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Abstract: In this work we investigate the predictive control problem for partial differential
equations interconnected through their boundary conditions. More specifically, we consider
systems of cascaded 1D hyperbolic equations. The main obstacle for applying model predictive
control methodologies for such systems is the huge computational effort required to solve the
corresponding optimization problems. Therefore, we present some results on decomposition
methods. The obtained sub-problems are solved in parallel and considered as subsystems con-
trolled by decentralized interacting agents. The proposed approach is validated in simulation for
a free surface water transportation system made of interconnected canal reaches interconnected
through actuated gates.
Keywords: Model predictive control, Distributed control, Hyperbolic equations, Open Channel
Systems, Saint-Venant Equations

1. INTRODUCTION

Because of their spatially distributed nature, many physi-
cal systems, such as chemical processes, irrigation systems
or transportation networks may be preferably modeled
as infinite-dimensional systems described by partial dif-
ferential equations (PDEs). The control design for such
systems is generally based on one of the two following
approaches. The first one, called the indirect approach,
begins with an approximation of the PDEs by ODEs (also
called reduced-order models) to which a finite-dimensional
control synthesis is applied. The advantage of this ap-
proach is the availability of control synthesis techniques for
ODEs. However, the approximation by ODEs sometimes
results in important losses in the qualitative behaviour of
the solution or in the dynamical properties of the original
PDEs. This usually motivates the second approach - called
the “direct approach” - where the control synthesis is
directly derived from the infinite dimensional system real-
ization. In the direct approach, the control is numerically
approximated only at the implementation stage.

Our objective here is to study the direct approach for
linear hyperbolic systems of conservation laws, which are
used to model many interesting physical problems in var-
ious fields such as gas dynamics (see Serre [1999]), road
traffic (see Colombo et al. [2011]), air traffic (see Bayen
et al. [2006]), transport-reaction processes (see Dubljevic
et al. [2005]), and free surface or pressurized water trans-
portation systems (see Georges [2009]). We are particu-
larly interested in the model predictive control (MPC - also
known as receding horizon control) in which, the control
action is obtained by solving repeatedly, on-line, a finite
horizon open-loop optimal control problem. Among the
advantages of MPC, one can mention the ability to obtain
a guaranteed stability, to handle constraints, to incorpo-
rate forecast information and to minimize a given criterion.
The approach was well studied for finite-dimensional sys-

tems, even in the nonlinear case (see e.g. Findeisen et al.
[2003] and Rawlings and Mayne [2009]). Some extension
to infinite-dimensional systems was also investigated, as in
Ito and Kunisch [2002]. But the latter work is concerned
only with the case of distributed control. In Christofides
and Daoutidis [1997] and Dubljevic et al. [2005], the au-
thors proposed MPC approach for parabolic systems but
the control synthesis was based on a finite-dimensional
approximation of the PDEs. An infinite-dimensional MPC
for boundary control of nonlinear Saint-Venant equations
was considered in Georges [2009], and solved by calculus of
variations approach. Our recent work (Pham et al. [2010,
2012]) established the stability of MPC for a single linear
hyperbolic system as well as for a cascaded network of such
systems.

The usefulness of the MPC approach for these problems
related to interconnected infinite-dimensional systems is
however limited by the required computational effort when
the control action for the whole network is calculated in
a centralized manner by a single controller. This obstacle
can be tackled by using the so-called distributed MPC
configuration or decomposition-coordination approach in
which the optimization problem of the entire system is
divided into several sub-problems, each of them being
allocated to a local controller (sometimes referred to as
an ”agent”). The global optimal control action is then
obtained by exchanging information between these agents.
This is currently a living topic in the MPC community and
several results have been established (see e.g. Scattolini
[2009], Stewart et al. [2010], Christofides et al. [2013] or
Liu et al. [2010]), mostly in the finite-dimensional case and
very few studies (Georges [2009]) consider this infinite-
dimensional case.

In this paper, we consider several algorithms of distributed
model predictive control (DMPC) for a system of cascaded
hyperbolic equations, with an application to the control
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of cascaded reaches of an irrigation channels through the
connecting sliding gates. These systems are well suited to
the demonstration of the advantages of DMPC related to
complexity issues, to the need for an optimal management
strategy and to the many operational constraints for such
water systems. The DMPC was in fact considered in sev-
eral works for water transport systems (see Carpentier and
Cohen [1993], Fawal et al. [1998], Zarate-Florez et al. [2012]
and Igreja et al. [2012]), but with a finite-dimensional
model.

The paper is organized as follows. In the first section the
considered systems of cascaded hyperbolic equations are
defined. A stability result for the centralized MPC of such
systems is recalled (Pham et al. [2010, 2012]). In the sec-
ond section, different decomposition approaches (namely
the price decomposition and the prediction decomposi-
tion proposed by Cohen and Zhu [1984]) are considered
and applied to obtain a decentralized MPC scheme. The
convergence of these algorithms to the global optimum is
discussed. In the third section, the obtained results are
applied to the example of a cascaded network of irriga-
tion channel reaches. Simulation results are given in order
to validate the here proposed theory. We conclude by a
comparison in terms of performance between the different
considered approaches.

2. MPC FOR SYSTEMS OF COUPLED
HYPERBOLIC EQUATIONS

2.1 Systems of coupled hyperbolic equations

We consider a network of N (N ≥ 2) cascaded hyperbolic
systems:{

∂t

(
αi

βi

)
=

(
ai 0
0 bi

)
∂x

(
αi

βi

)
+

(
ci di
ci di

)(
αi

βi

)
,

x ∈ [0, L], t > 0, i = 1, ..., N
(1)

where (αi(·, t), βi(·, t)) ∈ [L2(0, L)]2 is the state whereas
the constants ai, bi, ci and di are parameters of the
subsystem i. In this study, we limit ourselves to the
case of strictly hyperbolic systems, namely ai > 0 > bi
(i = 1, ..., N). Here t and x classically stand for time and
space coordinates, and ∂t, ∂x denote the partial derivatives
w.r.t. t, x respectively.

The initial condition must be specified at t = 0:

αi(·, 0) = α0
i , βi(·, 0) = β0

i . (2)

The boundary condition at junctions i (i = 2, . . . , N)
can generally be supposed to have the following form (see
Courant and Hilbert [1962]):(
αi−1(L, t)
βi(0, t)

)
=

(
m11

i m12
i

m21
i m22

i

)(
βi−1(L, t)
αi(0, t)

)
+

(
b1i
b2i

)
gi. (3)

The first and the last junction have the same form:

β1(0, t) = m22
1 α1(0, t) + b21g1,

αN (L, t) = m11
N+1βN (L, t) + b1N+1gN+1.

(4)

where mjk
i , b1,2i are appropriate constants. In the sequel,

for the sake of simplicity, we adopt the notation αi,0 =
αi(0, t), αi,L = αi(L, t) and similarly for βi.

We add an integrator to inputs gi as follows:

ġi = ui, i = 1, ..., N + 1 (5)

In such a way, system (1)-(5) can be rewritten in the
abstract form (see e.g. Curtain and Zwart [1995], or Pham
et al. [2010, 2012]):

ż(t) = Az(t) + Bu(t), t > 0
z(0) = z0,

(6)

where A is the infinitesimal generator of a C0-semigroup,
B is a linear bounded operator. The new state z and the
new control u are determined by

z =

(
g,

v −Bg

)
, v = (α1 · · ·αN β1 · · ·βN )T

u = (u1 · · ·uN+1)T ,
(7)

with appropriate bounded operator B (see Pham et al.
[2012] for more detail). In this form, we can employ the
C0-semigroup theory (see Curtain and Zwart [1995]) to
establish the well-possedness as well as the existence of
the optimal control for system (1)-(5).

2.2 Principle of MPC

Let us consider system (6) and recall for it the principle
of MPC or Receding Horizon Optimal Control:

• At each time t, we obtain the current state z(t).
• Then, for a given prediction time T and a cost

function J , we compute the optimal solution of the
problem:

min
ū∈L2(t,t+T ;RN+1)

J(z(t); ū)

s.t. ˙̄z(τ) = Az̄(τ) + Bū(τ),∀τ ∈ [t, t+ T ], z̄(t) = z(t),

where the notation ·̄ stands for the predicted vari-
ables.

• The first part of the optimal control is applied on the
system in period [t, t+ σ) for a small σ.

• The procedure restarts at t+ σ.

One can remark that since the actual state z(t) is updated
at each sampling step, the resulting control u(t) is in fact
in a feedback form which makes an advantage of a receding
horizon strategy in comparison with an open-loop optimal
control.

We intend to employ this strategy to stabilize system (1)-
(5) using the following optimization problem:

min
u
J =

N+1∑
i=1

∫ T

0

mi(gi, ui)dt+

N∑
i=1

∫ T

0

∫ L

0

li(αi, βi)dxdt

+

N+1∑
i=1

mf
i (gi(T )) +

∫ L

0

lfi (αi(·, T ), βi(·, T ))dx,

s.t. (1)-(5)

(8)

The stage cost functions mi and li and the terminal cost

functions mf
i and lfi are taken in quadratic form:

mi(gi, ui)=qig
2
i + riu

2
i , li(αi, βi)=

(
αi

βi

)T

Qi

(
αi

βi

)
,

mf
i (gi)=qfi gi(T )2, lfi (αi, βi)=

(
αi

βi

)T

Qf
i

(
αi

βi

)
,

(9)

Using the transformation (7), the optimization problem
(8) can be put in the following form:

min
u
J =

∫ T

0

〈z(t),Mz(t)〉dt+ 〈u,Ru〉+ 〈z(T ),Mfz(T )〉,
s.t. (6),
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with appropriate positive definite operators M , R and Mf .
In this form, we can show that there exists an optimal
solution (see Curtain and Zwart [1995]), which guarantees
the feasibility at each sampling instant. In addition, we

can choose the weighting parameters qi, ri, Qi, q
f
i and Qf

i
(which inspired from the Lyapunov function proposed by
Coron et al. [2007]) in order that the closed-loop system
by MPC is asymptotically stable at the origin (see Pham
et al. [2010]).

It is however difficult to solve the above optimization
problem with a centralized control structure due to the
computational complexity and to the robustness of the
controller. In the next section, we will consider some
algorithms in order to get a distributed control scheme.

3. DECOMPOSITION-COORDINATION APPROACH

3.1 Price decomposition and Prediction decomposition

Let us recall firstly the principle of these approaches for
a general optimization problem. Consider the following
problem:

min
u,v

J(u, v) =

N∑
i=1

Ji(ui, vi), (10)

s.t. θi(u, v) = vi −
∑
j 6=i

Hij(uj , vj) = 0, i = 1, ..., N (11)

where u = (u1, ..., uN ) is the decision variable, and v =
(v1, ..., vN ) is interaction variable. The term Hij(uj , vj)
represents the influence of sub-system j to sub-system i.

In order to deal with the constraints, we use the augmented
Lagrangian, which can be viewed as a mix of Lagrangian
and penalty method:

Lc(u, v, p) =

N∑
i=1

Ji(ui, vi) + 〈pi, θi(u, v)〉+
c

2
‖θi(u, v)‖2

where c is a positive constant and pi is the multiplier
associated with constraint (11). The original constrained
optimization problem is now equivalent to finding a saddle-
point of Lc(u, v, p). Thanks to the quadratic term of
the constraint, the convexity of the problem is enforced
therefore, the convergence of dual algorithms (where we
find alternatively min

u,v
Lc(u, v, p) with a fixed p then

max
p

Lc(u, v, p) with (u, v) found in the previous step) is

ensured (see Cohen and Zhu [1984]).

By using linearization of the square of the constraint,
Cohen [1980] proposed different methods to decompose
problem (11) into N sub-problems (each corresponds to
control input ui and can be solved by one agent). These
approaches were applied in the context of distributed MPC
e.g. by Georges [2006] and Rantzer [2009]. In this paper,
we consider the price decomposition and the prediction
decomposition.

Price decomposition The algorithm consists of the fol-
lowing steps:

(1) At iteration k = 0: choose p0
i , i = 1, ..., N and

u0 = (u0
1, ..., u

0
N ), v0 = (v0

1 , ..., v
0
N ).

(2) At iteration k: Each agent solves the following prob-
lem in (ui, vi):

min
ui,vi

Ji(ui, vi) +
1

2ε
‖ui − uki ‖2 +

1

2ε
‖vi − vki ‖2

+

〈
pki + cθi(u

k, vk),
∂θi
∂ui

(uk, vk)ui +
∂θi
∂vi

(uk, vk)vi

〉
Let uk+1

i and vk+1
i be a solution.

(3) Update pi according to

pk+1
i = pki + ρ(θi(u

k, vk)) (12)

(4) If ‖pk+1 − pk‖ is sufficiently small: stop, otherwise
return to step 2 with k replaced by k + 1

Note that in each sub-problem, a proximal term (‖ui−uki ‖2
and ‖vi − vki ‖2) was added in order to enforce convexity
and therefore the convergence of the scheme.

Prediction decomposition The algorithm consists of the
following step:

(1) At iteration k = 0: choose p0
i , i = 1, ..., N and

u0 = (u0
1, ..., u

0
N ) and w0 = (w0

1, ..., w
0
N ).

(2) At iteration k: Each agent solves the following prob-
lem in (ui, vi):

min
ui,vi

Ji(ui, vi) +
1

2ε
‖ui − uki ‖2

+

〈
pki + cθi(u

k, vk),
∂θi
∂ui

(uk, vk)ui +
∂θi
∂vi

(uk, vk)vi

〉
s.t. vi = wk

i (13)

Let uk+1
i , vk+1

i be a solution and µk+1
i the associated

multiplier with constrain (13).
(3) Update pi and wi according to

wk+1
i = wk

i − ε(µk+1
i + pki ),

pk+1
i = pki + ρ(θi(u

k, vk))
(14)

(4) If ‖pk+1−pk‖+‖wk+1−wk‖ is sufficiently small: stop,
otherwise return to step 2 with k replaced by k + 1

In this algorithm, the interaction variables vi is fixed
to its prediction value given by previous iteration. As
consequence, problem (13) is in fact minimized only in
terms of ui, which reduces the number of decision variables
for each sub-problem.

Note that in the two above algorithms, it is not necessary
to have a coordinator since information can be exchanged
directly between agents.

3.2 Application to system of cascaded hyperbolic equations

We apply now the above approaches to problem (8)
to decompose it into N + 1 sub-problems. Let us first
introduce the interconnection variables of each sub-system
as:

qi,+ = m12
i+1αi+1,0 + b1i+1gi+1,

qi,− = m21
i βi−1,L,

(15)

These variables qi,+ and qi,− play the role of vi in the
general presentation in the previous section. The above
relations can be seen as constraints for the optimization
problem:

θi,+(qi,+, αi+1,0, gi+1) = qi,+ −m12
i+1αi+1,0 − b1i+1gi+1 =0,

θi,−(qi,−, βi−1,L) = qi,− −m21
i βi−1,L = 0,
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In the sequel, the dependance of θi,+ and θi,− to their
arguments will be omitted for the sake of clarity. Let
us denote qi = (qi,+ qi,−)T , θi = (θi,+ θi,−)T and
pi = (pi,+ pi,−)T the associated multiplier to θi. Then
the boundary conditions (3) can be rewritten as:

αi(L, t) = m11
i+1βi(L, t) + qi,+,

βi(0, t) = qi,− +m22
i αi(0, t) + b2i gi

(16)

Price decomposition The decomposition scheme is as
follows:

(1) At iteration k = 0: Choose p0
i , u0

i and q0
i . Simulate

the sub-system i to get α0
i , β0

i and g0
i .

(2) At iteration k: Solve in parallel
For i = 1, ..., N

min
ui,qi

∫ T

0

mi(gi, ui)dt+

∫ T

0

∫ L

0

li(αi, βi)dxdt

+

∫ T

0

(
1

2ε
(ui − uki )2 +

1

2ε
‖qi − qki ‖2)dt

+

∫ T

0

[Ck
1,iqi,++Ck

2,iqi,−+Ck
3,iαi,0+Ck

4,iβi,L+Ck
5,igi]dt

+mf
i (gi(T ), ui(T ))

s.t. (1) and (16)
(17)

with

Ck
1,i = [pki,+ + cθi,+(qki,+, α

k
i+1,0, g

k
i+1)]

Ck
2,i = [pki,− + cθi,−(qki,−, β

k
i−1,L)],

Ck
3,i = −m12

i [pki−1,+ + cθi−1,+(qki−1,+, α
k
i,0, g

k
i )],

Ck
4,i = −m21

i+1[pki+1,− + cθi+1,−(qki+1,−, β
k
i,L)],

Ck
5,i = −b1i [pki−1,+ + cθi−1,+(qki−1,+, α

k
i,0, g

k
i )],

For the last control input (i = N + 1):

min
ui

∫ T

0

[mi(gi, ui) +
1

2ε
(ui − uki )2 + Ck

5,igi]dt

+mf
i (gi(T ), ui(T )),

s.t. ġi = ui

(18)

Let uk+1
i , qk+1

i a solution and αk+1
i , βk+1

i , gk+1
i the

associated trajectory.
(3) Send (αk+1

i,0 ,gk+1
i ,qk+1

i,− ) to sub-system (i−1) and send

(βk+1
i,L , qk+1

i,+ ) to sub-system (i+ 1).

(4) Each agent updates the multiplier according to

pk+1
i = pki + ρθk+1

i and constants Ck+1
j,i , j = 1, ..., 5

using received information from neighbors.
(5) Stop if ‖pk+1 − pk‖ is below a desired threshold.

Otherwise, make k ← k + 1 and return to step 2.

Prediction decomposition The algorithm is almost the
same the one above, except that in step 2, each agent
solves:

min
ui

∫ T

0

mi(gi, ui)dt+

∫ T

0

∫ L

0

li(αi, βi)dxdt

+

∫ T

0

[
1

2ε
(ui − uki )2+Ck

3,iαi,0+Ck
4,iβi,L + Ck

5,igi]dt

+mf
i (gi(T ), ui(T ))

s.t. (1), (16) and qi = wk
i

(19)

and in step 4, we need to update wi and pi:

wk+1
i = wk

i − ε(pki + µk+1
i ),

pk+1
i = pki + ρθk+1

i

(20)

where µk+1
i is the multiplier associated with the constraint

qi = wk
i .

Convergence Thanks to the convexity and the well-
posedness of the global problem and of each sub-problem,
with sufficiently small ε and ρ, the above decomposition
schemes converge to global optimum of (8) (see Cohen and
Zhu [1984] and Cohen [1980]).

Thanks to this distributed scheme, the robustness is im-
proved since a local controller’s default does not lead to
the disfunctioning of the whole system. Moreover, some re-
organization mechanisme can be added to each controller
in order to adapt themselves in case of actuator fault (see
Pham et al. [2014]).

4. APPLICATION TO A NETWORK OF
OPEN-CHANNEL SYSTEM

In order to illustrate the proposed control technique and
the numerical implementation scheme, we present here an
application to the linearized model of an irrigation channel
consisting of N cascaded pools. Each pool is usually
described by a set of two partial differential equations
(PDEs) named Saint-Venant equations, which represent
the mass and the momentum conservation (see Georges
[2009]):

Bi∂thi + ∂xQi = 0

∂tQi + ∂x

(
Q2

i

Bihi
+

1

2
Bigh

2
i

)
= gBihi(Ii−J(Qi, hi),

(x, t) ∈ [0, L]× [0,∞), i = 1, ..., N,

(21)

where hi denotes the water depth, Qi the discharge, g the
gravitational acceleration, Bi the channel width, Ii the
slope and J the friction term.

Interconnections between pools are subject to a set ofN+1
sliding gate equations:

Qgi = K2
i Θ2

i (t)2g(hgius − h
gi
ds), i = 1, ..., N + 1, (22)

and N − 1 discharge conservation constraints:

Qi(L, t) = Qi+1(0, t), i = 1, ..., N − 1, (23)

where Qgi is the discharge through the gate, Ki the gate
coefficient, Θi the opening, hgius and hgids are the water levels
at upstream and at downstream respectively.

Let us now consider the linearization of the system around
a uniform steady state (h̄i, Q̄i) which has to satisfy Q̄i =

constant and J(h̄i, Q̄i) = I. Denote by h̃i = hi − h̄i, Q̃i =
Qi− Q̄i deviation of the state h and Q around this steady
state. We obtain then:

∂th̃i = −B−1
i ∂xQ̃i,

∂tQ̃i = ζ∂xh̃i + κ∂xQ̃i + ρh̃i + φQ̃i,
(24)

with approriate ζ, κ, ρ and φ. Let us additionally define:

G =

(
0 −B−1

i
ζ κ

)
, H =

(
0 0
ρ φ

)
.

In the sub-critical regime (low flow speed), G has two

eigenvalues satisfying ai = − Q̄i

Bih̄i
+
√
gh̄i > 0 and bi =

− Q̄i

Bih̄i
−
√
gh̄i < 0. By applying the transformation(

αi

βi

)
= P−1

(
h̃i
Q̃i

)
with P =

(
1 1

−Biai −Bibi

)
, (25)
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we have a new system:

∂t

(
αi

βi

)
=

(
ai 0
0 bi

)
∂x

(
αi

βi

)
+

(
ci di
ci di

)(
αi

βi

)
. (26)

The N + 1 gate equations (22) can also be linearized
and combined with the discharge conservation (23) to
form a linear boundary condition as in section (3). As a
consequence, this system has the form studied previously
in 2, hence can be stabilized by the MPC scheme, which
will be illustrated below.

4.1 Simulation results

In this section, we present some simulation results carried
out with a system of three cascaded pools of the same
length L = 3000m and width B = 4.36m. The slopes are
I1 = 2.4× 10−4, I2 = 4.2× 10−4 and I3 = 6.2× 10−4. The
steady state corresponds to Q̄ = 4.1m3/s and h̄1 = 1.97m,
h̄2 = 1.6m and h̄3 = 1.4m. The PDEs are solved with the
Lattice Boltzmann Method (see Pham et al. [2010]) with
spatial step ∆x = 300m and ∆t = 1s. The decomposition-
coordination scheme uses c = 7, ε = 0.01 and ρ = 0.001.
The cost function is formulated with T = 30s.

Figure 1 presents the norm of constraints
N∑
i=1

‖θi‖2 and

cost function of the decomposition-coordination schemes,
in comparison with a centralized approach, with same
turning parameters (which is the step size of the steepest
descent method). We can notice that the price decompo-
sition and the prediction decomposition have relatively a
similar convergence speed, which is faster than that of the
centralized scheme. Nevertheless, the computation time on
a Intel Core i7 3.4GHz, 8G RAM PC of the centralized
scheme is around 1s whereas that of the price decompo-
sition and of the prediction decomposition are 13.2s and
12.8s respectively. The reason is that agents have to realize
several iterations before obtaining the optimal solution of
sub-problem (17) or (19). The advantage of a distributed
scheme in terms of computation time will be more evident
when the number of subsystems increases.
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Fig. 1. Convergence of the decomposition-coordination
scheme

We consider next the closed-loop system with MPC (σ =
10s). In order to reduce the communication cost (and
the computation time), we limit the number of exchanges
between agents to 30. This choice is justified by figure 1
where we can see that with 30 iterations, the decomposi-
tion schemes converge already to the optimum. The results

are presented in figure 2 and 3 for the price decomposition.
The prediction decomposition and the centralized control
have a very similar behavior. We can see that h̃i and Q̃i

converge to the origin meaning that the physical variables
hi and Qi converge to the steady state h̄i and Q̄i. In
top of figure 4, we present the value of cost function in
comparison with the optimal cost (obtained by using a
centralized scheme with a threshold 10−6). We can see
that both decompositions schemes are very close to the
optimal cost. The computation time is presented in bottom
of figure 4. The prediction decomposition is a little faster
than the price decomposition since it has less variables to
manipulate (see section 3.2).
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5. CONCLUSION

In this paper, a distributed MPC was considered for in-
terconnected hyperbolic systems. Different decomposition
schemes were presented and applied to a network of open-
channel systems. The proposed approaches were validated
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and compared with a centralized scheme in simulation.
The results showed that decomposition schemes have a
better performance in terms of convergence speed. Finally,
the prediction decomposition is a little more preferable
thanks to its smaller computation time.

These results motivate several directions for future works.
First of all, the stability of sub-optimal MPC for infinite-
dimensional systems (generalization of Scokaert et al.
[1999]) must be studied in order to ensure the stability of
the closed-loop when the iteration is stopped before the op-
timum is found. Different implementations of distributed
MPC (such as serial or hierarchical structure (Negenborn
et al. [2009])) can also be considered. Finally, extension of
this approach to other classes of PDEs could be interesting.
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