in Section 3.3; and third, we obtain the optimal
ICE on/off control. The energy management problem in
the last scenario is solved by DP, while for the remaining
two scenarios the problem is solved by both convex opti-
mization and DP. The optimal fuel consumption is given in
Table 1, along with difference in fuel consumption between
convex optimization and DP. For the third scenario in
Table 1, where convex optimization cannot deliver the
optimal on/off control, fuel consumption is obtained by
the on/off heuristics.

Table 1. Optimal fuel consumption obtained
by convex optimization and DP.

ICE on/off Convex DP Difference
scenario [l/100km] [l/100km] [%]
ICE is always on 4.49 4.48 0.16
Heuristic on/off 3.31 3.30 0.10
Optimal on/off 3.31 3.28 0.89
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Fig. 4. Battery SOC and engine on/off obtained by convex
optimization and DP.

The results indicate that the error due to approximation
of the power losses (20) is very small, in the order of
0.15 %. The on/off heuristics give more visible error. (The
difference in on/off signals is also depicted in Fig. 4.)
However, the error is reasonably small, below 1 %.

The average computational time DP needs to solve the en-
ergy management problem is about 50 min, on a standard
PC (4 GB RAM, 2.67 GHz dual core CPU). (The optimiza-
tion time could be shortened if dedicated solver is used.)
The optimization problem in DP has been formulated with
two control signals ωE and TE , and one state, the battery
SOC; all three having their feasible range gridded with 200
points. The sampling time used both in DP and convex
optimization is 1 s.

The computational time convex optimization needs to
solve the power split problem is typically less than 2 s
(1.8 s in average). This problem is solved several times
to obtain the optimal power threshold required by the
ICE on/off heuristics. (Using a resolution of 1 kW it is
found that the optimal power threshold is 3 kW, while
ωon ≈ 3540 rpm.) However, the convex optimization also

requires the static map P̃f (·) of the compound unit. This
map has to be generated once, and does not need to be
changed for different case studies (as long as the kinetic
energy converters and planetary gear are not changed).
Obtaining the map needs about 30 min, when 100 grid
points are used for WE and PC and 60 grid points for W2

and Td. The approximation of P̃f (·) is a simple least-square
problem. With constraints included to ensure convexity
and positive idling losses, the time needed to approximate
P̃f (·) is 3 s.

Note that P̃f (·) can be generated in significantly shorter
time if the HEV is to be simulated only on one driving
cycle. Then, the compound unit can be created only for
speed/torque combinations that describe the driving cycle.
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5. DISCUSSION AND CONCLUSION

We proposed a method for computationally efficient energy
management of series-parallel HEVs with a planetary gear.
By decoupling the energy management problem, our study
showed that it is possible to shift the computational effort
to an off-line generation of a compound unit, leaving a
convex dynamic power split problem that can be solved in
less than 2 s. This makes it possible to perform HEV assess-
ment studies, which may otherwise require impractically
high computational demands. Furthermore, this method
could also be considered for a real-time HEV energy man-
agement (onboard the vehicle), in e.g. model predictive
control fashion.

A limitation of this method can be seen when sizing the
kinetic energy converters or the planetary gear, as this will
require re-generation of the compound unit. It is possible,
however, to scale the compound unit and the electric
buffer simultaneously with the optimization of the energy
management. Moreover, convexity is preserved even when
more energy buffers are added to the system, e.g. a dual
system consisting of battery and supercapacitor (see e.g.
[Murgovski et al., 2012a] for hints on this). A detailed
investigation on simultaneous optimization of components
sizing and energy management will be considered in future
studies.
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Appendix A. GENERATION OF COMPOUND UNIT

The compound unit has been generated in six steps:

(1) Gridded sets PC , W2, Td, WE and TE are created.
Here, TE is a set of ICE operating torques.

(2) For each grid point in W2, Td, WE , TE , and based on
the equalities (10a,10b,10c) the sets W1, T1, T2 are
obtained, holding operating values for ω1, T1 and T2.

(3) The sets PCs, Pfs are obtained according to (14,16).
These sets contain scattered data.

(4) The map Pf is obtained by Delaunay triangulation
in PCs, Pfs, for grid points in PC .

(5) Infinity is assigned to all grid points in Pf that violate
any of the constraints (1-6). At the same time the
minimum and maximum powers PCmin(·), PCmax(·)
are recorded.

(6) Finally, the map Pf is minimized with respect to
ωE , according (17), and the three-dimensional map

P̃f (ω2, Td, PC) is obtained.
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