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Abstract: This paper studies the design and analysis problem of nonlinear consensus protocols.
First, the communication graph is decomposed into the cascade connection form of the strongly
connected components which reveals the agents’ different roles in the process of reaching
consensus. Then, based on this property, a design and analysis approach is proposed with the aid
of the input-to-state stability theory. With this approach, consensus of LTI agents with different
linear protocol parameters, and consensus of single-integrator agents with a class of nonlinear
protocols are specifically discussed. Finally, applications are given to show the feasibility of the
proposed approach.
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1. INTRODUCTION

In the past decade, the consensus problem of multi-agent
systems has been extensively studied due to its close
relevance in diverse research topics, such as birds flock-
ing, clock synchronization, and formation of autonomous
vehicles, and the related results could be found in the
literature, e.g., Olfati-Saber et al. [2007], Arcak [2007],
Tian [2012], and Cao et al. [2013].

In the research of consensus, the essential problem is the
design and analysis of the consensus protocols. As far as
the authors know, the research modes could be generally
classified into two types. One is constructing a specific
protocol based on the physical knowledge first, and then
analyzing its convergence or deriving the condition of
the convergence. This research mode is adopted in the
most literature, and especially in the case of studying
consensus of LTI agents with linear protocols. For the
case of nonlinear consensus, a typical example is the well-
known Vicsek model which is proposed to describe the
phase evolution of particles [Vicsek et al., 1995]. Also using
this method, Olfati-Saber and Murray [2003] considered
a class of nonlinear protocols satisfying locally passive
condition for single-integrator agents, and then proved the
effectiveness under the undirected topology. Inspired by
the thermodynamic principle, Qing and Haddad [2008]
presented another class of nonlinear protocols, and then
fulfilled the proof of convergence. In addition, the results
involving finite-time convergence [Cortes, 2006] and con-
nectivity preservation [Ji and Egerstedt, 2005] also belong
to this research mode. It should be noted that most results
of this research mode are for the undirected topology
where the Lyapunov function could be relatively easily
found.

? This work was supported by the National Natural Science Foun-
dation of China (under grant 61273110), and the Research Fund for
the Doctoral Program of Higher Education of China (under grant
20130092130002).

Differently, the other research mode is describing the re-
quired property of the protocol function directly which
guarantees the convergence of the closed-loop system,
rather than giving a specific form of the protocol. There-
fore, the derived protocols using this mode is more of the
mathematical meaning, and is abstract to some extent.
For discrete-time single-integrator systems, Moreau [2005]
presented a convex condition: if the function field of each
agent’s consensus law is strictly located in the interior
of the convex hull formed by the agent’s state and its
neighbors’ states, then consensus of the collective systems
could be achieved. Lin et al. [2007] extended the result
to the case of the continuous-time single-integrator agents
using the notion of the tangent cone condition. It’s worth
pointing out that this research mode deals with all types
of communication topologies identically, not differentiating
whether the topology is undirected or directed. Based on
the graph decomposition, Xu and Tian [2013] proposed an
ISS approach to the design of a class of nonlinear consensus
protocols. This paper further studies the problem of analy-
sis and design of linear and nonlinear consensus protocols
in the second research mode. Throughout the proposed
protocol design and analysis procedure, the graph decom-
position and the input-to-state stability theory are two
most crucial tools. Moreover, we specifically investigate the
problem of designing different linear protocol parameters
for consensus of LTI agents, and the problem of analyzing
nonlinear consensus of single-integrator agents with a class
of nonlinear consensus.

The remainder of the paper is organized as follows. The
preliminary and the problem formulation are given in
Section 2. The main results are presented in Section 3, and
are followed by the application in Section 4. We conclude
the paper in Section 5.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9962



2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Notations

The directed graph G = (V(G), E(G)), is usually used to
describe the interaction topology. The vertex set V(G) =
{v1, v2, · · · , vn}, represents agent 1, 2, · · · , n, respectively,
and the edge set E(G) ⊂ V(G)×V(G) models the informa-
tion flow. There exists an edge (vi, vj) ∈ E(G) if and only if
agent j can obtain information from agent i, and agent i is
said as a neighbor of agent j. We denote by Nj the set of all
neighbors of agent j. A directed path of length k from vj0
to vjk

is an ordered set of distinct nodes{vj0 , vj1 , · · · , vjk
}

such that (vji−1 , vji) ∈ E(G),∀i = 1, 2, · · · , k. A directed
graph has a spanning tree if there exists at least one
node which has directed paths to all other nodes, and
such node is called the root node. If each node is a root
node, this graph is said to be strongly connected. The
graph G is usually accompanied with a weighted adjacent
matrix A (or A(V)) which is defined such that aij > 0
if and only if (vj , vi) ∈ E(G), otherwise aij = 0. De-
fine the Laplacian matrix L (or L(V)) = [lij ] ∈ Rn×n

as lij = −aij when i 6= j, otherwise lij =
n∑

j=1,j 6=i

aij .

Therefore, 0 is an eigenvalue of L with the associated
eigenvector 1n, where 1n is the n × 1 column with each
element 1. Furthermore, 0 is a simple eigenvalue of L and
all other eigenvalues have positive real parts if and only
if the directed graph has a spanning tree [Ren and Beard,
2005]. Denote w = [w1, · · · , wn] the left eigenvector of L.
If the graph is strongly connected, each component of w
is greater than 0 [Berman and Plemmons, 1979].

Other notations used in this paper are quite standard. For
a symmetric matrix Q ∈ Rn×n, denote by λ(Q), λmin(Q)
the eigenvalue set and the minimum eigenvalue of Q,
respectively. Denote by Mmax the largest element of an
arbitrary real matrix M . For x ∈ Rn, define f(x)

4
=

[f(x1), f(x2), · · · , f(xn)]T .

2.2 Input-to-state Stability (ISS)

Consider the system
ẋ = f(t, x, u), (1)

where f : [t0,∞)×Rn×Rm → Rn is piecewise continuous
in t and locally Lipschitz in x and u. The input u(t) is a
piecewise continuous, bounded function of t for all t ≥ t0.
Definition 1. (Khalil [2002]). The system (1) is said to be
input-to-state stable if there exists a class KL function 1 β
and a class K function γ such that for any initial state
x(t0) and any bounded input u(t), the solution x(t) exists
for all t ≥ t0 and satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ

(
sup

t0≤τ≤t
||u(τ)||

)
. (2)

1 A continuous function α : [0, a) → [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0. It is said to belong to
class K∞ if a = ∞ and α(r) →∞ as r →∞. A continuous function
β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL if for each
fixed s, the mapping β(r, s) belongs to class K with respect to r and,
for each fixed r, the mapping β(r, s) is decreasing with respect to s
and β(r, s) → 0 as s →∞.

Lemma 1. (Khalil [2002]). Let V : [0,∞) × Rn → R be a
continuously differentiable function such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||), (3)
∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −W3(x), ∀ ||x|| ≥ ρ(||u||) > 0,

(4)
∀ (t, x, u) ∈ [0, ∞)×Rn ×Rm, where α1, α2 are class K∞
functions, ρ is a class K function, and W3 is a continuous
positive definite function on Rn. Then the system (1) is
input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.

Consider the cascade system
ẋ1 = f1(t, x1, x2), (5)
ẋ2 = f2(t, x2), (6)

where f1 : [ 0, ∞) × Rn1 × Rn2 → Rn1 and f2 : [ 0, ∞) ×
Rn2 → Rn2 are piecewise continuous in t and locally
Lipschitz in x = [xT

1 , xT
2 ]T .

Lemma 2. (Khalil [2002]). If the system (5), with x2 as
input, is input-to-state stable and the origin of (6) is
globally uniformly asymptotically stable, then the origin
of the cascade system (5) and (6) is globally uniformly
asymptotically stable.

2.3 Problem Formulation

Consider the agent described by the following equation

Ẋi(t) = G(t,Xi, Ui), (7)
where Xi ∈ Rl is the state variable and Ui ∈ Rm is
the control protocol. The paper is aimed to propose an
approach to designing a distributed protocol under the
directed communication topology,

Ui(t) = Hi(t,Xi, Xj)|j∈Ni
, i = [1, n]. (8)

such that,
lim

t→∞
(Xi −Xj) = 0, i, j = [1, n]. (9)

or to analyzing whether (9) holds with the given protocol
(8).

3. DESIGN AND ANALYSIS OF CONSENSUS
PROTOCOLS

In this section, a design and analysis procedure is for-
mulated based on graph decomposition which could re-
move the difficulty of finding the Lyapunov function under
the directed topology directly. Then with this procedure,
different linear protocol parameters are designed for LTI
agents. Moreover, consensus of single-integrator agents is
analyzed with a class of nonlinear consensus protocols.

3.1 Graph Decomposition Based Design and Analysis
Procedure

Lemma 3. ([Fang, 2009]). Based on the notion of the
strongly connected component, the vertex set of a directed
graph could be classified into several equivalent classes,
and each node vertex is located in and only in one of these
sets.

The specific procedure was demonstrated by Xu and Tian
[2013], and the nodes could be renumbered so that the
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Fig. 1. A communication topology.

adjacent matrix is block lower triangular. The following is
an example.

For the directed graph in Fig. 1, the nodes are classified
as:

V1 = {v1, v2, v3};
V1

2 = {v4}, V2
2 = {v5, v6}, V2 = V1

2 ∪ V2
2 ;

V1
3 = ∅,V2

3 = {v7, v8, v9}, V3 = V1
3 ∪ V2

3 = V2
3 ,

and the adjacent matrix is:

A =




0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




.

Remark 1. Graph decomposition reveals such a fact that
the agents are in block cascade connections. Some agents
determine the final consensus state which could be called
root agents or group leaders, while other agents assume
the task of tracking, either in an individual manner or in
a group manner.
Lemma 4. ([Xu and Tian, 2013]). Suppose that the com-
munication topology is static and has a spanning tree.
Then, the system (7) with distributed protocol (8) can
reach consensus if the following two conditions are satis-
fied:

(a) the subsystem consisting of all root nodes can reach
consensus globally asymptotically,

(b) any other subsystem, with the states of systems which
it follows as input, is ISS.

Hence, we propose the following procedure for design and
analysis of consensus protocols.

Design and Analysis Procedure

Step 1: check or ensure that the root agent system could
reach consensus with the protocol. This is also the neces-
sary condition of reaching consensus.

Step 2: check or ensure that any other tracking agent
system, with the states of the agent system it tracks as
input, is ISS.
Remark 2. The above procedure indicates that the uni-
form protocol for all agents is not necessary, and different
protocols could be designed for agents belonging to differ-
ent strongly connected components.

Lin et al. [2007] proposed the tangent cone condition to de-
sign the consensus law. In some cases, the results obtained
are different by using these two methods. For example,

we consider a trivial consensus problem – tracking. The
plant studied is the single-integrator system in the space
of dimension 2: ẋ2 = u2 = f(x1, x2), where x1 ∈ R2 is the
state of the static leader. Consider the linear consensus
protocol u2 = kR(θ)(x1−x2) = −kR(θ)x2 +kR(θ)x1, and

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
is the rotation matrix. According

to Lin et al.’s tangent cone condition, θ should be zero (see
Fig. 2). In fact, any θ ∈ (−π

2 , π
2 ) makes the protocol work

which can obtained by our ISS condition (see Fig. 3).

1

0

y

x

2

Fig. 2. Illustration of the tangent cone condition.

1

0

y

x

2

Fig. 3. Illustration of the ISS condition.

3.2 Linear Consensus Protocol with Different Parameters

The proposed procedure could also be used to discuss the
linear consensus problem. Consider the LTI multi-agent
systems

Ẋi = AXi + BUi, (10)
where Xi ∈ Rn, Ui ∈ Rm are the state and the input,
and i ∈ [1, n]. In the present literature, all agents choose
the same linear protocol parameters. Here we assume that
different protocol parameters may be chosen for different
agent groups, that is

Ui = Ki

N∑

j=1

aij(Xj −Xi). (11)

As introduced in Subsection 3.1, the Laplacian matrix
could be written as

L =




L11 0 0 0 0 0
L1

21 L1
22 0 0 0 0

L2
21 0 L2

22 0 0 0
...

...
...

. . . 0 0
L1

P1 L1
P2 · · · · · · L1

PP 0
L2

P1 L2
P2 · · · · · · 0 L2

PP




.

For expression brevity, we assume the dimensions of the
matrix L11, L1

pp, L2
pp are (m1−1)×(m1−1), 1×1, mp2×

mp2, p ∈ [2, P ], respectively. Moreover, we unfold L11 as

L11 =
[

l11 αT

β L̃11

]
. Denote the Laplacian matrix of the
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induced subgraph G22 = (V22, E22) by L22, and define

diag{B} =
m1−1∑
j=1

diag{bj} where B = [b1, · · · , bm1−1] ∈
Rm22×(m1−1), then we have L2

22 = L22 − diag{L2
21}.

Moreover, define the consensus error Xi1 = Xi − X1, i ∈
[2, n], and X[2,n]1 = [XT

21, · · · , XT
n1]

T .

Firstly, consider the agents in the node set V1. Choose the
protocol parameter KV1 , then the closed-loop error system
could be written as

Ẋ[2,m1−1]1 = [Im1−2 ⊗A− (L̃11 + 1m1−2α
T )

⊗BKV1 ]X[2,m1−1]1.
(12)

It has been proved in [Seo et al., 2009] that the system (12)
is asymptotically stable if and only if the parameter KV1

stabilizes m1 − 2 subsystems ˙̃X = (A − λiBKV1)X̃, i =
[1,m1 − 2] where λi is the eigenvalue of the matrix L̃11 +
1m−1α

T , and λ{L̃11 + Im−1α
T } = λ{L11}\{0}. Therefore,

the choice of KV1 is only relevant with L11 apart from A
and B.

Then, consider the agents in the node set V21. Choose the
protocol parameter KV21 , then we have

Ẋm11 =


A−BKV21

m1∑

j=1

am1j


 Xm11 + BKV21

·
m1∑

j=1

am1jXj1 −BKV1

m1−1∑

j=1

a1jXj1.

(13)

The ISS condition of the system (13) is equivalent to

the Hurwitz condition of the matrix A − BKV21

m1∑
j=1

am1j .

Therefore, the choice of KV21 is only relevant with L1
21, and

has no relationship with L11. In other words, the design of
the parameters KV1 and KV21 is independent.

Next, consider the agents in the node set V22. Choose the
protocol parameter KV22 , then

Ẋ[m1+1,m1+m22]1

=
(
Im22 ⊗A− L2

22 ⊗BKV22

)
X[m1+1,m1+m22]1

− (
L2

21 ⊗BKV22

)
X[1,m1−1]1

− (
1m22 ⊗ αT ⊗BKV1

)
X[2,m1−1]1.

(14)

The ISS condition of the system (14) is equivalent to the
Hurwitz condition of the matrix Im2⊗A−L2

22⊗KV22 . This
requires the parameter KV22 to stabilize simultaneously
m22 subsystems ˙̃X = (A − λiBKV22)X̃. Here λi, i ∈
[1,m22] is the eigenvalue of the matrix L2

22 = L22 −
diag{L2

21}. Therefore, the choice of KV22 is only relevant
with L2

21 and L22, and has no relationship with L11. In
other words, the design of the parameters KV1 and KV22

is independent.

Same conclusions could be drawn on the design of protocol
parameters KV31 , KV32 , · · · ,KVP1 , KVP2 . Therefore, it’s
not necessary to select a uniform protocol parameter which
was widely adopted in the literature, and the design of
different parameters may result in a less conservative
result. Readers could refer to Ma and Zhang [2010] for an
explicit selection procedure of the parameters KVi1 , KVi2

which was based on the Riccati equation method.

3.3 Nonlinear Consensus for Single-integrator Systems

According to sequence in which the nonlinear function ap-
plies, there are three typical nonlinear consensus protocols
for single-integrator systems, namely,

ui(t) =
N∑

j=1

aijf(xj(t)− xi(t)), (15)

ui(t) = f




N∑

j=1

aij(xj(t)− xi(t))


 , (16)

ui(t) =
N∑

j=1

aij [f(xj(t))− f(xi(t))]. (17)

The protocol (15) and (16) have been studied by Olfati-
Saber and Murray [2003], and Xu and Tian [2013], respec-
tively. Here we discuss the protocol (17).

Assumption 1: The function f : R −→ R is an increasing
and odd function.

For x∗ ∈ R and f satisfying Assumption 1, define a
new function g : R −→ R, g(x) = f(x + x∗) − f(x∗).
Moreover, define the mappings [0,∞) −→ R : ρ1(r) =
min{−g(−r), g(r)}, ρ2(r) = max{−g(−r), g(r)}, ρ3(r) =
ρ−1
1 [kρ2(r)] where k > 0. Then we have the following

result,
Lemma 5. (1) g(r) is strictly increasing, and g(0) = 0;

(2) ρ1(r), ρ2(r), ρ3(r) are K functions.
Theorem 6. consider the single-integrator system

ẋi = ui, i ∈ [1, n] (18)
and the nonlinear protocol

ui(t) =
n∑

j=1

aij [f(xj(t))− f(xi(t))]. (19)

If the communication topology has a spanning tree, and
the nonlinear function f satisfies Assumption 1, then
consensus can be reached among the multi-agent systems
(18)-(19).

Proof. The proof of the theorem consists of three steps.

Step 1: consider the subsystems corresponding to the
nodes in V1. Choose the Lyapunov function V1 =
m1−1∑
i=1

wi

∫ xi

0
f(τ) dτ , then

V̇1 =
m1−1∑

i=1

wif(xi)ẋi

=
m1−1∑

i=1

wif(xi)
m1−1∑

j=1

aij(f(xj)− f(xi))

= −fT (x) diag{w}L(V1)f(x)

= −1
2
fT (x)[LT(V1)diag{w}+ diag{w}L(V1)]f(x)

Since the topology composed of the root nodes is strongly
connected, the matrix LT(V1)diag{w}+diag{w}L(V) cor-
responds to a connected undirected topology. Therefore
V̇1 ≤ 0, and V̇ ≡ 0 ⇒ f(x) = c1 ⇒ x = f−1(c)1 , x∗1.
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By LaSalle’s Invariance Principle, the subsystems will con-
verge to the largest invariant set M = {x|V̇1(x) ≡ 0} =
{x|x = x∗1, x∗ ∈ R}. Furthermore, it is easy to check that
x∗ is a constant. This indicates that root agents reach the
static consensus.

Step 2: consider the subsystems corresponding to the
nodes in V2. Define yi = xi − x∗, i ∈ [1,m1 +
m22], and denote y(V1) = [y1, · · · , ym1−1], y(V22) =
[ym1+1, · · · , ym1+m22 ]

T , then

ẏi =
m1+m22∑

j=1

aij [f(xj)− f(x∗)− f(xi) + f(x∗)]

=
m1+m22∑

j=1

aij [g(yj)− g(yi)].

Firstly, consider the subsystems corresponding to the
nodes in V21. Choose the Lyapunov function V21 =∫ ym1
0

g(τ) dτ , then we have

V̇21 = g(ym1)ẏm1

= g(ym1)
m1∑

j=1

am1j [g(yj)− g(ym1)]

= −
m1∑

j=1

am1jg(ym1)
2 + g(ym1)

m1∑

j=1

am1jg(yj)

≤ −(1− δ)
m1∑

j=1

am1jg(ym1)
2 − δ

m1∑

j=1

am1j · g(ym1)
2

+ m1amax |g(ym1)| · ||g(y(V1))||∞,

where 0 < δ < 1. If

|ym1 | ≥ ρ−1
1




m1amax

δ
m1∑
j=1

am1j

ρ2(||y(V1)||∞)


 , ρ(||y(V1)||∞),

then we have

|g(ym1)| ≥
m1amax

δ
m1∑
j=1

am1j

||g(y(V1))||∞,

and therefore,

V̇21 ≤ −(1− δ)
m1∑

j=1

am1jg(ym1)
2.

By Lemma 1, the subsystem is ISS. Moreover, since the
y(V1) is globally asymptotically stable, the cascade sys-
tems y(V1) and ym1 are also globally asymptotically stable
according to Lemma 2. This indicates that consensus could
be reached among agent systems corresponding to the
nodes in V1 ∪ V21.

Next, consider the subsystems corresponding to the
nodes in V22. Choose the Lyapunov function V22 =
m1+m22∑
i=m1+1

∫ yi

0
g(τ) dτ , then

V̇22 =
m1+m22∑

i=m1+1

wig(yi)ẏi

=
m1+m22∑

i=m1+1

wig(yi)




m1+m22∑

j=1

aij [g(yj)− g(yi)]




=
m1+m22∑

i=m1+1


wig(yi)




m1+m22∑

j=m1+1

aij [g(yj)− g(yi)]

−
m1−1∑

j=1

aijg(yi)


 + wig(yi)

m1−1∑

j=1

aijg(yj)




= −gT (y(V22))
(

1
2
L(V22)T diag{w}+

1
2
diag{w}L(V22)

+diag{w} · diag{−L2
21}

)
g(y(V22))

+
m1+m22∑

i=m1+1


wig(yi)

m1−1∑

j=1

aijg(yj)




≤ −λmin(Q)(1− δ)k2
0||g(y(V22) ||2∞

− λmin(Q)δ k2
0||g(y(V22))||2∞ +

(m1 − 1)m22amaxwmax||g(y(V22))||∞||g(y(V1))||∞,

where 0 < δ < 1, and Q = 1
2L(V22)T diag{w} +

1
2diag{w}L(V22) + diag{w} · diag{−L2

21}. We utilize the
norm equivalence property to obtain the last inequality,
and k0 > 0 is the corresponding coefficient. If

||y(V22)||∞ ≥ ρ−1
1

[
(m1 − 1)m22amaxwmax

λmin(Q)δ k2
0

ρ2(||y(V1)||∞)
]
,

then we have

||g(y(V22))||∞ ≥ (m1 − 1)m22amaxwmax

λmin(Q)δ k2
0

||g(y(V1))||∞,

and therefore,
V̇22 ≤ −λmin(Q)(1− δ)k2

0||g(y(V22))||2∞,

By Lemma 1, the subsystem y(V22) is ISS. Moreover, since
the subsystems y(V1) is globally asymptotically stable, the
cascade systems y(V1) and y(V22) are also globally asymp-
totically stable according to Lemma 2. This indicates that
consensus could be reached among agent systems corre-
sponding to nodes in the set V1 ∪ V22.

Combining the above results, we can conclude that consen-
sus could be reached among agent systems corresponding
to nodes in the set V1 ∪ V2.

Step 3: by induction, we can get the conclusion that the
whole multi-agent systems reach consensus. This com-
pletes the proof of the theorem.

4. APPLICATIONS

In this section, we provide two numerical examples to
demonstrate the applications of our proposed approach.

4.1 Different Protocol Parameters for double-integrator
systems

Consider the linear protocol

ui =
N∑

j=1

aij [k1(xj − xi) + k2(ẋj − ẋi)],
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for the double-integrator systems
ẍi = ui,

and the interaction graph is shown in Fig. 1. Let k1 = 1,
then the feasible range of the parameter k2 could be
calculated using the method in Ma and Zhang [2010]
and given in Table 1 . This example shows that it’s not

Table 1. Feasible range of k2.

uniform k2 different k2

Agent 1-3 k2 > 0.4082
Agent 4 k2 > 0.4082 k2 > 0

Agent 5-6 k2 > 0
Agent 7-9 k2 > 0.2691

necessary to choose the uniform parameter for all agents,
and less conservative results may be obtained by designing
different protocol parameters.

4.2 Application of Nonlinear Consensus Protocol

We consider the consensus protocol (17) with the nonlinear
function f(x) = tanh(x). The communication topology
is shown in Fig. 1. Fig. 4 and Fig. 5 demonstrate the
time response of the state and the control, respectively.
Actually, if the agent amount is known, the nonlinear
consensus protocol (17) with f(x) = tanh(x)/2n could
bound the magnitude of the control input less than 1.
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Fig. 4. Time response of the state.
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Fig. 5. Time response of the control.

5. CONCLUSION

In this paper, a hierarchical design and analysis approach
for consensus of multi-agent systems was proposed with
the aid of the graph decomposition and ISS theory. Us-
ing this approach, we specifically studied the design of
different linear protocol parameters for LTI agents, and
analyzed consensus of single-integrator agents with a class
of nonlinear protocols.
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