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Abstract: Iterative feedback tuning (IFT) is a model-free tuning method that has been proven to work 

well in various applications since its introduction in 1994. Several factors affect the performance of the 

optimization process, and one of which is the design criterion. Historically, the weighting factor for each 

element in the design criterion is chosen by trial and error and results in a different value for each system 

tested. In this paper, a normalized design criterion is presented with a weighting factor that allows the 

tuning performance to be assessed across different systems. This new design criterion is then applied to 

various test systems using the Monte Carlo method to determine the optimal range of values of this 

normalized weighting factor in tuning for step input responses. 
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1 INTRODUCTION 

Iterative feedback tuning (IFT) is an automatic model-free 

tuning method that relies solely on information obtained from 

the closed-loop response of the control system. This tuning 

method was first introduced by Hjalmarsson et al. in 1994 

optimizes the controller parameters by running a set of 

specially designed experiments aimed to minimize a specific 

design criterion (Hjalmarsson et al., 1994). IFT as a black 

box approach has several advantages over traditional tuning 

approaches. Most classical tuning methods rely on accurately 

determining the model of the system using system 

identification processes. However, the identification of an 

accurate model of a system is often difficult to achieve due to 

its complexity. Even when determined, system models have 

been shown to exhibit bias and variance (Forssell and Ljung, 

1999). Additionally, in actual application through wear and 

tear, the model of the system will change over time, which 

means the system model identified is no longer accurate, and 

the identification process will have to be repeated. IFT can 

also be tuned online in real-time as demonstrated in McDaid 

et al. (2011), which is a significant advantage over traditional 

tuning methods as they usually require the operation to be 

stopped for tuning. Furthermore, traditional process based 

tuning methods require the loop to be opened, making the 

tuning process sensitive to disturbances (Åström and 

Hägglund, 1995). This is a non-issue in IFT as it is a closed-

loop in situ tuning method. 

There have been a lot of developments and applications 

utilizing IFT since its introduction. IFT has been shown to 

have a performance advantage when compared with classical 

tuning methods in Lequin et al. (2003). It has also been 

adapted for multi variable control (Hjalmarsson, 1999, 

Gunnarsson et al., 2003), and has shown that it can deal with 

some nonlinearities (Sjöberg et al., 2003). In terms of 

application, it has been shown to perform well in tuning of a 

wide range of systems, including the control of a profile 

cutting machine in Graham et al. (2007), the control of smart 

materials (Liu et al., 2011, McDaid et al., 2010, Aw et al., 

2011), and on a two-mass-spring system with friction in Ho 

et al. (2003). 

The subsequent sections are organized as follow: Section 2 

introduces the general IFT algorithm, and factors that affect 

the performance of the optimization process, where a 

normalized IFT design criterion is introduced to enable the 

comparison of optimization performance across different 

systems; in Section 3, the Monte Carlo method is used on 

four sets of simulations to find an optimal setup for the IFT 

design criterion for tuning step input responses; and 

conclusions are drawn in Section 4. 

2 ITERATIVE FEEDBACK TUNING PERFORMANCE 

 General Algorithm 2.1

First a design criterion is selected to be minimized. In 

Hjalmarsson et al. (1994), the following design criterion was 

adopted: 

  ( )  
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where   is the vector of controller parameters to be 

optimized,   ̃( ) is the error between the output signal   ( ) 
and the desired reference signal   ( ),   ( ) is the control 

signal into the plant,    and    are frequency weighting 

filters,   is a weighting factor that determines the balance 

between the two parts minimized, and   is the number of 

sample collected for each experiment. The optimized 

controller parameter vector    is defined as: 

             ( ). (2) 

The local minimum of the design criterion  ( ) can be found 

by iteratively approximating its gradient      , and uses the 

following equation to update the controller parameters for the 

next iteration: 

             
    (  )

  
. (3) 

Here    is a positive scalar step size, and    is some positive 

definite matrix indicating the search direction. Commonly a 

modified Newton’s method such as the Gauss-Newton 

approximation of the Hessian of  ( ) is used. 

In order to compute the approximation to    (   )    and the 

Hessian    , three experiments needs to be completed in each 

iteration of optimization. First, a test signal is applied to the 

input of the closed-loop system and the output signal is 

collected. Second, the output signal from the first experiment 

is re-applied as the reference input of the control system, and 

the output is recorded in order to calculate the gradient of the 

controller parameters. A final experiment is performed where 

the test signal from the first experiment is used as the 

reference. This is done to ensure that data from the second 

and third experiments are independent of each other to 

remove bias (Hjalmarsson et al., 1998). 

 Factors That Affect Tuning Performance 2.2

The performance of the IFT process can be affected by 

several factors. Different search algorithms can be used to 

calculate   , with better and more robust algorithms 

achieving a faster convergence, or enables some form of 

global convergence resulting in a lower design criterion  ( ). 

The reference/input waveform also affects the result. A 

square or a step input contains discontinuity and is 

impossible for the response to track perfectly. This results in 

a design criterion minimum that is far away from the zero 

value, and the algorithm tries to compensate for this “poor” 

result by increasing the gains excessively in order to 

minimize the error. A continuous signal such as a sinusoidal 

waveform makes it easier for the controller to track the 

reference signal. However square waves and step inputs are 

commonly studied as the step response is the most basic type 

of response, with the system performance figures such as the 

rise time and the settling time can be quantified easily. 

The design criterion can also be customized to highlight the 

performance parameters that are deemed important to the 

system, such as the error and the control signal. It also 

enables the system designer to emphasize particular system 

characteristics such as the settling time or some specific 

bandwidth. The choice of the design criterion is indeed a 

flexible one. Apart from the design criterion presented in 

Hjalmarsson et al. (1994), several others have been presented 

in previous studies. The simplest form of design criterion is 

the sum of the square of the error values collected during the 

experiment: 

  ( )  
 

  
∑ (  ̃( )

 ) 
   . (4) 

Lequin (1997) presented a time weighted design criterion 

shown in (5) where    and    are nonnegative factors, in 

order to put more emphasis on certain parts of the response 

that are deemed important. 

 
 ( )   
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     ( )  [  ( )]
 ) 

   . 
(5) 

Similarly, Lequin et al. (1999) introduced a mask of length    

on the error part of the response designed to ignore the 

transient part of the response, as only the steady state error 

and the speed of the response are important, and not the 

tracking error during the transient. The design criterion in (1) 

is replaced by: 

 
 ( )   

 

  
∑ (    ̃( )

 ) 
      ∑ (    ( )

 ) 
   . 

(6) 

It is important to note that whatever the scheme of the design 

criterion, if it involves more than one element to be 

minimized, a weighting factor is present to determine the 

balance between each performance measure. However, there 

are no rules on how the value of   is chosen, as the value is 

system dependent and is always determined by trial and error. 

 The Normalized Design Criterion 2.3

In order to determine an optimal value of  , it is important to 

consider the relative magnitudes of each variable in the 

design criterion  ( ). As different systems will have desired 

and actual output, error, as well as control signal that span 

across different range of possible values, there needs to be a 

method to normalize these ranges so the weighting factor   

can be meaningful and can be compared across different 

systems. Equation (7) presents a normalized design criterion 

where a normalizing factor    is introduced, and    replaces 

  to be the normalized weighting factor that remains 

comparable across different systems. 

  ( )  
 

  
∑ (    ̃( )

          ( )
 ) 

   , (7) 

where 

    
             

              
. (8) 

The choice for    represents the range of output in an ideal 

situation, and ensures that the value of    stays meaningful 

across different tuning iterations for the same system, as the 
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range of   should remain constant throughout the tuning 

process. The range of    is limited by the available output 

(saturation) of the control signal, therefore it should also 

remain similar across iterations for the same system, as the 

control signal often saturates when the reference input 

changes suddenly by a large amount. However, generally it is 

not a good idea to saturate the control signal for a long time 

as this introduces discontinuities and additional nonlinearities 

into the control parameter surface, adding to the difficulties 

in determining the downhill direction for the optimization 

algorithm. Thus with normalized design criterion, it becomes 

possible to determine a set of    values that represent the 

optimal range for IFT tuning. 

3 SIMULATIONS 

 Simulation Setup 3.1

A total of four system sets were tested under simulation using 

the Monte Carlo method, where the system plants and    

were stochastically tested. The control system structure used 

for the tests is shown in Fig. 1, where   represents the 

unknown system plant being optimized, the controller 

  [  ( )   ( )], where   ( ) is a standard proportional-

integral controller and   ( )  is a standard PID controller 

sharing the same P and I gains with   ( ).   ,   , and    are 

the reference input, the control signal and the output signal 

respectively. A unit step function was used as the system 

input. The elimination of the derivative component in the 

reference controller   ( ) also lessens the issue of sudden 

changes in the setpoint such as a step input, and is a common 

practice in the industry. 

Starting positions for the optimization process were set to 

relatively low gains for the best chance of giving an 

overdamped response. Due to the variability of the plant 

transfer function, it was not possible to guarantee an 

overdamped starting position for every test point. The IFT 

algorithm should still be able to tune towards an optimal 

solution, however an underdamped starting position is not 

recommended as system resonance may come into play 

(Hjalmarsson, 2002). 

The design criterion in (7) was used for all IFT optimization 

tests. No frequency filters were applied, therefore       

 . Up to 10 tuning iterations were performed for each setup. 

The reason for this choice is that if the system is convergent, 

even without an optimized   , the system response can still 

be tuned to have an adequate performance eventually. By 

limiting the tuning process to 10 iterations maximum, it 

allows the optimal    to be identified. 

For each test point, a value of    ranging between        

and       was generated randomly over a logarithmic 

distribution. The four sets of plant transfer functions were 

modified versions of benchmarking transfer functions from  

Åström and Hägglund (2000), with two coefficients for each 

plant set also varying stochastically to create a new transfer 

function for each test point. These transfer functions were 

chosen as they are well suited to parametric studies of PID 

control. 5000 optimization test points were completed for 

each plant set. The settling time of the system to the unit step 

response was used to give a rating to the final performance of 

a tuning result. As error is already part of the design criterion 

in (7), it automatically tends towards a lower value during the 

course of optimization. Settling time on the other hand 

naturally factors in the error as well as the smoothness of the 

response. Therefore, by observing the correlation between 

settling time and   , with large enough sample sizes one can 

determine the optimal value range of   . 

 

 Simulation Set 1 3.2

The simulated system    is: 

   ( )  
 

(   ) 
    , (9) 

where   is an integer value from 1 to 8, and   is a integer 

delay value from 1 to 20. The correlation between the settling 

time    and the normalized weighting factor    is shown in 

Fig. 2(a) where only the convergent results are plotted. Data 

points where the algorithm did not converge after 10 

iterations or remained in a local minimum with    that is 

higher than 200 seconds are not shown. As the plant 

coefficients were selected at random, it is possible that for 

some combinations of the plant transfer function the control 

structure is ill suited for the situation, or the starting position 

generated a response that is divergent. As a result the IFT 

algorithm was unable to locate the downhill direction on the 

control parameter surface for those configurations. The large 

range in settling times shown in the raw data can also be 

attributed to instances of difficult control parameter surfaces 

where the IFT algorithm was not very effective in the 

optimizing process. 

Data from Fig. 2(a) were filtered using a robust implement of 

a weighted moving average filter, where any values over 6 

standard deviations were ignored, and the span size is 10 

samples. The result of this operation is shown in Fig. 2(b). It 

is immediately obvious that the average settling time remains 

constant as     is increased from        to around 

      , but increases exponentially when    increases 

further. To further highlight the trend and obtain a numeric 

representation of the optimal range of values for   , resulting 

data from Fig. 2(b) was further fitted using a 5
th

 order 

polynomial. The optimal range of    was calculated using a 

5% tolerance from the minimum value in the fitted 

polynomial. For system set   , the calculated optimal    

range is from        to           . 

 

Fig. 1 Two degrees-of-freedom closed-loop control system 

for simulation. 
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 Simulation Set 2 3.3

The simulated system    is: 

   ( )  
 

(   )(    )(     ) (     )
, (10) 

where   is an integer from 1 to 3, and   is a real number 

ranging from 1 to 5. For this system set there is no delay 

specified for the plant transfer function. Due to the absence of 

any delay, a lower limit for settling time    of 100 s is used. 

Fig. 3(a) shows a scatter plot of the convergent data points. It 

can be seen that there is a distinct separate outlier group 

around     5 s, which does not follow the main trend. These 

outlier points indicate that the value of    does not affect the 

tuning results for those systems sets, possibly due to the 

transfer function being too simple to tune. These outlier data 

points were then removed and the result is shown in Fig. 

3(b). Again the scatterplot was then clarified using the same 

weighted moving average method, and the result is shown in 

Fig. 3(c). It can be seen that the trend is different to the one in 

Simulation 1, with the settling time value    at a constant 

value towards the lower end of the spectrum, and dipping to a 

minimum value at around        
  , before rising 

sharply when    is increased further. When the data points in 

Fig. 3(c) were further fitted using the automated polynomial 

fitting function however, the result was not satisfactory using 

any order, so it was decided to manually calculate the optimal 

range of   . The minimum settling time determined was 

16.875 s, and the range of    value within a 5% tolerance 

value was calculated to be from            to       
    . Additionally, it can also be noted from all three plots in 

Fig. 3 that when outside of the optimal    zone, the spread of 

the settling time increases. This denotes that the performance 

of the IFT algorithm is less consistent outside of the optimal 

   zone. 

 

 Simulation Set 3 3.4

The simulated system    is: 

   ( )  
    

(   ) 
    , (11) 

where   is a real number from 0.1 to 4, and   is an integer 

delay from 0 to 5. The limit for the settling time is set at 150 

 

Fig. 2 (a) Settling time vs. weighting factor after 5000 

optimization routines for plant   . (b) Correlation 

clarified with a weighted moving average filter using a 

span of 10 samples. 

 

 

 

 

 

 

 

 

 
 

Fig. 3 (a) Settling time vs. weighting factor after 5000 

optimization routines for plant   . (b) Settling time vs. 

weighting factor with lower outliers removed. (c) 

Correlation clarified with a weighted moving average 

filter using a span of 10 samples. 
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s. Note that for this system set the plant has a nonminimum 

phase zero. The convergent data points are shown in Fig. 

4(a), and one can see that for this set the data points are 

clustered tightly together due to the plant transfer function 

denominator staying the same throughout the test. These data 

points were smoothed out using the same weighted moving 

average filter as previous simulations, with the result shown 

in Fig. 4(b). Again a 5
th

 order polynomial was fitted in order 

to give a numeric answer for the optimal range of   , which 

was calculated to be from        to           . It is 

also worth noting that the spread of data points in Fig. 4(a) 

increases when    is below       , indicating some 

instability with a design criterion that focuses almost purely 

on the error component. This behavior is consistent with the 

observation made in simulation set 2. 

 

 Simulation Set 4 3.5

The simulated system    is: 

   ( )  
 

(    ) 
    , (12) 

where   is a real number from 0.1 to 10, and   is an integer 

delay from 0 to 10. The limit for the settling time is set at 175 

s. Fig. 5(a) shows the convergent data points. It can be seen 

that the variance for the settling time for this plant set is 

much larger than other system sets, indicating that the 

balance between the error and the control signal component is 

not as significant on the settling time    when compared to 

other simulations. While the overall trend is less obvious, an 

outlier group similar to the one in simulation 2 is present. 

These data points, defined as       s were removed and 

the result of this operation is shown in Fig. 5(b). Even though 

the trend is less clear for this system set, the usage of the 10 

sample span weighted moving average filter was able to 

distill the correlation between    and   , which is shown in 

Fig. 5(c). As in previous simulations, a 5
th

 order polynomial 

was fitted to the smoothed data points and an optimal    

range was calculated to be from        to           . 

Also note that even though the automated polynomial fit gave 

the bottom limit value of       , in Fig. 5(c) it can be seen 

that the data points trend slightly upwards towards the lower 

limit of   , indicating a possible rebound similar to 

Simulation 2, though this may just be due to the stochastic 

nature of the Monte Carlo Method. 

 

 

Fig. 4 (a) Settling time vs. weighting factor after 5000 

optimization routines for plant   . (b) Correlation 

clarified with a weighted moving average filter using a 

span of 10 samples. 

 

 

Fig. 5 (a) Settling time vs. weighting factor after 5000 

optimization routines for plant   . (b) Settling time vs. 

weighting factor with lower outliers removed. (c) 

Correlation clarified with a weighted moving average 

filter using a span of 10 samples. 
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4 CONCLUSION 

In this paper, a normalized design criterion for IFT with a 

normalized weighting factor    is presented in order to 

compare the performance of the tuning process across 

different systems. Four sets of transfer functions were 

analyzed using the Monte Carlo method, where two variables 

from each plant transfer functions, along with the variable    

were varied stochastically to create a new test point for each 

sample. 5000 test samples for each simulation set were run 

and the calculated optimal    range is shown in Table 1. 

While the lower limit of    set for the simulations was 

      , the settling time trend is steady around that limit 

and is not expected to change significantly as by that point 

the design criterion becomes almost purely error based. By 

considering the results from all four sets of simulations, it is 

recommended that the weighting factor    range for testing 

using the normalized design criterion is from        to 

      , for a step input. 

Table 1. Summary of Simulation Results 

Set 
Optimal    Range 

Lower value Upper value Note 

1                  - 

2                     

Increased variance 

outside the optimal 

   range 

3                  

Increased variance 

when      
     

4                  

Slight upwards 

trend towards 

lower limit 
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