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Abstract: This work studies the leaderless consensus problem in networks composed of non-
identical flexible-joint robot manipulators. Using standard functional analysis, i.e., Barbǎlat’s
Lemma, it is established that a simple control law provides a solution to the leaderless
consensus problem. The network is modeled as an undirected graph and the interconnection can
exhibit variable time-delays. The proposed controller consists of two different terms, one that
dynamically compensates the robot gravity and another which ensures the desired consensus
objective. This last term is a simple Proportional plus damping scheme. Simulations, using a
network with nine 2-degrees of freedom manipulators, are provided to support the theoretical
contributions of this work.
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1. INTRODUCTION

Using a distributed controller, the leaderless consensus
control objective is to reach an agreement between certain
coordinates of interest of the network of EL-systems. The
solutions to these problems have recently attracted the
attention of the research community in different fields,
such as biology, physics, control theory and robotics. For
fully-actuated systems, refer to (Olfati-Saber et al., 2007;
Scardovi and Sepulchre, 2009; Ren, 2008), for solutions
with linear agents, and to (Yu et al., 2011; Scardovi
et al., 2009; Stan and Sepulchre, 2007; Zhao et al., 2009;
Nuño et al., 2011), for solutions with different classes
of nonlinear agents. The practical applications of the
theoretical results of this work span different areas such
as underwater and space exploration (underwater cultural
heritage recovery, coordination of clusters of satellites,
synchronization of spacecrafts), hazardous environments
(search and rescue missions, military operations), and
service robotics (commercial cleaning, material handling,
furniture assembly, etc.).

Consensus of networks of EL-systems without time-delays
has been considered in (Ren, 2009; Mei et al., 2011) us-
ing simple proportional controllers together with filtered
velocities. Actuator saturation is also considered in (Ren,
2009). The work of Nuño et al. (2011) proposes an adap-
tive controller for EL-systems that solves the consensus
problem with constant time-delays. Further results are
those in (Liu and Chopra, 2012) and in (Hatanaka et al.,

2012), which consider the consensus problem in Cartesian
space with constant delays. Recently, in (Nuño et al.,
2012) it has been proved that networks composed by non-
identical EL-systems with variable time–delays can reach
a consensus, using Proportional plus damping injection
(P+d) controllers, provided enough damping is injected.
The work of Munz et al. (2011) provides a robust controller
for the leaderless consensus for multiple fully-actuated
nonlinear systems with relative degree two. It should be
underscored that, all these previous results deal with fully–
actuated EL-systems (fully–actuated robots). However, in
diverse applications, including space and surgical robots,
the use of thin, lightweight and cable-driven manipulators
is increasing. These systems exhibit joint or link flexibility
and hence they are under-actuated mechanical systems.
See (Tavakoli and Howe, 2009; Morita et al., 2007; Mah-
vash and Dupont, 2008) for the application of linearized
flexible-joint manipulators in teleoperation systems. Fur-
thermore, it must be noted that, as it has been shown by
Tavakoli and Howe (2009), the lumped (linear) dynamics
of a flexible link is identical to the (linear) dynamics of a
flexible joint.

Even for single under-actuated systems, proposing sta-
bilizing controllers has been a non-trivial task due, in
particular, to the presence of the gravity term that cannot
be canceled. Hence, the need to search for solutions that
hinged upon elaborate Lyapunov analysis to indirectly
dominate gravity while ensuring the convergence to the
desired equilibrium. A first solution to the regulation con-
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trol problem for single flexible-joint robots with full state
measurement has been proposed by Tomei (1991). It has
been later extended to the case with only joint position
measurements by Ailon and Ortega (1993); Kelly (1993).
In (Kelly et al., 1994; Ortega et al., 1998) an interpretation
of these controllers in terms of energy-shaping is given.
The recent works of Luca and Flacco (2010, 2011) propose
a dynamic gravity cancelation controller which aims at
providing better performance than the previous regulation
schemes (Luca et al., 2005).

The literature on the control of networks of under-actuated
EL-systems is scarce, since, in this case the number of
inputs is strictly less than the degrees-of-freedom and
designing a controller is far more complicated. Few re-
markable exceptions are (Nair and Leonard, 2008; Lee,
2012; Avila-Becerril and Espinosa-Pérez, 2012) and, more
recently, (Avila-Becerril et al., 2014; Nuño et al., 2013). In
(Nair and Leonard, 2008) the Controlled–Lagrangian tech-
nique is employed to solve the leaderless consensus in net-
works without delays. (Lee, 2012) presents a backstepping
controller for the centroid formation control of multiple
thrust propelled vehicles in the Special Euclidean space
of dimension three for strongly-connected and balanced
graphs without interconnection time-delays. Via a full-
state feedback controller, for general directed graphs with
constant time-delays, and under the assumption that the
initial conditions are known, (Avila-Becerril and Espinosa-
Pérez, 2012) propose the first solutions to the leaderless
consensus problem. (Avila-Becerril et al., 2014) find the
solution to the leaderless consensus problem eliminating
the assumption of the knowledge of the initial conditions
of (Avila-Becerril and Espinosa-Pérez, 2012). The authors
previous work (Nuño et al., 2013) deal with the leaderless
consensus problem for flexible-joint manipulators assum-
ing that the effects of the gravity forces are absent from
the EL-dynamics.

Under the assumption that the interconnection graph is
undirected, and inspired by the work of Luca and Flacco
(2010, 2011), this paper proposes a novel controller com-
posed of a dynamic gravity cancelation term together
with a simple P+d controller which provides a Globally
Asymptotically Stable (GAS) solution to the leaderless
consensus problem. Furthermore, the proposed scheme is
robust to bounded interconnection variable time-delays.
Simulations, using a network with nine 2-degrees of free-
dom manipulators, are provided to support the theoretical
contributions of this work.

2. FLEXIBLE–JOINT ROBOT MANIPULATORS

This work considers networks composed of N non-
identical, flexible–joint robot manipulators with n-DOF.
Directly actuated, revolute joints robots are assumed and
the simplified model for flexibility of Spong et al. (2005) is
adopted. The dynamics of each i-th manipulator is given
by

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + gi(qi) + Si(qi − θi) = 0n

Jiθ̈i + Si(θi − qi) = τ i (1)

where qi ∈ R
n is the link angular position and θi ∈ R

n is
the joint (motor) angular position. The matrix Mi(qi) ∈

R
n×n is the inertia matrix, the matrix Ci(qi, q̇i) ∈ R

n×n

describes the Coriolis and centrifugal effects (defined via
the Christoffel symbols of the first kind), the vector gi(qi)
is the gravity force, the matrix Ji ∈ R

n×n is the motor
inertia at the joints, which is symmetric and positive
definite, the matrix Si ∈ R

n×n is the joint stiffness which
is also symmetric and positive definite and the vector τ i ∈
R

n is the control input. The subindex i ∈ N̄ := {1, . . . , N}.

Dynamics (1) possess some important and well-known
properties and thus they are used throughout this paper
(Spong et al., 2005; Kelly et al., 2005).

P1. Mi(qi) is symmetric and there exist λmi, λMi > 0
such that 0 < λmiIn ≤ Mi(qi) ≤ λMiIn < ∞.

P2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

P3. There exists kgi > 0 such that
∣

∣

∂gi(qi)
∂qi

∣

∣ ≤ kgi.

3. MODELING THE INTERCONNECTION

The interconnection of the N agents is modeled using the
Laplacian matrix L := [ℓij ] ∈ R

N×N , whose elements are
defined as

ℓij =







∑

j∈Ni

wij i = j

−wij i 6= j

(2)

where wij > 0 if j ∈ Ni and wij = 0 otherwise. Ni is the
set of agents transmitting information to the i-th robot.

In order to ensure that the interconnection forces are
generated by the gradient of a potential function, the
following assumption is used in this paper:

A1. The robot interconnection graph is undirected and
connected.

Note that, by construction, L has a zero row sum, i.e.,
L1N = 0N . Moreover, Assumption A1, ensures that L
is symmetric, has a single zero-eigenvalue and that the
rest of the spectrum of L has positive real parts. Thus,
rank(L) = N − 1 (Olfati-Saber and Murray, 2004).

The information exchange between the i-th and the j-th
agent is subject to a variable time-delay, denoted Tji(t) ≥
0. It is assumed that the time-delays satisfy the following:

A2. The variable time-delay Tji(t) has a known upper
bound ∗Tji, i.e., 0 ≤ Tji(t) ≤ ∗Tji < ∞, and its
first and second time-derivatives are bounded.

4. PROPOSED CONTROLLER WITH DYNAMIC
GRAVITY COMPENSATION

The control objective is to ensure that all EL-agents
link positions reach a common consensus point, while the
generalized velocities asymptotically converge to zero, i.e.
for all i ∈ N̄ and any qc ∈ R

n,

lim
t→∞

qi(t) = qc, lim
t→∞

q̇i(t) = 0. (3)

To achieve such objective and inspired by the exact gravity
cancelation scheme of (Luca and Flacco, 2010, 2011), let
us define a new variable xi ∈ R

n as

xi := θi − S−1
i gi(qi). (4)

Using (4) and defining the controller

τ i = τ̄ i + gi(qi) + JiS
−1
i g̈i(qi)− diẋi, (5)
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where di ∈ R>0 is the damping gain and τ̄ i ∈ R
n is the

interconnection controller term that will be defined later,
the flexible-joint robot manipulator dynamics (1) can be
written as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + Si(qi − xi) = 0n

Jiẍi + diẋi + Si(xi − qi) = τ̄ i

Let us now define τ̄ i as the interconnection control term
given by

τ̄ i = −ki
∑

j∈Ni

wij

(

xi − xj

(

t− Tji(t)
)

)

, (6)

where ki ∈ R>0 is the proportional gain.

The closed-loop system (1), (5) and (6) is

q̈i = −M−1
i (qi)

[

Ci(qi, q̇i)q̇i + Si(qi − xi)
]

ẍi = −J−1
i

[

diẋi + Si(xi − qi)
]

−kiJ
−1
i

∑

j∈Ni

wij

(

xi − xj

(

t− Tji(t)
)

)

.

(7)

Before presenting the solution to the consensus problem let
us state the following lemma, which is used in the proof of
the main results and has been borrowed from (Nuño et al.,
2009).

Lemma 1. For any vector signals y, z ∈ R
n, any variable

time-delay 0 ≤ T (t) ≤ ∗T < ∞ and any constant α > 0,
the following inequality holds

−

∫ t

0

y⊤(σ)

∫ σ

σ−T (σ)

z(θ)dθdσ ≤
α

2
‖y‖22 +

∗T 2

2α
‖z‖22.

⋄

Proposition 1. Consider a network of nonidentical flexible-
joint manipulators of the form (1). Assume that the agents
are interconnected through a communication graph with
different variable time-delays characterized by Assump-
tions A1 and A2. Then, the control law (5)-(6) ensures
that (3) holds provided that the controller gains are set
according to

2di > kiℓiiαi + ki
∑

j∈Ni

wij

∗T 2
ji

αj

, ∀i ∈ N̄ (8)

where αi is any positive constant. ⋄

Proof. Every i-th closed-loop system (7) exhibits the
following energy function

Ei := Ki(q̇i, ẋi) + Ui(qi,xi),

where Ki is the kinetic energy, given by

Ki =
1

2

[

q̇⊤
i Mi(qi)q̇i + ẋ⊤

i Jiẋi

]

,

and Ui is the potential energy stored in the virtual link
between the xi-coordinate and the link position, such that

Ui(qi,xi) = (xi − qi)
⊤Si(xi − qi).

Evaluating Ėi along (7) and using Property P2, yields

Ėi = −di
∣

∣ẋi

∣

∣

2
− ki

∑

j∈Ni

wij ẋ
⊤
i

(

xi − xj

(

t− Tji(t)
)

)

.

Now, the scaled total energy plus the potential energy in
the interconnection is given by

E :=
∑

i∈N̄





1

ki
Ei +

1

4

∑

j∈Ni

wij

∣

∣xi − xj

∣

∣

2



 . (9)

Using the fact that

xj − xj

(

t− Tji(t)
)

=

∫ t

t−Tji(t)

ẋj(θ)dθ,

and using Ėi returns

Ė = −
∑

i∈N̄





di

ki

∣

∣ẋi

∣

∣

2
+
∑

j∈Ni

wij ẋ
⊤
i

∫ t

t−Tji(t)

ẋj(θ)dθ



 .

Since E does not qualify as a bona fide Lyapunov-Function
and in order to establish this proof a similar procedure as
in (Nuño et al., 2013) is used. For, let us first integrate Ė ,
from 0 to t. This yields

E(t)− E(0) = −
∑

i∈N̄

di

ki

∫ t

0

∣

∣ẋi(σ)
∣

∣

2
dσ

−
∑

i∈N̄

∑

j∈Ni

wij

∫ t

0

ẋ⊤
i (σ)

∫ σ

σ−Tji(σ)

ẋj(θ)dθdσ.

Applying Lemma 1 to the double integral term, with
αi > 0, yields

E(t)− E(0) ≤−
∑

i∈N̄

di

ki
‖ẋi‖

2
2 +

+
∑

i∈N̄

∑

j∈Ni

wij

(

αi

2
‖ẋi‖

2
2 +

∗T 2
ji

2αj

‖ẋj‖
2
2

)

.

Recalling that ℓii =
∑

j∈Ni

wij then it holds that

E(t)− E(0) ≤−
∑

i∈N̄

∑

j∈Ni

wij

(

di

kiℓii
−

αi

2

)

‖ẋi‖
2
2

+
∑

i∈N̄

∑

j∈Ni

wij

∗T 2
ji

2αj

‖ẋj‖
2
2,

which can be further written as

E(t) + 1⊤
NΨcol

(

‖ẋ1‖
2
2, · · · , ‖ẋN‖22

)

≤ E(0)

where

Ψ =





















d1

k1
−

ℓ11α1

2
−
a12

∗T 2
21

2α1
· · · −

a1N
∗T 2

N1

2α1

−
a21

∗T 2
12

2α2

d2

k2
−

ℓ22α2

2
· · · −

a2N
∗T 2

N2

2α2
...

...
. . .

...

−
aN1

∗T 2
1N

2αN

−
aN2

∗T 2
2N

2αN

· · ·
dN

kN
−

ℓNNαN

2





















Clearly, if di is set according to (8) then there exists

µ ∈ R
n, defined as µ := Ψ⊤1N , such that µi > 0, for

all i ∈ N̄ . Hence E(t) +
∑

i∈N̄

µi‖ẋi‖
2
2 ≤ E(0).

Thus ẋi ∈ L2 and E ∈ L∞. Since E is positive definite
and radially unbounded with regards to q̇i, ẋi, |xi − qi|,
E ∈ L∞ implies that q̇i, ẋi, |xi − qi| ∈ L∞ for all i ∈ N̄
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and j ∈ Ni. From the closed-loop system (7), all these
bounded signals ensure that ẍi ∈ L∞. Invoking Barbalăt’s
Lemma with ẋi ∈ L∞ ∩L2 and ẍi ∈ L∞ supports the fact
that lim

t→∞
ẋi(t) = 0n.

Now, using (1) and (5) it can be shown that

d

dt
ẍi = −J−1

i

[

diẍi + Si(ẋi − q̇i)− ˙̄τ i

]

. (10)

Furthermore, since ẍi, ẋi, q̇i ∈ L∞ and Assumption A2
then d

dt
ẍi ∈ L∞. This last together with

lim
t→∞

∫ t

0

ẍi(σ)dσ = lim
t→∞

ẋi(t)− ẋi(0) = −ẋi(0),

supports the claim that lim
t→∞

ẍi(t) = 0n, according to

Barbalăt’s Lemma.

Note that all signals on the right-hand-side of (10) asymp-
totically converge to zero, except q̇i. If it is proved that
lim
t→∞

d
dt
ẍi(t) = 0n, then lim

t→∞
q̇i(t) = 0n. In fact, (10) and

boundedness of d
dt
ẍi, ẍi, q̈i together with Assumption A2

ensure that d
dt
ẍi is uniformly continuous, which together

with the fact that convergence to zero of ẍi implies that

lim
t→∞

∫ t

0

d

dt
ẍi(σ)dσ = lim

t→∞
ẍi(t)− ẍi(0) = −ẍi(0),

ensures that lim
t→∞

d
dt
ẍi(t) = 0n, as needed. Finally,

lim
t→∞

q̇i(t) = 0n and q̈i, q̇i, ẋi ∈ L∞ ensure, from (7), that

lim
t→∞

q̈i(t) = 0n.

Since xj

(

t−Tji(t)
)

= xj−
∫ t

t−Tji(t)
ẋj(θ)dθ and lim

t→∞
q̇i(t) =

0n then
∫ t

t−Tji(t)
ẋj(θ)dθ = 0n. Thus, at the equilibrium,

it holds that qi = xi and
∑

j∈Ni

wij(xi − xj) = 0n,

which by piling up the N vectors qi and xi as q :=
col
(

q⊤
1 , . . . ,q

⊤
N

)

and x := col
(

x⊤
1 , . . . ,x

⊤
N

)

, respectively,
can be written as q = x and (L⊗ In)x = 0Nn.

This last, together with the Laplacian properties, ensures
that the only possible solution to these equations is q =
x =

(

1N ⊗ qc

)

, for any qc ∈ R
n. Hence, for all i ∈ N̄ ,

qi = qc. This concludes the proof. 2

Remark 1. If link accelerations are not available for
measurement then, in order to implement the proposed
controllers, the term g̈i(qi) can be algebraically computed
as

g̈i(qi) =−
∂gi(qi)

∂qi

q̈i +

n
∑

k=1

∂2gi(qi)

∂qi∂qik
q̇iq̇ik

=−
∂gi(qi)

∂qi

M−1
i

[

Ciq̇i + Si(qi − xi)
]

+

n
∑

k=1

∂2gi(qi)

∂qi∂qik
q̇iq̇ik .

This algebraic manipulation does not induce an algebraic
loop because the relative degree is four.

Remark 2. Since the class of under-actuated EL-systems
in (Nuño et al., 2013) is contained within the dynamics (1),

it is not surprising that the damping injection condition
(8) is the same as in (Nuño et al., 2013).

5. SIMULATIONS

1
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3

4 5

6

7

8

90.8 0.65

0
.3

0.55

0.4
5

0
.7

5

0
.9

0.2

0
.6

0
.5

q1

q2

m1

l1

m2

l2

Fig. 1. Weighted network composed of nine 2-DOF non-
linear flexible-joint manipulators with revolute joints.
There are three different groups of manipulators and
the members of each group are equal.

By means of some numerical simulations, this section
shows the consensus performance of the proposed con-
trollers. We consider an undirected, connected and weighted
network composed of nine 2-DOF nonlinear flexible-joint
manipulators with revolute joints. The inertia matrix, the
Coriolis and centrifugal effects matrix and the gravity
vector are respectively given by

Mi(qi) =

[

αi + 2βici2 δi + βici2
δi + βici2 δi

]

,

Ci(qi, q̇i) =

[

−2βisi2 q̇i2 −βisi2 q̇i2

βisi1 q̇i2 0

]

and

gi(qi) = col(li1(mi1 +mi2)ci1 + gli2mi2ci12 , gli2mi2ci12),

where cik , sik are the short notation for cos(qik) and
sin(qik); ci12 stands for cos(qi1 + qi2); qik represents the
angular position of link k of manipulator i, with k ∈ 1, 2;
αi = l2i2mi2+l2i1(mi1+mi2), βi = li1 li2mi2 and δi = l2i2mi2 ,
where lik and mik are the respective lengths and masses
of each link and g = 9.81 is the acceleration of gravity
constant.

The network is composed of three different groups of
manipulators, with equal members at each group. The
physical parameters are: m1 = 4kg, m2 = 2.5kg and
l1 = l2 = 0.5m, for Agents 1, 2 and 3; m1 = 3kg,
m2 = 2.5kg, l1 = 0.6m and l2 = 0.5m for Agents 4, 5
and 6; m1 = 3.5kg, m2 = 2kg, l1 = 0.3m and l2 = 0.45m
for Agents 7, 8 and 9. The joint stiffness matrix has
been set to S = diag(200, 200) and the motor inertia to
J = diag(0.5, 0.5), for all agents.

Fig. 2 shows the interconnection variable time–delays.
These delays emulate an ordinary UDP/IP Internet delay
with a normal Gaussian distribution Rossi et al. (2006)
and, for simplicity, only three different delays have been
employed, namely Tj1 = Tj4 = Tj7 = T1(t) with mean
equal to 0.34 and variance equal to 0.0002; Tj2 = Tj5 =
Tj8 = T2(t) with mean and variance equal to 0.25 and
0.00015, respectively; and Tj3 = Tj6 = Tj9 = T3(t) with
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mean: 0.15 and variance: 0.0006. The employed upper
bounds of these delays are ∗T1 = 0.4s, ∗T2 = 0.3s and
∗T3 = 0.25s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

 

 

Tj1 = Tj4 = Tj7 Tj2 = Tj5 = Tj8 Tj3 = Tj6 = Tj9

Fig. 2. Emulated UDP/IP Internet delays for the simula-
tions.

The interconnection gains, ki have all been set to 10. The
damping gains are given by: d1 = 9.6, d2 = 5.7, d3 = 13.31,
d4 = 4, d5 = 8.3, d6 = 6.75, d7 = 4, d8 = 17.4 and
d9 = 9.5. Easy calculations show that these gains satisfy
condition (8) with αi = 1 for all i ∈ [1, 10].

Fig. 3 presents the simulations results for three different
scenarios. Column A shows the results when the initial
conditions are fixed as

q⊤(0) = [2, 1, 1.5, 2.5, 0.5, 3,−1.5,−1, 3, 0.5, 3.5,−2

− 0.5,−2.5, 1, 1.5,−2, 3.5, 2.5, 2]. (11)

Column B, depicts the convergence of all agents and, in
this case, the initial conditions (11) have been multiplied
by 2. Finally, in Column C it can be seen that the EL-
systems asymptotically converge to a consensus point and
in this case, the initial conditions (11) have been multipied
by −2. In all cases, the initial velocities were set to
zero, θ(0) = q(0). Hence, it can be observed that in
the three different sets of initial conditions, the agents
asymptotically reach a consensus point and such consensus
point changes if the initial conditions change.

In Fig. 4, the stability condition (8) has not been met and
it can be observed that the agents do not reach a consensus
point. The initial conditions were established as (11). In
this case, the controller gains have been set to ki = 5 and
di = 1, for all agents.

6. CONCLUSIONS

Under the assumption that the undirected graph is con-
nected and that interconnection may induce variable time-
delays, a globally asymptotically stable solution to the
consensus problem for networks composed of nonidenti-
cal flexible-joint robot manipulators, is reported in this
paper. The proposed controller is composed of two dif-
ferent terms, one that dynamically compensates the link
gravity and another which ensures the desired consensus
objectives, which is a simple Proportional plus damping
scheme.
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Fig. 3. Simulation results for three different sets of initial
conditions.
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Fig. 4. Simulation results when the damping gains do not
satisfy the stability condition.

Using a nine 2-DOF flexible-joint robot network and asym-
metric delays in the communication, numerical simulations
show the performance of the proposed controller.
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