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Abstract: In this study, the usefulness of a fractional order PID (proportional plus integral plus 

derivative)-type controller is investigated on the control of an electromechanical control actuation 

system. In this extent, the mathematical model of an electromechanically-actuated control actuation 

system considered is obtained in the continuous time domain first and then a control system with an 
integer PID-type controller is constructed by regarding this model. Having performed the computer 

simulations using the fractional order controllers which are designated by defining the integral and 

derivative actions in a fractional manner, the transient response characteristics of the proposed fractional 

order control systems are compared to those of the integer order control systems. Eventually, it is 

observed that satisfactory results are attained such that they can safely be implemented on a physical 

control actuation system mechanism developed. 
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

1. INTRODUCTION 

One of the most important subsystems of the aerial systems 

such as unmanned aerial vehicles and guided munitions is 
control actuation systems (CASs) which are utilized to travel 

those systems along specified trajectories. The CASs which 

are designed in an electromechanical manner for short- and 

medium-range aerial systems are developed so as to realize 

the command signals to the deflections of the control surfaces 

under the effect of aerodynamic loads acting on these 

surfaces. The mentioned control problem becomes more 

complicated especially within the transonic flight regime in 

which both the amplitude and direction of the aerodynamic 

loads might alter and in such cases; it may be not possible to 

keep the stability of the CAS considered by means of the 
classical control approaches. To resolve this problem, robust 

control methods including sliding mode control and H 
control have been introduced as alternatives to classical 

control with PID action in recent studies (Özkan, 2005). 

The algorithms involving fractional order PID-type 

controllers constitute one of the design choices for CASs. 

Specifically, the ability of the fractional order integral action 

on describing and modeling real objects more accurately than 

the classical integral action leads the fractional order control 

approach to gain more popularity (Kumar, 2013). On the 

other hand, the fractional order control algorithms which 

were not implemented by a near-past due to the insufficiency 

of the mathematical tools used in the solution could have 
been realized thanks to the new mathematical methods 

supported by the recent improvements in the computer 

technology (Chen et al., 2009 and Khalil et al., 2009). As 

symbols  and µ denote the orders of the integral and 
derivative gains, respectively, the fractional order PID-type 

controllers which are often expressed as PIDµ (PID in 

some of the studies by replacing µ with ) provide designers 
with optimizing the performance parameters for the CAS 

specified by adjusting coefficients  and µ as well as the 
proportional, integral, and derivative gains (Bhaskaran, 2007, 

Chen et al., 2009, Petráš, 2009, Kumar, 2013, and Zhao et 

al., 2005). In some applications including direct current (DC) 

electrical motor control problems, the fractional order 

controller having either PI rule only by setting µ=0 or PDµ 

rule only by assigning =0 are encountered along with certain 

parameter tuning methods (Copot et al., 2013 and Melício et 
al., 2010). The optimization task mentioned above can be 

carried out using the cost functions designated with regard to 

the requirements and relevant constraints in addition to 

utilizing several optimization algorithms defined in the 

frequency domain (Zhao et al., 2005 and Bettou and Charef, 

2006). One of the most widely-used parameter determination 

studies done in the time domain is the approach in which the 

 and µ values are obtained by minimizing the sum of the 
squares of the real and imaginary parts of the poles of the 

control system and the phase angle of the system response so 

as to satisfy the specified bandwidth and damping ratio 

quantities (Biswas et al., 2009). Besides, the works handling 

the determination of parameters  and µ according to the 
Hall-Sartorius Method which regards minimizing the sum of 
the squares of the error terms are encountered in the literature 

(Bettou and Charef, 2006). While the controller gains 

computed by considering the models constructed in the 

continuous time domain are usually used in the discrete time 

domain, PID-type controllers which are directly designed in 

the discrete time domain are also available (Khalil et al., 

2009 and Petráš, 2009). In transferring the controller gains 

obtained in the continuous time domain to the discrete time 
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domain, some convenient approximation techniques such as 

the expansion to power series and modified estimation 

methods are utilized (Chen et al., 2009 and Xue et al., 2006). 

Unlike the optimization approach explained above, the 

applications in which the gains of a classical integer PID-type 

controller where =µ=1 are found by means of an appropriate 
method such as the pole placement technique and then 

parameters  and µ are treated as additional design variables 
and they are usually reached by trial and error within selected 

ranges appear as well (Bettou and Charef, 2006 and 

Podlubny, 1999). In this extent, studies handling the trial and 

error iteration according to a phase margin specification are 

also faced with (Shekher et al., 2012).  

In this study, an electromechanically-actuated CAS which is 
developed to be utilized in a guided munition is considered. 

In this extent, the aim is at designing a control system upon 

the CAS such that it maintains the stability of the CAS under 

the aerodynamic loads acting on the end effectors, i.e. fins, 

connected to the rods of the CAS while catching the specified 

performance requirements. Once the most appropriate control 

system is decided at the end of the relevant computer 

simulations, the forthcoming task is to implement it on a 

manufactured physical CAS. That means the present work 

has an importance because its results will be directly applied 

on a physical CAS mechanism. For this purpose, after 
evaluating all the possible fractional order control system 

design approaches briefly explained above, first the gains of a 

classical integer PID-type controller are obtained for an 

electromechanically-actuated CAS. Afterwards, it is tried to 

be decided on the values of parameters  and µ considering 
the numerical values given in the related works. While 

making this decision, a number of different  and µ values 
are evaluated.  In the end of the computer simulations 

performed using modules SIMULINK and NINTEGER of 

the software MATLAB in accordance with the parameter 
ranges that are set by respecting the numerical values 

presented in the relevant studies, the performance 

characteristics of the designed fractional order control 

systems are compared to those of their integer order 

counterparts (Valério and Costa, 2004). Using the data 

acquired from the simulations, the effect of the variations in 

parameters  and µ is investigated on the transient system 
response under the electrical current restriction coming from 

the driving card utilized in the control of the CAS. 

2. DYNAMIC MODELING OF THE CONTROL 
ACTUATION SYSTEM 

 

Fig. 1. Schematic view of the electromechanically-actuated 

control actuation system. 

The schematic representation of the considered 

electromechanical CAS which is essentially composed of a 

DC electrical motor, gearbox, and fin is given in Fig. 1. 

The definitions given in Fig. 1. are listed as follows: 

 Vc :  Supply voltage of the DC motor  

 R :  Internal resistance of the DC motor  

 L :  Inductance of the DC motor 

 Vb :  Armature voltage of the DC motor. 

 Jm :  Moment of inertia of the rotor of the DC motor 

   which is reduced to the output shaft of the motor 

 Bm : Viscous friction coefficient between the output shaft 
   of the DC motor and support bearing 

 Tm :  Torque on the output shaft of the DC motor 

 m :  Angular displacement of the output shaft of the DC 
   motor 

 N :  Reduction ratio of the gearbox 

 Tf :  Torque on the fin connecting rod 

 f :  Angular displacement of the fin connecting rod 
 Jf : Moment of inertia of the fin which is reduced to the 

   fin connecting rod 

 Bf : Viscous friction coefficient between the fin  

   connecting rod and support bearing 

 Kf :  Torsional stiffness of the fin 

 THM: Hinge moment resulted from the aerodynamic effects 

   on the fin 

The equation of motion of the CAS under consideration is 

obtained in the following manner as Je, Be, and Ke stand for 

the equivalent moment of inertia, equivalent viscous friction 

coefficient, and equivalent stiffness on the fin connecting rod, 
respectively (Özkan, 2005): 

HMfefefef TKBJT     (1) 

where mfe JNJJ 2 , mfe BNBB 2 , and fe KK  . 

After making intermediate calculations, the dynamic model 

of the CAS is found in the following form as Vc constitutes 

the system input (Özkan, 2005):  

  )/( NKTKBJRV tHMfefefec    (2) 

where Kt denotes the DC motor constant. 

Although the derived mathematical model of the CAS given 

in equation (2) seems to be quite simple, it is sufficient 

enough to represent the basic dynamic behaviour of an 

electromechanical actuation system which involves a DC 

electrical motor especially in its physical implementation. 

Moreover, Kt parameter can be kept almost constant within 
the operation region of the CAS and the gearbox has a 

constant N value. Evaluating all these properties together as 

well as the accurately-calculated Je, Be, and Ke parameters, it 

can be claimed that this linear model suffices in describing 

the dynamic of the considered CAS. 

3. DESIGN OF THE CONTROL SYSTEM 

The block diagram of the control system which is constructed 

for the considered electromechanically-actuated CAS to bring 

the fin into desired angular positions is shown in Fig. 2. Here, 

symbols fd, Gc(s), E, and I correspond to the desired fin 
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angle, controller transfer function, angular position error, and 

controller output current, respectively. 

In the present study, the control of a CAS whose dynamic 

model is established as given in equation (2) by means of             

a fractional order PID-type controller is dealt with. As Kp, Ki, 

and Kd represent the proportional, integral, and derivative 

gains of the controller, respectively, the transfer function of 

the fractional order PID-type controller [Gc(s)] can be written 

in its most general form as follows (Chen et al., 2009 and 

Biswas et al., 2009): 

      sKsKKsG dipc /  (3) 

One of the possible ways in the determination of the gains of 
the fractional order controller is to design the controller as an 

integer PID and then to assign the fraction rates of the 

integral and derivative actions in a manner suitable with the 

specified ranges (Bettou and Charef, 2006). Obeying this 

procedure for =µ=1, the forthcoming expression is reached 
for the fin angle in the Laplace domain by regarding the 

block diagram in Fig. 2.: 

         sTsGssGs HMTfdf d    (4) 

Here, transfer functions  sG
d and  sGT are defined in the 

following fashion: 

 
1

1

1
2

2
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3

1
2

2




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
sdsdsd

snsn
sG

d
 (5)

 
11

2
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3
3
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sdsdsd

sn
sG T

T  (6) 

In equation (6), as it KKN , definitions ip KKn /1  , 

id KKn /2  ,  /1 RnT ,    /1 pte KKNKRd , 

   /2 dte KKNBRd , and  /3 eJRd  are introduced. 

The controller gains can be determined by placing the poles 

of the closed loop control system on the complex plane such 

that they satisfy the specified bandwidth and damping ratio 

values (Özkan, 2005). For this purpose, as c and c indicate 
the desired bandwidth in rad/s and damping ratio, 

respectively, the characteristic polynomial seen in the 

denominators of equations (5) and (6) as given in equation 

(7) as well is equated to the characteristic polynomial of a 

standard third-order system as in equation (8): 

  11
2

2
3

3  sdsdsdsD  (7) 
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 (8) 

By equating the coefficients of the terms at the same order of 
variable “s” for equations (7) and (8), Kp, Ki, and Kd are 

found as follows: 

   tcecp KNJK /12 2  (9) 

   tcei KNJK /3  (10) 

    tececd KNBJK /12   (11) 

Although it is not a strict rule, the fractional order control 

system which is established by the use of the controller gains 

calculated above along with  and  that are clarified in 
accordance with a certain performance criterion guarantees 

the stability of the system provided that magnitudes of  and 

 do not exceed 1 and also contributes the robustness of the 
system to be improved thanks to the advantage of capability 

for adjusting these two extra parameters as well (Khalil et al., 
2009 and Xue et al., 2006). 

4. COMPUTER SIMULATIONS 

The numerical values considered for the parameters of the 

electromechanical control actuation system are submitted in 

Table 1. 

Table 1. Numerical values used in the simulations 

Parameter 
Numerical 

Value 
Parameter 

Numerical 

Value  

Je  0.25 kgm2 N 45 

Be  0.01 Nms/rad fc 10 Hz 

Kt  0.35 Nm/A c 0.7 

The relevant computer simulations are carried out in the 

MATLAB SIMULINK environment and using the 

NINTEGER tool developed for the design of the fractional 
order and nonlinear control systems. Since the primary goal 

is to observe the effects of the different values of  and  
parameters of a PID type controllers, the integer order 

(==1) PID controller is selected for performance 
comparison. Also, the Crone Method is utilized in the design 

of the fractional order controller. In the simulations 
performed in the discrete time domain with sampling 

frequency of 2 kHz, the duration of each simulation is set to 

be 0.5 s and the ODE5 Dormand-Price solver is selected with 

a constant step. The gain of the electronic driving card used 

in the control of the DC motor of the electromechanical 

system is assumed to be unity because its operating frequency  

 

Fig. 2. Block diagram of the control actuation system. 
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is at the order of 100 times the bandwidth of the closed loop 

control system and the current limit is added to the model 

within the range of ±10 A. Moreover, the reference fin angle 

is supplied with the amplitude of 5. Lastly, it is supposed 
that the aerodynamic hinge moment acting on the fins varies 

randomly within the interval of ±100 Nm. The ranges 

considered for the numerical values of parameters  and µ for 
the designed fractional order PID-type controllers are 

assigned by accounting the optimized quantities given in the 

related studies as in Table 2 (Khalil et al., 2009, Petráš, 2009, 

Zhao et al., 2005, Bettou and Charef, 2006, Biswas et al., 

2009, and Xue et al., 2006). 

In the end of the computer simulations performed under the 

conditions explained above, the maximum current, maximum 

overshoot, settling time, and steady state error results are 

presented in Table 2 for the integer order PID (IPID) and 
fractional order PID (FPID) controllers. The plots showing 

the system response and control current requirement (current 

command) are given in Fig. 3 through Fig. 12 for the chosen 

sample control systems proposed. 

Tablo 1: Results obtained for the considered controllers 

with the current limit of 10 A 
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 µ 

IPID 1 1 10 6.88 98 0 

FPID-1 0.1 

0.5 
> 10 

8.30 100 0 

FPID-2 0.5 4.67 110 0.33 

FPID-3 
0.8 

3.35 200 1.65 

FPID-4 0.9 3.28 200 1.72 

 

 
Fig. 3. Responses of the designed control systems with the 
current limit of ±10 A. 

 

 
Fig. 4. Current requirement of the IPID control system with 

the current limit of ±10 A. 

 

 
Fig. 5. Current requirement of the FPID-1 control system 
with the current limit of ±10 A. 

 
Fig. 6. Current requirement of the FPID-2 control system 

with the current limit of ±10 A. 
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Fig. 7. Current requirement of the FPID-3 control system 

with the current limit of ±10 A. 
 

 
Fig. 8. Responses of the designed control systems without 

any current limit. 

 

 
Fig. 9. Current requirement of the IPID control system 

without any current limit. 

 

 
Fig. 10. Current requirement of the FPID-1 control system 

without any current limit. 

 

 
Fig. 11. Current requirement of the FPID-2 control system 

without any current limit. 

 
Fig. 12. Current requirement of the FPID-3 control system 

without any current limit. 
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5. DISCUSSION AND CONCLUSION 

As per the computer simulations for the electromechanically-

actuated CAS considered, it can be concluded that the 

proposed fractional order control systems yield satisfactory 

results especially in the sense of the system stability and 

robustness against the disturbance which is regarded as the 

hinge moment influencing the CAS with a randomly-varying 

characteristic within a specified interval. When the data 

acquired from the computer simulations are evaluated, it is 

obvious that the maximum overshoot diminishes as the 

values of parameters  and  approach unity whereas the 
settling time and steady state error grow. Regarding the 

current capacity of the driving card of the DC motor, the 
steady state error is nullified for all of the simulation models 

constructed with regard of the different values of  and . 
Yet, the current requirement of the control system reaches 

huge levels that cannot be satisfied physically accordingly 

with the increments in  and . On the other hand, smaller 
steady state errors are encountered in more realistic 

simulations accounting the limitations of the driving card of 

the DC motor involving  and  parameters with lower 
values but more maximum overshoot and more oscillations in 

the system response. This situation is originated from the fact 

that the current demand required to nullify the steady state 

error cannot be satisfied under the current limit regarded. Due 

to the unsatisfied current demand, it seen from the graphs that 

the control current become quite oscillatory. In fact, this 

behaviour can be eliminated or at least minimized by 

elaborating  and  parameters a little more. Also, increasing 

 and  leads the oscillations in the system response to 
decrease considerably but to enlarge the steady state error. 

Another significant output of the present study is that the 

increase in parameter  which corresponds to the fractional 
order of the derivative action makes the maximum overshoot 

decrease. This growth does not cause any change in the 

settling time while it results a higher steady state error. 

Actually, the fractional order PID controller has two more 

parameters, namely  and , to be adjusted for optimization 
the performance of the considered system than the classical 

integer PID-type controller. Therefore, the present study does 

not reflect the results of an exact and fair comparison of 

fractional and integer type controllers but it can be used to 

gain a basic insight on the advantages of the implementation 

of a fractional order controller. 

In the adaptation of the fractional order PID-type controllers 

to the real-time systems via test setups developed in a 
specific manner, it is recorded in the relevant literature that 

certain problems come into the picture in the sense of 

catching the control system requirements including speed 

(Chen et al., 2009, Petráš, 2009, and Bettou and Charef, 

2006). Thus, the computer simulations performed should be 

repeated using a test setup designed on purpose so that such 

difficulties can be observed and recommendations on the 

solution can be made. Furthermore, it is advised that the 

performance characteristics of the proposed fractional order 

PID-type control systems be investigated against parameter 

uncertainties and control strategies other than the integer 

order PID-type controller be utilized for comparison purpose. 
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