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Abstract: We evaluate two novel reciprocal self-sensing methods for tapping-mode atomic
force microscopy (TM-AFM) utilizing charge measurement and charge actuation, respectively.
A microcantilever, which can be batch fabricated through a standard microelectromechanical
system (MEMS) process, is coated with a single piezoelectric layer and simultaneously used for
actuation and deflection sensing. The setup enables the elimination of the optical beam deflection
technique which is commonly used to measure the cantilever oscillation amplitude. The voltage
to charge and charge to voltage transfer functions reveal a high amount of capacitive feedthrough
which degrades the dynamic range of the sensors significantly. A feedforward control technique
is employed to cancel the feedthrough and increase the dynamic range from less than 1 dB
to approximately 30 dB. Experiments show that the conditioned self-sensing schemes achieve
an excellent signal-to-noise ratio and can therefore be used to provide the feedback signal for
TM-AFM imaging.

1. INTRODUCTION

In atomic force microscopy (AFM) (Binnig et al., 1986)
high-resolution images can be obtained by mapping the
intermolecular forces between a microcantilever with a
sharp tip and a sample’s surface. Tapping-mode (Zhong
et al., 1993) AFM emerged as a popular method to min-
imize lateral friction forces in order to enable imaging of
soft biological samples by exciting the cantilever near its
first resonance frequency. This comes at the cost of low
scan speeds due to constraints set by the bandwidth of
the z-axis feedback loop and the transient response of the
cantilever. Extensive research has been conducted on Q-
Control (Mertz et al., 1993) to increase scan speed, but
other methods such as scanning on higher eigenmodes
(Ruppert et al., 2013) or decreasing the size of the can-
tilever (Walters et al., 1996) have also been proposed.

Silicon cantilevers have proven to be very suitable for
tapping-mode AFM and additionally they can be man-
ufactured economically using microfabrication processes
(Albrecht et al., 1990). Even with sophisticated actuation
techniques such as photothermal (Yamashita et al., 2007),
magnetic (Han et al., 1996) or ultrasonic actuation (Ya-
manaka and Nakano, 1996) these cantilevers are usually
excited at their base by means of a dither piezoelectric
transducer, which introduces additional unwanted actu-
ator dynamics. As most commercial AFM systems rely
on displacement measurement obtained with the optical
beam deflection technique (Meyer and Amer, 1988), an ap-
propriate laser position on the cantilever becomes crucial
but might not be obtained at all, especially for small can-
tilevers. Additional drawbacks of this method arise from
possible optical interference and optical feedback (Kassies
et al., 2004) and contribute to the measurement noise.

Ultimately, the size and cost of the AFM system could
be greatly reduced with integrated sensors or self-sensing
techniques. An integrated piezoresistive element in the
silicon cantilever instrumented with a Wheatstone bridge
(Tortonese et al., 1993) enables near sensorless strain
measurement but requires an additional coating of doped
silicon. When a piezoelectric layer is deposited on one side
of the cantilever, piezoelectric sensing (Itoh and Suga,
1993) can be used to estimate the cantilever deflection
by measuring the electrical current flowing through the
piezoelectric material. Recently, alternative methods such
as tunnel magnetoresistive sensing (Tavassolizadeh et al.,
2013) have been proposed that promise high bandwidth
and resolution but require the generation of a homoge-
neous magnetic field which complicates the design. Can-
tilevers with thermal heating loops located at the tip for
actuation and a piezoresistive element at the cantilever
base for sensing (Fantner et al., 2009) have also been sug-
gested but major control effort to compensate for coupling
has to be employed.

tip (Si)cantilever (Si)

cantilever base (Si)
electrode (TiAu)
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Fig. 1. Image of the piezoelectric microcantilever.
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In previous work (Ruppert and Moheimani, 2013), the au-
thors have demonstrated charge sensing and signal condi-
tioning using a combination of analog circuitry and a Field
Programmable Analog Array (FPAA) for a cantilever
shown in Fig. 1. The cantilever suffices with a single piezo-
electric layer for both actuation and sensing. This con-
tribution proposes two reciprocal self-sensing techniques
using a charge measurement circuit and a charge drive
circuit to effectively extract an estimate of the cantilever’s
deflection without the optical laser sensor. Capacitive
feedthrough cancellation is systematically obtained over a
band of frequencies around the resonance with the use of
a feedforward controller. In Section 2 the equivalent elec-
tromechanical actuator and sensor model of the cantilever
is discussed. The resulting transfer functions from applied
actuator voltage to measured charge and from applied
charge to measured voltage contain a significant amount
of feedthrough, decreasing the dynamic range. In Section
3 and Section 4 the system properties and the analog
circuitry to realize the reciprocal self-sensing techniques
are presented. In Section 5 the self-sensing signals are
compared with the laser signal with respect to signal-to-
noise ratio and scan experiments are shown which validate
the applicability of the self-sensing techniques to be used
for topography estimation.

2. OPEN-LOOP MODEL OF THE SELF-SENSING
PIEZOELECTRIC CANTILEVER

By bonding a piezoelectric layer to the surface of a can-
tilever, a transducer with inherent self-sensing capabilities
is obtained. As can be seen in the schematic shown in Fig.
2a the piezoelectric layer (ZnO) is bonded on the tip side
of the cantilever between two electrodes (TiAu). Assuming
perfect bonding between the piezoelectric transducer and
the beam, a voltage applied to the electrodes results in
a bending moment causing the cantilever to deflect. The
transfer function relating the actuator voltage V (s) to can-
tilever deflection D(s), only considering the fundamental
mode, is given by (Moheimani and Fleming, 2006)

Gdv(s) =
D(s)

V (s)
=

αω2
0

s2 + 2ζω0s+ ω2
0

. (1)

Similarly, when a piezoelectric transducer is subjected
to mechanical strain it becomes electrically polarized,
producing a charge on the surface of the material. This
direct piezoelectric effect can be modeled as a strain
dependent voltage source Vp in series with a capacitor

−

+

V (s)

W(s) D(s)

(a)

+
−V (s)

Q(s)

Cp

+

−
Vp(s)

(b)

Fig. 2. (a) Simplified schematic and (b) equivalent electri-
cal circuit model of the piezoelectric cantilever.
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Fig. 3. Blockdiagram representing the transfer function
from voltage actuation and tip disturbance to charge
in the piezoelectric material.

Cp as shown in Fig. 2b. While the capacitor sufficiently
represents the dielectric properties of the piezoelectric
material, this simplified model does not take into account
dielectric losses or heat dissipation which can be modeled
by adding a resistor in parallel to Vp and Cp. The model
is a simplified version of the Butterworth Van Dyke model
as proposed by the IEEE Standard on Piezoelectricity
(Meitzler et al., 1988). The piezoelectric voltage Vp can be
modeled as the linear combination of the direct excitation
voltage V (s) and a voltage due to the disturbance input
at the cantilever tip W (s)

Vp(s) = Gvv(s)V (s) +Gvw(s)W (s) (2)

with

Gvv(s) =
βω2

0

s2 + 2ζω0s+ ω2
0

and (3)

Gvw(s) =
δω2

0

s2 + 2ζω0s+ ω2
0

. (4)

Applying Kirchhoff’s law to Fig. 2b, one obtains

V (s) =
1

Cp

Q(s)− Vp(s). (5)

Substituting (2) into (5) yields

Q(s) =
[

Cp + CpGvv(s)
]

V (s) + CpGvw(s)W (s), (6)

which is illustrated in the block diagram in Fig. 3.We
note that the charge in the piezoelectric layer depends on
the excitation voltage and the disturbance input but most
importantly is dominated by a feedthrough term CpV (s).
Consequently, the disturbance will remain unnoticed in
the charge output if the feedthrough is large. Furthermore,
Gvw(s) cannot be measured directly. Thus we focus on the
system

Gqv(s) =
Q(s)

V (s)
= Cp + CpGvv(s). (7)

to demonstrate the effect of the feedthrough. Observing
that (1) and (3) only differ by a constant factor, (7) can
be rewritten as

Gqv(s) = Cp + CpγGdv(s). (8)

From (8) we conclude that by exciting the cantilever with
a voltage and measuring the charge, a deflection estimate
of the cantilever can be obtained if the feedthrough term
CpV (s) can be canceled. In addition, it is reasonable to ask
whether the inverse also holds true, i.e. does the voltage
across the piezoelectric layer serve as a deflection estimate
when the cantilever is driven by a charge source? For this
purpose the voltage source in Fig. 2b is replaced by a
charge source and (5) is solved for the piezoelectric voltage
Vp. Using

V (s) = G−1
vv (s)Vp(s), (9)
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Fig. 4. Simulated frequency responses of Gdv (−−), Gqv

(−) and Gvq (−·−). Gqv and Gvq have been scaled to
show the dynamics in a single plot. The parameters
used are α = 0.04µm/V, ω0 = 2π55.2 kHz, ζ = 0.003,
Cp = 22pF and γ = 0.04.

the transfer function from charge actuation to piezoelectric
voltage, neglecting the disturbance W (s), is found to be

Gvpq(s) =
Vp(s)

Q(s)
=

1

Cp

Gvv(s)

1 +Gvv(s)
. (10)

Inherent to the structure of the system is that the transfer
function contains a unity feedback path which shifts the
resonance frequency of Gvv(s). Since Vp(s) cannot be
measured directly, the voltage across the Piezo V (s) has
to be used instead. By substituting (3) in (10) or simply
inverting (7), the transfer function from charge actuation
to V (s) is found to be

Gvq(s) =
V (s)

Q(s)
=

(

Gqv(s)
)

−1
=

1

Cp

1

1 + γGdv(s)
. (11)

Both transfer functions, Gqv(s) and Gvq(s), show feed-

through terms of Cp and Cp
−1, respectively. It remains the

task of the signal conditioning to remove the feedthrough
terms which degrade the dynamic range significantly. In
Fig. 4 the simulated frequency responses from actuation
voltage V (s) to displacement D(s) (as measured with the
standard laser method) and to charge Q(s) as well as
from charge actuation to voltage across the piezoelectric
terminals for typical values are shown. It can be seen
that the capacitive feedthrough terms heavily bury the
resonance peak which leads to a poor dynamic range
of around 1 dB as opposed to 30 dB achieved with the
laser sensor. As TM-AFM relies on mapping amplitude
variations induced by the shift of the resonance frequency,
systems such as Gqv(s) and Gvq(s) would not be suitable
for imaging. The following sections will introduce the
necessary signal conditioning to remove the feedthrough
and recover good estimates for the cantilever displacement.

3. VOLTAGE ACTUATION - CHARGE SENSING

3.1 System Properties

Let the input to the system u(t) be the voltage across
and the output of the system y(t) be the charge on the
piezoelectric layer as in Fig. 2b. Then the derivative of the

V

Piezo

−

+

Cf

Rf

−

+

Ri2

Rf2

−

+

C1

R1

R2R3

−

+
−

+

Fig. 5. Simplified circuit diagram of piezoelectric cantilever
in the voltage driven - charge measured setup.

output (current flowing through the piezoelectric layer) is
the dual of the input in the sense that u(t)ẏ(t) is equal
to the power provided by the system. Such a system is
negative imaginary (NI) and the transfer function Gqv(s)
satisfies the negative imaginary property, i.e. it is stable
and satisfies (Petersen and Lanzon, 2010)

j
[

G(jω)−G∗(jω)
]

≥ 0 ∀ω > 0. (12)

Indeed, it can be shown that if Gdv(s) is negative imagi-
nary

j
[

Gdv(jω)−G∗

dv(jω)
]

=
4αζω3

0ω

(ω2
0 − ω2)2 + (2ζω0ω)2

> 0,

then Gqv(s) is also negative imaginary

j
[

Gqv(jω)−G∗

qv(jω)
]

=
4Cpγαζω

3
0ω

(ω2
0 − ω2)2 + (2ζω0ω)2

> 0,

with Cp, γ, α, ζ, ω0, ω > 0.

This property is advantageous when charge is used for
feedback control in order to change the cantilever Q-
factor. From (Petersen and Lanzon, 2010) it is known
that a negative imaginary system in positive feedback
with a strictly negative imaginary controller will result in
closed loop stability if a DC-gain condition is satisfied.
The resonant controller (Moheimani and Fleming, 2006)
and positive position feedback controller (Fanson and
Caughey, 1990) are two examples of strictly negative
imaginary controllers, which can provide a high level of
damping (Fairbairn and Moheimani, 2012; Ruppert et al.,
2013).

3.2 Charge Sensing

A charge mode amplifier, which represents the lower
branch of the circuit shown in Fig. 5, is used to measure
the charge in the piezoelectric transducer while a voltage
signal at resonance is applied. The first stage amplifier will
equate the charge present at its negative input terminal by
charging the feedback capacitor Cf . A feedback resistor
Rf is used to prevent the amplifier from drifting into
saturation. A second stage inverting amplifier is used to
accommodate for the inverting character of the first stage
and to provide additional gain. The transfer function of
the two stages is then given by

Hqv(s) =
as

s+ ωc

, (13)
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resembling a high-pass filter with a low frequency cut-
off at ωc = (RfCf)

−1 and a gain of a = Rf2(Ri2Cf1)
−1.

The values are chosen such that the frequency of interest
(the resonance frequency of the first eigenmode of the
cantilever) lies well within the bandwidth of the charge
sensor.

3.3 Feedthrough Cancellation

Fig. 6 reveals that a feedforward controller of the form

K(s) = CpHqv(s) (14)

based on the piezoelectric capacitance of the cantilever and
the transfer function of the charge measurement circuit
can be derived to cancel the feedthrough term. The circuit
shown in Fig. 5 incorporates the charge amplifier stage and
a non-inverting high-pass filter resembling the feedforward
controller. An instrumentation amplifier is employed to
cancel the feedthrough and to amplify only the strain
related signal.

4. CHARGE ACTUATION - VOLTAGE SENSING

4.1 System Properties

With Gqv(s) being NI and invertible, Gvq(s) will be
positive imaginary (PI), i.e.

j
[

Gvq(jω)−G∗

vq(jω)
]

= j
[

G−1
qv (jω)−G−∗

qv (jω)
]

=

= −
4Cpγαζω

3
0ω

[(

ω2
0 − ω2

)

+ (2ζω0ω)
2
]

a2 + (2Cpγαζω3
0ω)

2
< 0

with

a = Cp

[

(ω2
0 − ω2)2 + (2ζω0ω)

2
]

+ Cpγαω
2
0

(

ω2
0 − ω2

)

,

Cp, γ, α, ζ, ω0, ω > 0.

As it is characteristic for a negative imaginary system that
its phase response lies between 0◦ and −180◦, the phase
response of its inverse will lie between 0◦ and 180◦. A
key observation is that if Gvq(s) is augmented with an
integrator, which is equivalent to rotating the Nyquist
plot by −90◦, a positive real (PR) system is obtained.
Furthermore, the negative feedback interconnection of a
PR system and a strictly positive real (SPR) system is
again PR and therefore stable (Brogliato et al., 2007, chap.
2). Based on this result, the application of a simple integral
controller of the form

CI(s) =
k

s
, k > 0 (15)

in unity negative feedback with Gvq(s) will achieve damp-
ing with favorable stability and robustness properties. This
was previously demonstrated for a nanopositioning stage
with force actuators and force sensors (Fleming, 2010).

V (s)
CpγGdv(s)

Cp

Hqv(s)

K(s)

Ṽ (s)+

+

Q(s) +

−

Gqv

Fig. 6. Block diagram showing the schematic setup of
charge measurement and feedthrough cancellation.
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Fig. 7. Simplified circuit diagram of the piezoelectric
cantilever in the charge driven - voltage measured
setup.

4.2 Charge Actuation

The first amplifier stage shown in the lower branch of Fig.
7 was adopted from (Fleming and Moheimani, 2006) and
used to drive the piezoelectric cantilever with a charge
proportional to the input voltage. When the piezoelectric
voltage Vp is neglected, the transfer function from refer-
ence voltage V (s) to charge induced in the piezoelectric
cantilever Qp(s) can be found by investigating the loops
A and B as indicated in Fig. 7. From loop A it is found
that

Q(s) =
RpCps+ 1

RpCps
Qp(s) (16)

and from loop B

Q(s) =
CsRss+ 1

Rss
V (s) (17)

which, when equating (16) and (17), yields

Qp(s) = Hvq(s)V (s) =
RpCp

Rs

CsRss+ 1

RpCps+ 1
V (s). (18)

For frequencies greater than (2πRpCp)
−1 and (2πRsCs)

−1

the circuit dynamics roll off and the piezoelectric cantilever
is charge controlled. If additionally the values of the
capacitors and resistors are chosen such that CpRp =
CsRs, the poles and zeros in (18) cancel and a charge
amplifier with gain Cs is obtained.

4.3 Feedthrough Cancellation

Examining the block diagram shown in Fig. 8 reveals the
structure of the feedforward controller that is necessary to
compensate the feedthrough term:

K(s) =
Hvq(s)

Cp

(19)

The charge drive has been incorporated into the circuit
shown in Fig. 7 with an analog feedforward controller and
two instrumentation amplifiers. Parameters of the analog
controller are obtained by fitting a first order high-pass
filter to Hvq(s). We note that with Gdv(s) appearing in
the feedback path of Gvq(s), a shift of the resonance fre-
quency is inherent to the system’s properties. Compared
to the constant changes of the resonance frequency of
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V (s)
Hvq(s)

1

Cp

K(s)

γGdv(s)

Ṽ (s)

Q(s) + Vz(s) +

−

−

Gvq

Fig. 8. Block diagram showing the schematic setup of
charge actuation and feedthrough cancellation.

the cantilever during the operation of the atomic force
microscope, this can be neglected.

5. EXPERIMENTAL RESULTS

5.1 Feedthrough Cancellation

Fig. 9 shows the measured frequency response of Gqv

before and after feedthrough cancellation. It can be seen
that the dynamic range is increased from less than 1 dB to
more than 30 dB and the phase crosses −90◦ at resonance
and almost reaches −180◦ after the resonance.

5.2 Noise Comparison

A noise comparison of the demodulated sensor signals
around the resonance frequency is conducted with a Zürich
Instruments lock-in amplifier HF2LI and shown in Fig.
10. The microcantilever is excited at its resonance with
a peak voltage of 100mV and the signal-to-noise ratio
(SNR) is measured around a narrow bandwidth of 100Hz.
The SNR is determined to be the difference between the
maximum value and the fitted noise floor and evaluates
to approximately 131 dB for the laser signal and approx-
imately 116 dB and 115 dB for the charge sensing and
charge driving. The difference of approximately 15 dB
can be attributed to limitations of the prototype analog
circuitry and ambient noise sources.

5.3 Scan Results

Scan experiments with an NT-MDT NTEGRA Prima
AFM on an NT-MDT TGZ1 calibration grating have been
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Fig. 9. Measured frequency response of Gqv without
feedthrough cancellation (−) and with feedthrough
cancellation (− · −).
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Fig. 10. Zoom-FFT of the deflection signal acquired from
(a) the laser sensor, (b) the charge sensor and (c)
the voltage sensor normalized around the resonance
frequency. The horizontal yellow line indicates the
fitted noise floor.

performed. The sample contains periodic features with
step heights of 21.6±1.5 nm. Fig. 11 shows the 2D and 3D
images obtained with the laser signal and the deflection
measurements from the self-sensing schemes. The scans
were conducted over an area of 10µm× 10µm at a speed
of 20µm/s. The setpoint amplitude is kept at 50% of the
free-air amplitude. It can be concluded that under these
equal scanning conditions the self-sensing methods yield
very good image quality.

6. CONCLUSIONS

This work has highlighted how the optical deflection mea-
surement system, which is normally employed in tapping-
mode Atomic Force Microscopy, can easily be replaced
with alternative sensing schemes when a piezoelectric can-
tilever is used. A single layer of piezoelectric material can
be employed simultaneously for actuation and sensing us-
ing the relationship between charge, voltage and cantilever
deflection. It was shown that even with a prototype im-
plementation the sensors achieve excellent signal-to-noise
ratio. The authors are currently working on an improved
PCB design to further increase the SNR.
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