
     

Robust PI based set-point learning control for batch processes subject to time-
varying uncertainties and load disturbance 

 
Tao Liu*,  Cheng Shao**,  Xue Z. Wang***  

 

* Institute of Advanced Control Technology, Dalian University of Technology, Dalian, 116024 
P. R. China  (Tel: +86-411-84706465; e-mail: liurouter@ieee.org) 

** Institute of Advanced Control Technology, Dalian University of Technology, Dalian, 116024 
P. R. China  (e-mail: cshao@dlut.edu.cn) 

*** Institute of Particle Science and Engineering, University of Leeds, LS2 9JT 
UK (e-mail: x.z.wang@leeds.ac.uk) 

 

Abstract: Based on the proportional-integral (PI) closed-loop control widely used in industrial engineering 
practice, a robust iterative learning control (ILC) method is proposed for industrial batch processes subject 
to time-varying uncertainties and load disturbance. An important merit is that the proposed ILC design is 
independent of the PI tuning which maintains the closed-loop system stability, owing to that the ILC 
updating law is implemented through adjusting the set-point of the closed-loop system and adding a 
feedforward control signal to the plant input along the batch-to-batch direction. Using the robust H infinity 
control objective, a robust discrete-time PI tuning algorithm is given in terms of the plant state-space 
model description with norm-bounded time-varying uncertainties. For the batch-to-batch direction, a 
robust ILC updating law is developed based on the two-dimensional (2D) control system theory, which is 
capable of perfect output tracking against repetitive type load disturbance. An illustrative example from 
the literature is adopted to demonstrate the effectiveness and merits of the proposed ILC method. 

 

1. INTRODUCTION 

It has become appealing to develop robust ILC methods to 
deal with time-varying uncertainties occurring in a cycle or 
cycle-to-cycle (batchwise) uncertainties, because many batch 
processes, e.g., pharmaceutical crystallization, are slowly 
varying from batch to batch, while repeating fundamental 
dynamic response characteristics (Seborg et al., 2003; Nagy 
et al., 2008). As surveyed by Wang et al. (2009), most of the 
existing references have been devoted to time-invariant linear 
or nonlinear batch processes. The developed robust ILC 
methods have been in general classified into two types, one is 
called direct-type that means the ILC design integrates the 
feedback control (responsible for closed-loop stability and no 
steady output deviation) and the feedforward control 
(responsible for the set-point tracking) through the identical 
closed-loop controller, and another is called indirect-type 
which implies that either the feedback or the feedforward 
control could be implemented through different controllers 
which may be designed relatively independent. 

For the direct-type ILC, the traditional proportional-integral-
derivative (PID) controller is mostly used to execute the 
integrated control for both the set-point tracking and closed-
loop stabilization, e.g., the P-type ILC (Xiong and Zhang, 
2003), the PI-type ILC (Shi et al., 2005), the PD-type ILC 
(Mi et al., 2005), the PID-type ILC (Ruan et al., 2008). The 
achievable robustness and output tracking performance, 
however, have not yet been fully explored (Tayebi, 2007). 
Based on a two-dimensional (2D) state-space description of a 
batch process and using the linear quadratic optimal control 
criterion in combination with the robust control theory, full-

order controller matrices were used to develop robust direct-
type ILC methods to accommodate for a variety of process 
uncertainties (Liu and Wang, 2012), but at the expense of 
controller complexity and computation effort. 

For the indirect-type ILC, the control structure is typically 
composed of two loops, one loop constructed in terms of a 
conventional controller like PID, and another loop used for 
adjusting the set-point or the process input. Based on the 
internal model control (IMC) structure, a set-point learning 
design was proposed (Liu et al., 2010) to robustly track the 
set-point profile against the process input delay uncertainty. 
Based on the conventional PID control structure, a parallel 
learning-type PID was added to improve the set-point 
tracking performance (Tan et al., 2007). The robust stability 
condition of a learning-type set-point design in terms of a PI 
control loop was analyzed by Wang et al. (2012). The 
achievable tracking performance of an indirect-type ILC 
scheme was assessed by computing the minimum output 
variance bound (Chen and Kong, 2009).  

Here, a set-point learning type ILC design is proposed based 
on the widely used PI control structure to cope with time-
varying process uncertainties and load disturbance. With a 
state-space model description of the process together with 
norm-bounded uncertainties, a robust PI tuning algorithm is 
first given in terms of the H infinity control objective, which 
is primarily responsible for maintaining the closed-loop 
system robust stability. Then, an ILC scheme consisting of 
the learning type controllers to adjust the set-point and the 
process input is proposed to realize robust tracking against 
time-varying uncertainties and load disturbance. It is 
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therefore a merit that the PI tuning and the ILC design can be 
made relatively independent of each other. By establishing 
sufficient conditions in terms of linear matrix inequality 
(LMI) constraints for holding robust stability of the PI 
control loop and robust convergence of the ILC scheme, 
respectively, both the PI and ILC controllers are formulated 
along with an adjustable robust H infinity performance level.  

Throughout this paper, the following notations are used: n m×ℜ  
denotes a n m×  real matrix space. For any matrix n mP ×∈ℜ , 

0P >  (or 0P ≥ ) means P  is a positive (or semipositive) 
definite symmetric matrix, where the symmetric elements are 
indicated by ‘*’. TP  denotes the transpose of P . Denote 
by { }diag   a block-diagonal matrix. The identity or zero 

vector (or matrix) is denoted by I  or 0 .  

2. PROBLEM FORMULATION 

To study a batch process with time-varying uncertainties 
from cycle to cycle, the following observable canonical 
discrete-time state-space model description is considered,   

m

m

p

( 1, 1) [ ( , 1)] ( , 1)

                        [ ( , 1)] ( , 1) ( , 1)

( , 1) ( , 1),   0 ; 

(0, 1) (0),    =0,1, .

x t k A A t k x t k

B B t k u t k t k

y t k Cx t k t T

x k x k

ω

 + + = + Δ + + +


+ Δ + + + +


+ = + ≤ ≤
 + =







        (1) 

where t  and k  denotes time and batch indices, respectively. 
and 1k +  indicates the current batch (or cycle). 

( , 1) xnx t k + ∈ℜ  denote the state variables, ( , 1) unu t k + ∈ℜ  the 
control inputs, ( , 1) yny t k + ∈ℜ  the process outputs. ( , 1)A t kΔ +  
and ( , 1)B t kΔ +  denotes time-varying uncertainties from cycle 
to cycle, which is practically specified as 

1 1 2( , 1) ( )A t k A t AΔ + = Δ Θ Δ  , 
1 2 2( , 1) ( )B t k B t BΔ + =Δ Θ Δ  , where 

1AΔ , 

2AΔ , 
1BΔ , and 

2BΔ  are constant matrices, and ( ) ( )T
i it tΘ Θ ≤ I  , 

1, 2i =  for 
p0 t T≤ ≤ . Denote by 

pT  the time period of each 
cycle, and (0)x  is the initial resetting condition of each cycle.  
Practically, other process uncertainties such as from input 
actuator and output measurement may also be lumped into 

( , 1)A t kΔ +  and ( , 1)B t kΔ +  for analysis. 

The control objective is to determine a control law such that 
the system output(s) can track the desired output profile (or 
target output trajectory) as close as possible against the 
process uncertainties and/or load disturbance.  
To facilitate the ILC design along the batchwise direction, we 
define the output tracking error in the current cycle as 

r( , 1) Y ( ) ( , 1)e t k t y t k+ − +                                                (2) 

where 
rY ( )t  denotes the desired output profile, and ( , 1)y t k +  

the real output in the current cycle. Correspondingly, the time 
integral of ( , 1)e t k +  is denoted by 

s ( , 1)e t k + , i.e. 

0

( , 1) ( , 1)
t

i

e t k e i k
=

Σ + = + , 
p0 t T≤ ≤                                      (3) 

By comparison, we define the set-point tracking error in the 
current cycle by 

s s( , 1) y ( , 1) ( , 1)e t k t k y t k+ + − +                                       (4) 

where 
s ( , 1)y t k +  denotes the set-point input in the current 

cycle, which is different with 
rY ( )t  in that it is adjusted in 

real time for tracking 
rY ( )t . 

The time integral of 
s ( , 1)e t k +  is denoted by 

s ( , 1)e t k + . It 
follows that 

s s s( , 1) ( 1, 1) ( , 1)e t k e t k e t k + =  − + + + , 
p0 t T≤ ≤               (5) 

Moreover, we define a batchwise error function by 
( , 1) ( , 1) ( , )f t k f t k f t kδ + + −                                           (6) 

where f  may denote x , sy , u , e , se , or ω . 

It follows from (1) by using (2), (4), and (6) that 
( , 1) ( , ) ( , 1)e t k e t k C x t kδ+ = − +                                            (7) 

m

m

( 1, 1) [ ( , 1)] ( , 1)

                      [ ( , 1)] ( , 1) ( , 1)

x t k A A t k x t k

B B t k u t k t k

δ δ
δ ϖ

+ + = + Δ + +

+ + Δ + + + +




   (8) 

where  

( , 1) [ ( , 1) ( , )] ( , )

                  [ ( , 1) ( , )] ( , ) ( , 1)

t k A t k A t k x t k

B t k B t k u t k t k

ϖ
δω

+ = Δ + − Δ

+ Δ + − Δ + +

 
 

        (9) 

It is obvious that ( , 1) 0t kω + ≠  for any non-repeatable 
parameter uncertainties and load disturbance. 

Based on the conventional PI control structure, the proposed 
ILC scheme is shown in Fig.1,  

 

 

 

 

 

 

 

 

Fig. 1.  Block diagram of the proposed PI based ILC scheme 
 

where the learning controllers, 1L  and 2L  are used to adjust 
the set-point command, i.e.   

s s 1 2 s( , 1) ( , ) ( 1, ) ( 1, 1)y t k y t k L e t k L e t kδ+ = + + +  − +      (10) 

where 
s ( , )y t k  denotes the set-point input in the previous 

cycle, and ( 1, )e t k+  the one-step ahead output error in the 
previous cycle. It follows from (4), (5), and (6) that 

s s s( 1, 1) ( 1, 1) ( 1, )e t k e t k e t kδ − + = − + − −                         (11) 

s s s( , 1) ( 1, 1) ( , 1)e t k e t k e t kδ δ δ + =  − + + +                 (12) 

In Fig. 1, the feedforward controllers, 1F  and 2F , are used to 
adjust the process input, i.e. 

PI 1 s 2 s( , 1) ( , 1) ( , 1) ( 1, 1)u t k u t k F e t k F e t k+ = + + + +  − +  (13) 

where 
PIu  is the PI control output. 

It is seen from (13) and Fig.1 that the ILC scheme (in the 
dash-line box) is relatively independent of the PI control loop. 
Therefore, both of them can be designed separately, as 
detailed in the following two sections. 

3. ROBUST PI TUNING 

According to the process state-space description in (1), by 
omitting the batch index for brevity due to its irrelevance to 
the PI tuning in the proposed control scheme shown in Fig. 1, 
a PI control law is generally expressed in the following form, 

Memory

( , 1)u t k + ( , 1)y t k +
s ( , 1)e t k + PΔ

rY ( )t

( , 1)e t k +

− ++

s ( 1, 1)e t kΣ − +

1z−

PIs ( , 1)y t k +

1F
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+2L

s ( , )y t k
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−

1L

++
−

ILC scheme
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PI p i( ) ( ) ( )u t k e t k e t= +                                                   (14) 

where pk  and ik  are the proportional and integral parameters 
of PI, respectively.  
By introducing an auxiliary state variable, ( )e t , we 
establish the augmented control system description, 

[ ]

( 1) ( )
( ( ) ( )

( ) ( 1)

( )
( )

( 1)

x t x t BA
u t t

e t e tC

x t
y t C
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 +         

= + +           −−        


  =    − 

0

00

0

I

I

 

      (15) 

where 
m ( )A A A t= + Δ   and 

m ( )B B B t= + Δ  . 

Let  

p p ik̂ k k= +                                                                         (16) 

Substituting (14) and (16) into (15) yields the augmented system,  

[ ]

p i
ˆ( 1) ( )

( )
( ) ( 1)

( )
( )

( 1)

x t x tA Bk C Bk
t

e t e tC

x t
y t C

e t

ω
  +     −= +         −−       
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  =    − 

0

0

I

I

  

            (17) 

For tuning the PI controller to maintain the control system 
robust stability, the H infinity control objective is adopted, i.e. 

PI2 2
( ) ( )e t tγ ω<                                                              (18) 

where PIγ  denotes the robust performance level. 

To achieve the H infinity control objective, we give the 
following theorem,  

Theorem 1: The PI control system in (17) subject to time-
varying uncertainties shown in (1) is guaranteed robustly 
stable with a H infinity control performance level, PIγ , if 
there exist 

11 0P > , 
22 0P > , matrices 

12P , 1R , 2R , and 
positive scalars 1ε , 2ε , such that the following LMI holds,  

1 A1 A1 2 B1 B1 g

A2 B2
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* * *

* * * *
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ε
ε

 − + Φ Φ + Φ Φ Γ
 − Φ Φ 
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< 
− 

 −
 

−  

0 0 0

0

0 0 0
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(19) 

where 
g [ ]TD = 0I , [ ]H = 0I , 

A1 1[ ,  ]T TAΦ = Δ 0 , 

A2 2 11 2 12[ ,  ]A P A PΦ = Δ Δ , 
B1 1[ ,  ]T TBΦ = Δ 0 , 

B2 2 1 2 2[ ,  ]B R B RΦ = Δ Δ ,  

11 12

22*

P P
P

P

 
=  
 

, m 11 m 1 m 12 m 2

11 12 12 22
T

A P B R A P B R

CP P CP P

+ + 
Γ =  − + − + 

 

by parameterizing   
1

p i 1 2
ˆ[ ] [ ]k C k R R P−− =                                                   (20) 

Proof:  Define the following Lyapunov-Krasovskii inequality 
of state energy to guarantee the asymptotic stability of the 
closed-loop system shown in (17), 

2 21
PI PI2 2

ˆ ˆ[ ( 1)] [ ( )] ( ( ) ( ) )P PV x t V x t e t tγ γ ω−+ − < − −                (21) 

where ˆ( ) [ ( ),  ( 1) ]T T Tx t x t e t=  − . 

Considering that ( ) ( )e t Cx t= −  by letting 
rY ( ) 0t = , and 

ˆ( ) [ , ] ( )x t x t= 0I , we have  

ˆ( ) ( )e t CHx t= −                                                                  (22) 

By substituting (17) into (21), we obtain  

1 0Tζ ζΞ <                                                                             (23) 

where ˆ[ ( ),  ( )]T T Tx t tζ ω= , 
g [ 0]TD = I , and 

p i
g

ˆA Bk C Bk
A

C

 −=  
− I

                                                              (24) 

1
g PI

1 g g
g PI*

T T T

T

A P H C CH
P A D

D

γ
γ

−   − Ξ = −        

0

I


                  (25) 

By the Schur complement, it can be derived that (23) is 
guaranteed by 

g

PI

PI

*
0

* *

* * *

T T

P D

P PH C

γ
γ

 − Γ
 −  <
 −
 
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0

0

0I

I


                                              (26) 

where  

11 p 11 12 12 p 12 22

11 12 12 22

ˆ ˆT
i i

T

AP Bk CP Bk P AP Bk CP Bk P

CP P CP P

 − + − +Γ =  
− + − + 

             (27) 

Note that Γ  can be reformulated as 

A1 1 A2 B1 2 B2( ) ( )t tΓ = Γ + Φ Θ Φ + Φ Θ Φ                                   (28) 

where 
1 p 11 12

ˆ T
iR k CP k P= − +  and 

2 p 12 22
ˆ

iR k CP k P= − +  in Γ . 

The following lemma is used herein for analysis. 

Lemma 1 (Wang et al., 1992): Let A , D , E , and F  be real 
matrices of appropriate dimensions with 1F ≤ , the 
following inequality holds for any scalar 0ε > ,  

1T T T T TDFE E F D DD E Eε ε −+ < +                             (29) 

Using Lemma 1 and the Schur complement, it can be seen 
that (26) is guaranteed by (19) in Theorem 1.                        □ 

Hence, the PI parameters can be retrieved from (16) and (20). 

To achieve good robust control performance, the PI controller 
can be determined by performing the following optimization 
program, 

PI
( ), ( )

Minimize  
A t B t

γ
Δ Δ 

                                                                      (30) 

In fact, a smaller value of PIγ  leads to a more aggressive 
control action and vice versa. Therefore, a trade-off should be 
made for tuning the PI controller.  

4. ROBUST ILC DESIGN 

To develop a robust ILC method, we construct a 2D system 
model to describe the dynamics of both the time and 
batchwise directions, for the purpose of analyzing the 2D 
stability against process uncertainties and load disturbance. 

Consider a 2D Roesser’s system (Kaczorek, 1985), 

[ ]

11 11 12 12

21 21 22 22

1 2

( 1, ) ( , )
( , )

( , 1) ( , )

( , )
( , )  

( , )

, =0,1,2, .

h h

v v

h
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A A A Ax i j x i j
i j

A A A Ax i j x i j

x i j
y i j C C

x i j

i j

ω
 + Δ + Δ   +  

= +    + Δ + Δ+     
   =  

 






           (31) 

where 1nhx ∈ℜ  is the horizontal state vector, 2nvx ∈ℜ  the 
vertical state vector, y  the system output. The boundary 
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condition of the Roesser’s system is denoted by 
ˆ( ) [ (0, )] ,  [ ( ,0)]

Th T v Tx t x j x i =   . 

Lemma 2 (Wang et al., 2012): If there exist matrices 
1 0P >  

and 
2 0P >  such that the following LMI holds  

0TA PA P− <                                                                        (32) 
where  

11 11 12 12

21 21 22 22

A A A A
A

A A A A

+ Δ + Δ 
=  + Δ + Δ 
 , 

1 2{ ,  }P diag P P=  

then the 2D Roesser’s system in (31) with 0ω =  is 
asymptotically stable. In addition, if (0, ) 0hx j ≡ , there exists 
a positive scalar (0,1)ρ ∈  such that 

0 0

2 2
0 0

[ ( , 1)] [ ( , )]
I I

v v
P P

i i

V x i j V x i jρ
= =

+ <  , 
0, 0j I∀ > , ( ,0)vx i∀     (33) 

According to the proposed ILC scheme shown in Fig.1, it 
follows from (4), (6), (10) and (12) that  

s 1 2 s( , 1) ( 1, ) ( 1, 1) ( , 1)e t k L e t k L e t k C x t kδ δ δ+ = + +  − + − + (34) 

s 1 2 s( , 1) ( 1, ) ( ) ( 1, 1) ( , 1)e t k L e t k L e t k C x t kδ δ δ + = + + +  − + − +I (35) 

Substituting the PI control law of (14) into (13), we obtain 

p i 1 s i 2 s( , 1) ( ) ( , 1) ( ) ( 1, 1)u t k k k F e t k k F e t k+ = + + + + +  − +  (36) 

Correspondingly, it follows that 

p i 1 s i 2 s( , 1) ( ) ( , 1) ( ) ( 1, 1)u t k k k F e t k k F e t kδ δ δ+ = + + + + +  − +  (37) 

Substituting (34), (35), and (37) into (8), we obtain 
p i 1 p i 1 1

p i 1 2 i 2 s

( 1, 1) [ ( ) ] ( , 1) ( ) ( 1, )

                          [( ) ] ( 1, 1) ( , 1) 

x t k A B k k F C x t k B k k F L e t k
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δ δ

δ ϖ
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+ + + + +  − + + +

  


(38) 

Consequently, the output error prediction can be derived as 

p i 1 p i 1 1

p i 1 3 i 2 s

( 1, 1) ( 1, ) ( 1, 1)

                   [ ( ) ] ( , 1) [ ( ) ] ( 1, )

                        [( ) ] ( 1, 1) ( , 1)
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− + + + +  − + − +

I  



     

(39) 

Therefore, a 2D system description of the proposed ILC 
scheme can be formulated by  

s s w

s

( 1, 1) ( , 1)

( , 1) ( 1, 1) ( )

( 1, 1) ( 1, )

( , 1)

( , 1) ( 1, 1)
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ς δ
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

+ 
  + =  − + 
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
                    (40) 

where [ ]G = 0 0 I , 
w [ ]T TD C= −0I ,  

p i 1 p i 1 2 i 2 p i 1 1

2 1
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( ) [( ) ] ( )
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C L L

CA CB k k F C CB k k F L k F CB k k F L
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Note that ( , 1) ( 1, )t k e t kς + = +  can be viewed as the 
controlled variable to be minimized against process 
uncertainties or load disturbance. That is to say, the robust 
2D control objective can be determined in terms of a batch 
process control objective (Liu and Wang, 2012) as   

1 p 2
2 21

BP ILC ILC2 2
0 0

( ( , 1) ( , 1) ) 0
N T N

t k

J t k t kγ ς γ ϖ
= →∞

−

= =

= + − + <                (41) 

By defining ( , ) ( 1, )vx t k e t k= +  and  

s

( , 1)
( , )

( 1, 1)
h x t k

x t k
e t k

δ
δ

+ 
=   − + 

                                                   (42) 

the 2D system in (40) can be viewed as a typical Roesser’s 
system in the form of (31).  

Hence, analyzing the robust stability of the proposed ILC 
scheme is equivalent to that of the 2D system in (40). The 
following theorem is given to assess the robust stability and 
determine the ILC controllers: 

Theorem 2:  The 2D control system in (40) subject to time-
varying process uncertainties described by (1) is guaranteed 
robustly stable with a H infinity control performance level, 

ILCγ , if there exist 
1 0Q > , 

2 0Q > , 
3 0Q > , matrices 

2̂F , 
1̂L , 

2L̂ , and positive scalars 1ε , 2ε , such that the following LMI 
holds,  

1 A1 A1 2 B1 B1 w

A2 B2

ILC

ILC

1

2

*

* *
0

* * *

* * * *

* * * * *

T T

T T T

Q D

Q QG P P

ε ε

γ
γ

ε
ε

 − + Ω Ω + Ω Ω Π
 − Ω Ω 
 −

< 
− 

 −
 

−  

0 0 0

0

0 0 0

0 0

0

I

I

I

I

     

(43) 

where 
1 2 3{ ,  ,  }Q diag Q Q Q= ,

g [ ]TD = 0I , [ ]H = 0I , 

A1 1 1[ ,  ,  ]T T T TA A CΩ = Δ − Δ0 , 
A2 2[ ,  ,  ]AΩ = Δ 0 0 , 

B1 1 1[ ,  ,  ]T T T TB B CΩ = Δ − Δ0 ,  

B2 2 p i 1 2 p i 1 2 i 2 2 p i 1 1
ˆ ˆ ˆ( ) ,  [( ) ],  ( )B k k F C B k k F L k F B k k F L Ω = −Δ + + Δ + + + + Δ + + 

m 1 m p i 1 1

1

m 1 m p i 1 1

m p i 1 2 m i 2 m 2 m p i 1 1

2 2 1

m p i 1 2 m i 2 m 2 3 m p i 1 1

( )

( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ         

ˆ ˆ ˆ( ) ( )

A Q B k k F CQ

CQ

CA Q CB k k F CQ

B k k F L B k Q B F B k k F L

Q L L

CB k k F L CB k Q CB F Q CB k k F L

 − + +
Π = −
− + + +

+ + + + + +


+ 


− + + − − − + + 
                                                                                             (44) 
by parameterizing 1

1 1 3
ˆL L Q−=  , 1

2 2 2
ˆL L Q−= , 1

2 2 2
ˆF F Q−=  .  

Proof:  The robust 2D control objective in (41) can be 
rewritten as 

1 p 1 p2 2
2 21

BP ILC ILC2 2
0 0 0 0

( ( , 1) ( , 1) ) 0
N T N TN N

t k t k

J t k t k V Vγ ς γ ϖ
= =→∞ →∞

−

= = = =

= + − + + Δ − Δ <         

where VΔ  is a Lyapunov-Krasovskii function used for 
analysis of 2D asymptotic stability, i.e. 

( 1, ) ( , )

( , 1) ( , )

h h

Q Qv v

x t k x t k
V V V

x t k x t k

   +
Δ = −   +   

                                         (45) 

Using the zero boundary conditions from an initial resetting 
of batch process operation, it can be easily verified that 

{
1 p 1 p2 2

1 1 2

2 3 3

s
0 0 0 0

s

[ ( 1, 1)] [ ( , 1)] [ ( , 1)]

                                       [ ( 1, 1)] [ ( 1, 1)] [ ( 1, )]

N T N TN N

Q Q Q
t k t k

Q Q Q

V V x t k V x t k V e t k

V e t k V e t k V e t k

δ δ δ

δ

= =→∞ →∞

= = = =

Δ = + + − + +  +

−  − + + + + − +

   

2 2 1

1 2 31 s 1 2
0 0 0

[ ( 1, 1)] [ ( , 1)] [ ( 1, 1)]

0

N N N

Q Q Q
k k t

V x N k V e N k V e t Nδ δ
→∞ →∞

= = =

= + + +  + + + +

>

                    

Therefore, a sufficient condition to achieve the control 
objective in (41) is that 

2 21
ILC ILC2 2

( , 1) ( , 1) 0t k t k Vγ ς γ ϖ− + − + + Δ <                        (46) 

By substituting the 2D system description in (40) and (45) 
into (46), we obtain 

2 0Tξ ξΞ <                                                                            (47) 

where [ ( , )] ,  [ ( , )] ,  ( )
Th T v T Tx t k x t k tξ ϖ =   , and 

1
ILC

2 w

ILCw *

TT

T

Q G G
Q D

D

γ
γ

−   −Ψ
 Ξ = Ψ −    

  

0

I


                       (48) 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1275



     

By the Schur complement, it can be derived that (47) is 
guaranteed by 

w

ILC

ILC

*
0

* *

* * *

T

Q D

Q QG

γ
γ

 − Π
 −  <
 −
 

−  

0

0

0I

I


                                               (49) 

where 
A1 1 A2 B1 2 B2( ) ( )t tΠ = Π + Ω Θ Ω + Ω Θ Ω  .  

Using Lemma 1 and the Schur complement, it can be seen 
that (49) is guaranteed by (43) in Theorem 2.                        □ 

Note that the feedforward controller, 
1F , is prescribed for 

solving the LMI in (43). To facilitate computing the LMI 
condition in (43), the choice of 

1F  should be made to keep all 
the eigenvalues of 

m m p i 1( )A B k k F C− + +  in the unit circle in 
the z-transfer plane to maintain the asymptotic stability. 

To achieve the optimal robust tracking performance, the ILC 
controllers can be determined by performing an optimization 
program similar to that shown in (30). 

5. ILLUSTRATION 

Consider the illustrative example of injection molding 
studied by Shi et al. (2005) and Wang et al. (2012),  

1 2

1 2

1.239( 5%) 0.9282( 5%)
( , 1) ( , 1) ( , 1)

1 1.607( 5%) 0.6086( 5%)

z z
y t k u t k t k

z z
ω

− −

− −

± − ±+ = + + +
− ± + ±

 

which may be reformulated in the state-space form of 

[ ]

1.607 1
( 1, 1) ( ) ( , 1)

0.6086 0

1.239 1
                       ( ) ( , 1) ( , 1)

0.9282 0

( , 1) 1,  0 ( , 1)

x t k A x t k

B u t k t k

y t k x t k

ω

  
+ + = + Δ + +  − 

     + Δ + + +    −   
 + = +






   

0.0804 ( ) 0 1 0 ( ) 0 0.0804 0
( )

0.0304 ( ) 0 0 1 0 ( ) 0.0304 0

t t
A t

t t

δ δ
δ δ

       
Δ = =       − −       
  

0.062 ( ) 1 0 ( ) 0 0.062
( )

0.0464 ( ) 0 1 0 ( ) 0.0464

t t
B t

t t

δ δ
δ δ

       
Δ = =       − −       
  

where ( )tδ  is a time-varying factor and ( ) 1tδ ≤ . 

By performing the optimization procedure in (30), we obtain 
the minimal H infinity robust performance level, *

PI 1.3γ = . To 
avoid over aggressive control signal, we take 

PI 5γ =  to solve 
the LMI condition in (19), obtaining the PI controller 
parameters, 

p 1.29k =  and 
i 0.034k = . For the ILC design, we 

choose 
1 0.5F = −  to keep all the eigenvalues of 

m m p i 1( )A B k k F C− + +  in the unit circle in the z-transfer 
plane, and then perform an optimization procedure to obtain 
the minimal H infinity robust performance level, *

ILC 110γ = , 
corresponding to 

1 0.18L = , 
2 0.03L = − , and 

2 0.01F = − . 

The target profile ( ry ) takes the following form as used in 
the cited references,  

r

p

200, 0 100;

200+5( 100), 100 120;

300, 120 200.

t

Y t t

t T

 ≤ ≤
= − < ≤
 < ≤ =

 

For illustration, the following cases of process uncertainties 
are tested. 

Case 1. Time-invariant process uncertainties and repetitive 
type load disturbance. In this case, ( )A tΔ   and ( )B tΔ   are 
assumed to be fixed as their upper bounds. A repetitive type 
load disturbance is imitated by passing a step change with a 
magnitude of 150 through a slow transfer function 

1 2 1
d ( ) ( ) /(11 4 )G z z z z− − −= + − , which is added to the process 

output at 60t = . The tracking results are shown in Fig.2 (a) 
and (b). It is seen that perfect output tracking is reached 
through 20 cycles by the proposed method after an initial run 
of the PI tuning, compared to that of Wang et al. (2012) 
which used almost 50 cycles to realize perfect tracking. 
Moreover, there exists no steady output tracking error in each 
cycle, owing to the use of the integral error information for 
both the PI and ILC design.  

Case 2. Time-varying uncertainties and non-repetitive load 
disturbance. Assume that the process state transfer matrices 
becomes time-varying with ( ) 0.1tδ ≤ , together with non-
repetitive type load disturbance, ( , 1) sin( ( ))t k t kω θ+ = +  
where ( )kθ  is a random variable uniformly distributed in the 
range of [0, 2 ]π  as assumed by Wang et al. (2012). Since the 
closed-loop system becomes a stochastic process, we perform 
100 Monte Carlo tests, each of which includes 100 cycles. 
The output tracking error in terms of the following criterion 
is used for comparison, 

p

p
1

ATE( ) ( , ) /
T

t

k e t k T
=

=  

The averaged results of ATE  are plotted in Fig.3, together 
with those of Wang et al. (2012). It is seen that the closed-
loop system maintains good robust stability in both the time 
and batchwise directions by using the proposed ILC method, 
thus demonstrating that it can be reliably used for robust 
tracking of the desired output trajectory and on-line 
optimization against batch-to-batch time-varying process 
uncertainties and load disturbance.  

6. CONCLUSIONS 

For industrial batch processes subject to time-varying 
uncertainties and load disturbance, a robust set-point learning 
control method has been proposed based on the conventional 
PI control structure. In the proposed control scheme, either 
the closed-loop PI controller or the ILC updating law can be 
designed relatively independent. To cope with time-varying 
uncertainties, a robust PI design has been given based on the 
robust H infinity control objective, which is primarily used 
for maintaining the closed-loop robust stability. For the 
batchwise direction, an ILC scheme consisting of a learning 
set-point strategy and a feedforward control added to the 
process input has been developed based on an equivalent 2D 
system description of the batch process and the LMI 
condition formulated in terms of the robust H infinity control 
objective for robust convergence, which can guarantee no 
steady output error from the initial cycle and perfect output 
tracking against repetitive type load disturbance. For the 
convenience of practical application, only measured output 
errors of current and previous cycles are used to implement 
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the proposed ILC scheme. The application to an illustrative 
example from the literature has demonstrated the 
effectiveness and merits of the proposed ILC method. 
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Fig.2. Tracking performance for case 1 with fixed 
uncertainties and repetitive type load disturbance 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Plot of ATE for case 2 
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