
Adaptive filtering approach to dynamic

weighing: a checkweigher case study
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Abstract: Dynamic weighing, i.e., weighing of objects in motion, without stopping them on the
weighing platform, allows one to increase the rate of operation of automatic weighing systems
used in industrial production processes without compromising their accuracy. The paper extends
and compares two approaches to dynamic weighing, based on system identification and variable-
bandwidth filtering, respectively. Experiments, carried on a conveyor belt type checkweigher,
show that when appropriately tuned, both approaches yield satisfactory results that meet
stringent metrological accuracy specifications.
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1. INTRODUCTION

In static weighing systems the weighed object is placed on
the scale’s platform and remains there, in a fixed position,
until the weight measurements settle down, reaching their
steady state value. Even though such a scenario guarantees
high precision and repeatability of measurements, it also
has some obvious drawbacks, such as the limited weighing
capacity due to the long operating cycle. In an alternative
solution, called dynamic weighing, the static weight of
an object, which moves over the weighing platform or is
placed there for a very short time, is assessed based on the
scale’s transient response.
Dynamic weighing is a convenient solution in road and
rail transportation monitoring systems, as it allows one to
check the weight of a vehicle (e.g. a truck or a freight train)
without stopping it on the weighing platform.
Another practically important application, which will be
of our main interest here, is checking the weight of pre-
assembled products prior to packing them. Automatic
catch weighing instruments (catchweighers) used for this
purpose are usually a part of production lines and are
integrated into a load transport system. An example of a
conveyor-based catchweigher is schematically depicted in
Fig. 1, and its basic operating cycle – in Fig. 2. The weigh-
ing section of the conveyer is mounted on a strain gauge
load cell; additionally the system is equipped with two
photocells located between the in-feed and weighing con-
veyor, and between the weighing and out-feed conveyor,
respectively. Signals obtained from both photocells allow
one to precisely localize transient periods during which the
weighted objects slide on and off the weighing platform.
A typical signal collected during a single measurement
cycle is shown in Fig. 3.
The main challenge one faces when designing a dynamic
weighing system is providing high measurement accuracy,
especially at high conveyor belt speeds. Since at the end of

each weighing cycle the weighing platform still oscillates,
the mass of the weighed object can’t be measured in
a direct way - the signal obtained from the strain gauge
must be processed in a special way in order to “extract”
this information from the transient response of the system.
Basically, two different approaches to dynamic weighing
were described in the literature.
The approach, based on system identification, was first
proposed in (Shu, 1993) (for catchweighers) and later
rediscovered, in a different context, in (Niedźwiecki &
Wasilewski, 1996) and (Niedźwiecki & Wasilewski, 1997)
(for dynamic weighing of vehicles). In this approach, the
measured signal is modeled as a response of a second-order
dynamic system with unknown parameters, to a pulse-like
excitation. During each operating cycle, parameters of the
best-fitting model of the system are estimated based on
the available measurements. Once the model is identified,
its steady-state response to a step-like excitation (i.e.,
the static weight of the deployed object) can be easily
calculated.
Unlike the first approach, the second approach to dy-
namic weighing is not based on any physically motivated
model of the catchweighing instrument. Instead of this,
a special linear lowpass filter is designed, with time-
varying coefficients selected so as to quickly attenuate
the narrowband disturbance component of the measured
signal (Piskorowski, 2008), (Piskorowski & de Anda, 2009),
(Pietrzak, 2010). The output of such a variable-bandwidth
filter converges much faster to the steady state value of the
system response than the analogous output of a conven-
tional time-invariant (i.e., fixed-bandwidth) filter.

2. EXPERIMENTAL DATA

To carry out experiments, an instrument made up of three
conveyor belts, depicted in Fig. 1, was used. The length of
the weighing section was equal to L = 350 mm.
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Fig. 1. A conveyor belt type checkweigher.

Two sets of measurements were taken – one for the purpose
of training (used only in variable-bandwidth filter experi-
ments), and one for performance evaluation purposes. To
obtain the training set, 4 different objects (metal bars
of length l = 142 mm), with masses of m1 = 200 g,
m2 = 300g, m3 = 500g and m4 = 700g, respectively, were
weighed for 5 conveyor belt speeds ranging from v = 0.5
m/s to v = 1.3 m/s. For each test load and each conveyor
belt speed, weighing was repeated 20 times. The evaluation
set was obtained by means of repeating 20 times, for each
conveyor belt speed, the sequence of 4 weighings performed
for test loads m4, m1, m3 and m2 (in the indicated order).
In all cases mentioned above the signals obtained from the
load cell and two photocells were sampled at the rate of 1.6
kHz and stored on the computer hard disk. In total, the
results of 800 weighings were cataloged – 400 for training
and 400 for performance evaluation purposes.
The desired metrological catchweigher parameters, corre-
sponding to class XIII accuracy, are summarized in Tab. 1
- see (International accuracy recommentation, 2006). Note
that in all cases the admissible absolute mean errors |µ|max

and the corresponding standard error deviations σmax do
not exceed the level of 0.25% of the true weight.

Table 1. Desired metrological parameters for
the accuracy class XIII checkweighers.

test load [g] |µ|max [g] σmax [g]

200 0.25 0.48

300 0.5 0.48

500 0.5 0.8

700 0.5 0.8

3. SYSTEM IDENTIFICATION BASED APPROACH

3.1 Model-based weight estimation

Taking the “black box” approach, the dynamics of a weigh-
ing mechanical structure can be approximated by the
following linear model

y(t) = H(q−1)u(t) (1)

H(q−1) =
b1q

−1 + . . . + bpq
−p

1 + a1q−1 + . . . + arq−r
, p ≤ r

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimen-
sionless) discrete time, u(t) denotes the unknown time-
varying load signal, y(t) denotes the signal obtained from
the load cell, and q−1 denotes the backward shift operator:
q−1x(t) = x(t − 1).

tw = L−l
v

, tz = D−L
v

, ti = to = l
v

twtw

titi toto

tz

t1 t2 t3 t4

Fig. 2. Weighing cycle of a conveyor belt type check-
weigher.
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Fig. 3. Typical responses of the load cell and front/end
photocells observed during one weighing cycle.

Suppose that the system governed by (1) is excited by the
step signal u(t) = u01(t), where 1(t) denotes the unit step
function. Then the steady state system response will take
the form

y∞ = lim
t→∞

y(t) = H(1)u0 (2)

(provided that the limit exists, i.e., the filter H(q−1) is
stable). Note that in the case of checkweigher this steady
state value corresponds to the static weight w = mg of the
weighed object.
After incorporating the noise component into the deter-
ministic system description (1), one arrives at the following
ARX(r,p) (autoregressive with exogenous input) model

y(t) +

r∑

i=1

aiy(t − i) =

p∑

i=1

biu(t − i) + n(t) (3)

where n(t) denotes white input noise. In this stochastic
context the quantity y∞, given by (2), can be interpreted
as the steady state mean value of the output signal:
y∞ = limt→∞ E[y(t)].
Note that the model (3) can be written down in a more
compact form

y(t) = ϕT(t)θ + n(t) = ϕT
y (t)θy + ϕT

u (t)θu + n(t) (4)

where the quantities θ = [θT
y , θT

u ]T, θy = [a1, . . . , ar]
T and

θu = [b1, . . . , bp]
T denote the vectors of model coefficients,

and ϕ(t) = [ϕT
y (t), ϕT

u (t)]T, ϕy(t) = [−y(t − 1 ) , . . . ,

−y(t − r)]T and ϕu(t) = [u(t − 1), . . . , u(t − p)]T denote
the corresponding regression vectors.
When model coefficients are not known, they can be
replaced with the corresponding estimates. Suppose that
N data pairs {y(1), ϕ(1)}, . . . , {y(N), ϕ(N)} are available.
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Then, if the regression matrix R(N) =
∑N

t=1 ϕ(t)ϕT(t) is
nonsingular, i.e., invertible, the least squares (LS) estimate
of θ takes the form

θ̂(N) = R−1(N)s(N) (5)

where s(N) =
∑N

t=1 ϕ(t)y(t). Note that the estimate

θ̂(N) = [θ̂T
y (N), θ̂T

u (N)]T given by (5) is a solution of the
equation

[
Ry(N) Ryu(N)
RT

yu(N) Ru(N)

] [
θ̂y(N)

θ̂u(N)

]
=

[
sy(N)
su(N)

]
(6)

where

Ry(N) =

N∑

t=1

ϕy(t)ϕT
y (t), Ru(N) =

N∑

t=1

ϕu(t)ϕT
u (t)

Ryu(N) =

N∑

t=1

ϕy(t)ϕT
u (t)

sy(N) =
N∑

t=1

ϕy(t)y(t), su(N) =
N∑

t=1

ϕu(t)y(t)

Replacing in (2) the true values of system coefficients with
the corresponding estimates, one arrives at the following
weight estimate

ŵ(N) = Ĥ(1)u0 =

∑p

i=1 b̂i(N)

1 +
∑r

i=1 âi(N)
u0 (7)

The estimation formula (7) remains valid if the excitation
(load) signal is modeled more realistically, as a finite-
duration trapezoidal pulse (see Fig. 2)

u(t) =






0 for t < t1
t − t1

t2 − t1
u0 for t ∈ [t1, t2)

u0 for t ∈ [t2, t3]
t4 − t

t4 − t3
u0 for t ∈ (t3, t4]

0 for t > t4

(8)

which consists of an ascending ramp, plateau, and de-
scending ramp, respectively. In the case of conveyor belt
checkweigher such a form of the hypothetical input signal
seems to be physically well justified, since the weighed
object gradually slides on the weighing conveyor, remains
there for a certain amount of time, and then gradually
slides of – the instances t1, . . . , t4 can be easily deter-
mined by analyzing the pulse-like signals obtained from
the front/end photocells (see Fig. 3).
However, the main problem applying the proposed ap-
proach is due to the fact that the height u0 of the input
pulse, which is proportional to the static weight of the
object, is not known – actually it is a subject of our
investigation. For this reason we will examine the con-
sequences of adopting an incorrect value of u0. Suppose
that all calculations are based on the assumption that the
height of the pulse is equal to u′

0 = γu0, where γ > 0,
γ 6= 1, i.e. that the input signal is given by u′(t) = γu(t).
Note that the regression vector has in this case the form
ϕ′(t) = [ϕT

y (t), γϕT
u (t)]T, and the LS estimate of θ be-

comes

θ̂′(N) = [R′(N)]−1s′(N) (9)

where R′(N) and s′(N) are made up of the following
blocks: R′

y(N) = Ry(N), R′

yu(N) = γRyu(N), R′

u(N) =

γ2Ru(N), s′y(N) = sy(N), and s′u(N) = su(N). Note also,
that the following identity holds true

R′(N)




θ̂y(N)

1

γ
θ̂u(N)





=

[
Ry(N) γRyu(N)

γRT
yu(N) γ2Ru(N)

] 


θ̂y(N)

1

γ
θ̂u(N)





=

[
sy(N)
γsu(N)

]
= s′(N) (10)

leading to the conclusion that

θ̂′

y(N) = θ̂y(N), θ̂′

u(N) =
1

γ
θ̂u(N)

Substituting these estimates into the weight evaluation
formula, one arrives at

ŵ′(N) = Ĥ ′(1)u′

0 =

1
γ

∑p

i=1 b̂i(N)

1 +
∑r

i=1 âi(N)
γu0 = ŵ(N) (11)

which means that in spite of the errorneous assumption
about the height of the input pulse, one obtains the correct
estimate of w (as if the adopted value of u0 was equal to
the true one). Since the weight estimate depends on the

product [
∑p

i=1 b̂i(N)]u0, rather than independently on the

quantities
∑p

i=1 b̂i(N) and u0, this self-correcting property
of the proposed estimation scheme is hardly surprising.
According to (11), the weight estimate does not depend on
the adopted value of u0. This means that for the purpose
of evaluation of ŵ, one can choose any value of u0 > 0,
e.g. u0 = 1.

3.2 Classical approach

The estimation schemes proposed so far were based on
the second-order model (r = 2) identified in the constant
excitation phase of system operation

u(t) ≡ u0, ∀t ∈ [t2, t3] (12)

The choice of the second-order model was physically mo-
tivated. Such a model corresponds to the single degree of
freedom mass-spring-damper representation of the weigh-
ing mechanical structure (Shu, 1993), (Niedźwiecki &
Wasilewski, 1996).
Note that under constant excitation (12), the input/output
relationship (3) can be equivalently expressed in the form

y(t) +

r∑

i=1

aiy(t − i) = βu(t − 1) + n(t) (13)

where β =
∑p

i=1 bi. For this reason, for a constant input
signal, the identified transfer function must have the form

H(q−1) =
βq−1

1 + a1q−1 + . . . + arq−r
(14)

Any attempt to estimate two or more input (b-type)
coefficients will fail due to the lack of sufficient persistence
of excitation (Söderström & Stoica, 1988) (for a constant
input signal and p > 1 the components of the input
regression vector ϕu(t) are linearly dependent, causing
singularity of the regression matrix).
Experimental results obtained for the ARX(2,1) model,
shown in Tab. 2, are unsatisfactory – the accuracy require-
ments are not met even for the lowest conveyor belt speeds.
In order to improve estimation results, three extensions of
the basic scheme were considered: incorporation of higher-
order ARX models, data prefiltering, and incorporation of
an extended data set.
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3.3 Higher-order models

Fig. 4 shows the energy spectrum of typical transient
oscillations y(t) − w observed in the interval [t2, t3]. The
multi-resonant structure of this spectrum suggests that the
second-order spring-mass-damper model adopted in the
classical approach may be inadequate for the conveyor belt
type checkweighers. Tab. 3, which shows results obtained
for higher-order ARX(r,1), fully supports this claim. With
growing order of autoregression r, the accuracy of weight
estimates systematically improves reaching, for r = 60,
almost satisfactory levels at slow and medium conveyor
belt speeds.

3.4 Data prefiltering

The approach based on identification of high-order ARX
models is rather forceful and yields results that are only
partially satisfactory. For this reason the next (pretty ob-
vious) modification that was checked out, was based on the
idea of data prefiltering – rather than trying to incorporate
high frequency signal components into the system model,
one can remove them from the processed data prior to
identification. The results obtained in this way are shown
in Tab. 4. In this case the signal obtained from the load cell
was passed through a second-order lowpass Butterworth
filter with a cutoff frequency fc=10 Hz. To avoid phase
distortions and delay effects introduced by IIR (infinite
impulse response) filters, the signal was processed twice:
first forward in time and then in a reverse time order. Such
a forward/backward processing technique allows one to
realize low-complexity linear-phase filters with very good
stopband attenuation properties.
According to Tab. 4, lowpass filtering of the processed sig-
nal significantly improves the accuracy of the model-based
weight estimates. The results obtained for the ARX(4,1)
model are entirely satisfactory for all test loads and all
conveyor belt speeds. When the order of the ARX model is
increased beyond 4, the results gradually deteriorate. This
is not a surprising effect since high-order models tend to
focus on the filter dynamics (which, in the case considered,
becomes a part of the identified system) instead of the
checkweigher’s dynamics.

3.5 Extended data set

Since the hypothetical shape of the load signal (8) can be
established by analyzing position of the front/end photo-
cell pulses, we have checked whether estimation results
could be improved by means of incorporation – at the
system identification stage – the measurements collected
in the entire excitation interval [t1, t4] (trapezoidal pulse)
or its fragments: [t1, t3] (ascending step) or [t2, t4] (de-
scending step). Due to its “richness” such an excitation
signal should allow one to obtain more accurate estimates
of system coefficients, i.e., more accurate weight estimates.
Note that in this case the full-order zero-pole model (1) can
be identified instead of the simplified all-pole model (14).
Unfortunately, all attempts to improve estimation results
by working with an extended data set have failed. Tab.
5 summarizes results obtained for the ARX(4,4) model
(which should be compared with the analogous results,
shown in Tab. 4, for the ARX(4,1) model). In all three
cases mentioned above the accuracy of weight estimates
deteriorated. Most likely this is caused by the fact that
the shape of the actual load signal differs from the assumed
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Fig. 4. Energy spectrum of transient oscillations.

(trapezoidal) one. Similar effects were observed for higher-
order ARX(r, r) and ARX(r, 1) models (both with and
without data prefiltering).

Table 2. Mean weight measurement errors
µe and their standard deviations σe for 5
conveyor belt speeds [m/s] and 4 test loads
(m1, m2, m3, m4). All results correspond to the
ARX(2,1) system representation. The values
that exceed the accuracy class XIII specifica-

tions are shown in boldface.

speed 0.5 0.7 0.9 1.1 1.3

µe 0.54 1.95 -0.19 0.78 3.56

m1 σe 0.48 1.45 1.61 1.03 1.75

µe 0.55 0.59 0.70 0.19 3.55

m2 σe 0.79 1.12 1.17 3.28 1.83

µe 1.22 -0.15 0.62 0.06 1.52

m3 σe 1.14 1.64 1.94 2.45 3.36

µe 0.73 2.29 0.55 -0.84 -4.70

m4 σe 1.12 3.05 1.76 2.28 3.40

Table 3. Experimental results obtained for
higher-order ARX models.

speed 0.5 0.7 0.9 1.1 1.3

ARX(20,1)

µe 0.20 0.58 0.82 -0.11 0.66

m1 σe 0.45 0.62 0.55 0.89 0.91

µe 0.41 1.61 0.20 0.76 -0.23
m2 σe 0.49 0.76 0.80 0.72 0.98

µe 0.70 1.34 -0.08 0.75 1.14

m3 σe 0.56 1.22 1.11 1.45 1.89

µe 0.52 -0.02 0.07 0.93 -3.33

m4 σe 0.63 1.59 1.88 1.93 1.99

µe 0.5 -0.0 0.4 0.9 -3.2

m4 σe 0.7 1.6 2.0 2.0 1.8

AR(60,1)

µe 0.07 0.23 -0.12 0.35 -0.58

m1 σe 0.16 0.20 0.20 0.58 0.93

µe 0.25 0.60 0.19 0.09 -0.44
m2 σe 0.18 0.38 0.39 0.65 1.16

µe 0.48 0.66 0.28 -0.19 -0.14
m3 σe 0.34 0.47 0.43 0.44 1.22

µe 0.30 0.16 -0.25 -0.03 0.58

m4 σe 0.37 0.48 0.63 0.90 0.71
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Table 4. Experimental results obtained for
ARX models under data prefiltering.

speed 0.5 0.7 0.9 1.1 1.3

ARX(2, 1)

µe 0.73 0.76 0.29 0.54 -0.27
m1 σe 0.32 0.38 0.27 0.20 0.31

µe 0.61 0.18 -0.26 -0.71 -0.13
m2 σe 0.64 0.46 0.37 0.54 0.63

µe 1.87 1.54 0.11 -0.26 -0.45
m3 σe 0.75 0.58 0.50 0.54 1.00

µe 1.33 1.31 -1.76 -0.93 -3.19

m4 σe 1.42 1.07 1.21 0.80 1.24

ARX(4, 1)

µe -0.01 0.01 -0.12 0.25 0.10
m1 σe 0.07 0.09 0.14 0.12 0.12

µe 0.01 0.12 0.13 0.13 0.11
m2 σe 0.13 0.14 0.14 0.20 0.23

µe 0.03 0.19 -0.06 0.14 0.18
m3 σe 0.12 0.25 0.29 0.20 0.19

µe -0.25 0.32 -0.10 -0.06 -0.38
m4 σe 0.19 0.38 0.24 0.38 0.32

Table 5. Experimental results obtained for
the ARX(4,4) model with data prefiltering for

different hypothetical excitation signals.

speed 0.5 0.7 0.9 1.1 1.3

ascending step

µe 0.4 2.3 0.5 1.5 1.1

m1 σe 1.0 1.2 0.7 1.0 0.9

µe -0.5 1.8 0.7 -0.2 1.3

m2 σe 1.0 1.3 1.8 1.5 1.6

µe 3.3 5.9 4.7 -0.3 4.4

m3 σe 2.6 3.5 2.4 2.3 3.7

µe 12.7 9.7 9.8 8.8 12.1

m4 σe 4.2 4.0 8.2 4.5 8.3

descending step

µe 2.36 1.23 -0.64 -0.29 -1.50

m1 σe 0.64 0.50 0.26 0.32 0.39

µe 2.04 1.31 0.88 -1.31 -1.15

m2 σe 0.74 0.59 0.73 0.47 0.35

µe 3.73 3.04 -1.03 -3.20 -2.67

m3 σe 0.70 0.66 0.77 0.26 0.82

µe 0.92 -2.75 -8.22 -14.05 -12.46

m4 σe 1.45 1.25 0.97 5.19 2.29

trapezoidal pulse

µe 6.55 5.75 5.13 3.41 1.35

m1 σe 0.78 0.69 0.73 0.67 0.71

µe 8.25 6.42 6.31 5.36 3.49

m2 σe 0.90 0.86 1.13 1.27 0.61

µe 11.75 9.92 8.33 7.00 1.76

m3 σe 2.01 1.75 1.41 1.10 2.41

µe 13.19 12.61 5.08 -8.28 -4.44

m4 σe 2.93 1.88 2.93 5.23 3.39

4. VARIABLE-BANDWIDTH FILTERING
APPROACH

Another possible method, widely used in industrial ap-
plications (McGuinness et al., 2005), is to determine

the static weight of the object based on the analysis
of the lowpass-filtered load cell signal. As reported in
(Pietrzak, 2010) good results can be achieved using a
cascade connection of the first-order IIR filters of the form

zi(t) + akzi(t − 1) = bk[zi−1(t) + zi−1(t − 1)] (15)

i = 1, . . . , k, t ∈ [t1, t3]

where k denotes the number of filters making up a cascade.
The input signal entering the cascade is taken from the
load cell z0(t) = y(t), t ∈ [t1, t3], and the weight estimate
is obtained by reading out the signal observed at the
output of the cascade at the instant t3

ŵ(N) = zk(t3) (16)

where N – the number of processed data samples – is equal
to t3 − t1 + 1.
When the order-dependent filter coefficients ak and bk (the
same for all filters) are chosen according to

ak =
fc − ξk

π∆

fc + ξk

π∆

, bk =
1 + a

2
, ξk =

√
k
√

2 − 1 (17)

where ∆ [s] denotes sampling period and fc [Hz] denotes
the desired cutoff frequency, equations (15) can be re-
garded as a discrete approximation of an analog critically
dumped lowpass filter.
Further improvement can be achieved by using variable-
bandwidth lowpass filters governed by

zi(t) + ak(t)zi(t − 1) = bk(t)[zi−1(t) + zi−1(t − 1)] (18)

i = 1, . . . , k, t ∈ [t1, t3]

where ak(t) and bk(t) denote time-varying coefficients ob-
tained from (17) after replacing the time-invariant cutoff
frequency fc with its time-varying counterpart fc(t). Even
though for a time-varying filter the cutoff frequency is
a heuristic concept, difficult to justify in a mathematically
strict manner, when used with a due caution it can be very
helpful in designing filters with improved characteristics.
In our current context the idea is to use a filter with
a relatively large bandwidth at the initial stage of filtration
(i.e., for instants t close to t1), and to gradually reduce the
bandwidth as the end of the analysis interval (t3) is ap-
proached. Such bandwidth scheduling allows one to obtain
lowpass filters with a shorter transient response, compared
to response of time-invariant filters characterized by the
same level of disturbance attenuation.
To achieve this goal, the time-varying “cutoff frequency”
fc(t) was parameterized as follows (see Fig. 5)

fc(t) = f∞ + (f0 − f∞) exp

{
−α

(
t − t1

t3 − t1

)}
(19)

where f∞ < f0 and α > 0 denotes the decay rate.
According to (19), the cutoff frequency fc(t) decreases
monotonically in the interval [t1, t3] from the initial value
fc(t1) = f0 to the final value fc(t3) = f0λ + f∞(1 − λ)
where λ = e−α. Note that for sufficiently large values of α
it holds that fc(t3) ∼= f∞ (e.g. for α > 2 log 10 ∼= 4.6, one
obtains λ < 0.01).
The optimal filter settings were found by searching a
discretized space of filter parameters w = [f0, f∞, α, k]T.
For each conveyor belt speed vj , j = 1, . . . , 5, the best
settings w∗

j were obtained by means of minimizing the
performance measure made up of two components

w∗

j = arg min
w

{δj(w) + ηj(w)} (20)
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The first component quantifies the measurement accuracy

δj(w) = max

{ |µij(w)|
|µi|max

,
σij(w)

σimax

, i = 1, . . . , 4

}
(21)

where µij(w) and σij(w) denote the mean error values
and standard error deviations for the i-th test load (i =
1, . . . , 4) and the j-th conveyor belt speed (j = 1, . . . , 5).
The quantities |µi|max and σimax denote the corresponding
maximum allowable values, listed in Tab. 1.
The second component of the performance measure penal-
izes long transient responses and is given by

ηj(w) = max

{
τij(w) − t1

t3 − t1
, i = 1, . . . , 4

}
(22)

where τij(w) ∈ [t1, t3] denotes the smallest time coordi-
nate τ , starting from which the output of the filter (18)
yields weight measurements zk(τ) that comply with the
accuracy specifications summarized in Tab. 1. Note that
when τij(w) < t3, then not only the last sample zk(t3), but
also a certain number of previous filter response samples
can be used as weight estimates without violating the
accuracy requirements. Inclusion of ηj(w) in (20) increases
robustness of the filtering approach to anomalous data.

Table 6. Optimal variable-bandwidth filter set-
tings for different conveyor belt speeds.

speed [m/s] 0.5 0.7 0.9 1.1 1.3

f∗

0
[Hz] 66.5 49.0 35.5 39.0 32.5

f∗

∞
[Hz] 0.1 0.1 0.1 0.1 0.1

α∗ 5.35 4.65 3.97 3.90 3.46

k∗ 3 3 3 3 3

The results of grid optimization, performed on the training
data set, are summarized in Tab. 6. The results of final
evaluation of the filter-based approach, obtained using the
evaluation data set (i.e., the one that was not used for
optimization purposes), are presented in Tab. 7. Note that
the performance of the variable-bandwidth filter meets
the accuracy specifications under all operating conditions.
Fig. 5 shows a typical response of the optimized variable-
bandwidth filter and the corresponding changes of the
“cutoff frequency” fc(t).

Table 7. Experimental results obtained for the
variable-bandwidth filtration approach.

speed 0.5 0.7 0.9 1.1 1.3

µe -0.08 -0.10 -0.21 -0.02 -0.24
m1 σe 0.08 0.07 0.08 0.11 0.09

µe -0.09 -0.03 -0.07 0.10 -0.26
m2 σe 0.15 0.13 0.12 0.14 0.14

µe 0.02 0.01 -0.05 0.31 -0.34
m3 σe 0.12 0.11 0.10 0.11 0.17

µe 0.04 0.11 -0.08 0.36 -0.41
m4 σe 0.12 0.15 0.17 0.12 0.22

5. CONCLUSION

In this case-oriented study two approaches to dynamic
weighing, based on the system identification approach and
on the variable-bandwidth filtering approach, were worked
out and compared using experimental data produced by a
conveyor belt type checkweigher. It was shown that when
appropriately configured and tuned both approaches yield
comparable, fully satisfactory results for all test loads and

0 0.2 0.4 0.6

0

load cell signal

filter response

300 g

0 0.2 0.4 0.6

f0

f∞

Fig. 5. Typical response of the optimized variable-
bandwidth filter (upper figure) and the corresponding
changes of the “cutoff frequency” fc(t) (lower figure).

all conveyor belt speeds. The variable-bandwidth filtering
approach is computationally less demanding but requires
off-line optimization of filter parameters prior to weigh-
ing. The identification-based approach is computationally
more involved but the resulting weighing algorithm oper-
ates in a fully adaptive way and hence is more robust.
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