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Abstract: In drilling operations, the drillstring interaction with the borehole gives rise to a
wide variety of undesired oscillations. The main types of drilling vibrations are torsional (stick-
slip), axial (bit-bounce) and lateral (whirling). The analysis and modeling of rotary drilling
vibrations is a topic whose economical interest has been renewed by recent oilfields discoveries
leading to a growing literature. This paper summarizes the most popular modeling strategies
allowing the oscillatory behavior analysis of the physical system.
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1. INTRODUCTION

The presence of drillstring vibrations is the main cause
of loss of performance in the perforation process for oil
and gas. It provokes premature wear and tear of drilling
equipment resulting in fatigue and induced failures such as
pipe wash-out and twist-off [22]. It also cause significant
wastage of drilling energy [21] and may induce wellbore
instabilities reducing the directional control and its overall
shape [10]. In the oil industry, the improvement of drilling
performance is a matter of crucial economical interest.

Many studies have been conducted to identify and rec-
ognize the different types of vibrations during drilling
operation. These have led to the identification and clas-
sification of vibrations into three separate and distinctive
categories namely torsional (stick-slip oscillations), axial
(bit-bouncing phenomenon) and lateral (whirl motion due
to the out-of-balance of the drillstring). Below is a brief
description of each one of them.

- Torsional vibration. Downhole measurements show
that applying a constant rotary speed at the surface does
not necessarily translate into a steady rotational motion
of the bit. In fact, the downhole torsional speed typically
exhibits large amplitude fluctuations during a significant
fraction of the drilling time. This self-excited rotational
motion, also known as stick-slip, is induced by the non-
linear relationship between the torque and the angular
velocity at the bit [16]. The torsional flexibility of the
drilling assembly exacerbates a non-uniform oscillatory
behavior causing rotational speeds as high as ten times
the nominal rotary table speed or a total standstill of
the bit [33]. Torsional vibrations provoke fatigue to drill
collar connections, damages the drill bit and slow down the
drilling operation thereby prolonging the overall drilling
? Grant 204055 supported by CONACYT.

process. They are detectable at the drillfloor by fluctua-
tions in the power needed to maintain a constant rate of
surface rotation.

- Axial vibration. This vibration mode consists of ir-
regular movements of the drilling components along its
longitudinal axis causing bit-bounce and rough drilling
behavior that destroys the drill bit, damages the Bottom
Hole Assembly (BHA) and increases total drilling time.
Additionally, due to downhole coupling mechanisms, it
also excites lateral displacements of the string [32]. The
bit-bounce pattern may be detected at the surface, it is
likely to develop when drilling with a bit of roller-cone
type, also called tricone or rock bit, consisting of multiple
lobes which leads an erratic interaction of the bit with the
bottom of the well making the bit to loose contact with
the rock formation.

- Lateral vibration. One of the most destructive drill-
string oscillations is the whirling phenomenon, since it may
be unleashed with no indication at the surface. Deep in the
hole, the rotating BHA interacts with the borehole wall
generating shocks from lateral vibrations. The collisions
with the borehole wall will produce eccentric hole and
the shocks can damage components of the BHA [23]. The
lateral oscillations of the drillstring cause severe damage
to the borehole wall and affect the overall drilling direction
[15]. Drill collars whirling are simply the centrifugally
induced bowing of the drill collar resulting from rotation.
If the center of gravity of the drill collar is not initially
located precisely on the centerline of the hole, then as
the collar rotates, a centrifugal force acts at the center
of gravity causing the collar to bend [37]. Forward and
backward whirling behaviors can further intensify due to
the combined effect of fluid damping, stabilizer clearance,
and friction of the drilling assembly against the borehole
wall [36].
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Currently, drilling of deepwater wells for oil and gas pro-
duction have opened new horizon for petroleum engineers
and experts to try to mitigate the influence of vibration
during drilling operation. Even though new technology has
been deployed, such phenomena still occurs, significantly
affecting on drilling costs and daily operations. Before the
1960s, studies were focused on material strength of the
drillstring components but the trends have since changed
to emphasize on its dynamic behavior [15].

The great practical significance of oilwell drillstrings has
attracted the attention of many researchers. In order to
reduce the costs of failures, extensive research effort has
been conducted in the last five decades to suppress the
drillstring vibrations, several methodologies have been
proposed, both from practical and theoretical viewpoints,
see for example the references cited in the survey [19].

This paper compiles the main modeling techniques repro-
ducing axial and torsional vibrations in a vertical oil well
drilling system.

2. DRILLING SYSTEM DESCRIPTION

The main process during well drilling for oil is the creation
of borehole by a rock-cutting tool called a bit. The drill-
string consists of the BHA and drillpipes screwed end to
end to each other to form a long pipe. The BHA comprises
the cutting device (bit), stabilizers (at least two spaced
apart) which prevent the drillstring from unbalancing, and
a series of pipe sections which are relatively heavy known
as drill collars. While the length of the BHA remains
constant, the total length of the drill pipes increases as
the borehole depth does. An important element of the
process is the drilling mud or fluid which among others, has
the function of cleaning, cooling and lubricating the bit.
The drillstring is rotated from the surface by an electrical
motor located at the rotary table.

Drilling system complexity brings out an important mod-
elling problem. An appropriate model must accurately
describe the most important phenomena arising in real
wells and has to be simple enough for analysis and control
purposes.

3. TORSIONAL DYNAMICS

In general, the models that have been used in literature to
describe drillstring systems can be classified into two main
categories: distributed parameter models and lumped pa-
rameter ones.

To keep the analysis simple, many contributions consider
the drillstring as a torsional pendulum described by a
lumped parameter model with one or multiple Degrees
of Freedom (DOF). In [14] and [20] a one DOF model
is considered, in [7], [16], [24] and [34], a two DOF model
is proposed, in [25], a discontinuous model of four DOF is
introduced.

Figure 1 shows the simplified torsional model of a con-
ventional vertical drillstring proposed in [24]. Jr and Jb
are the inertias of the top rotary system and the BHA,
respectively. The inertias are connected one to each other
by a linear spring with torsional stiffness k and torsional
damping c. The equations of motion are:

JrΦ̈r + c
(

Φ̇r − Φ̇b

)
+ k (Φr − Φb) = Tm − Td(Φ̇r),

JbΦ̈b − c
(

Φ̇r − Φ̇b

)
− k (Φr − Φb) =−Tb(Φ̇b),

where Φr and Φb are the angular displacements of the ro-
tary table and the BHA respectively, Tm is the drive torque
coming from the rotary table transmission box which is
driven by a DC electric motor, and it may be considered
as Tm = kmu with km the motor parameter and u the
input to the system, Td and Tb are the friction torques
associated with Jr and Jb, respectively. Tb represents the
torque-on-bit (TOB) and the nonlinear frictional forces
along the drill collars.

Tm

Jr

Jb

k c

Φr

Φb

Φr

.

Φb

.

Td

Tb

Figure 1. Lumped parameter model of a rotary drilling rig.

Lumped parameters models have been shown to be easy
enough for the analysis, but in some cases, the distributed
nature of the system cannot be neglected. It is natural to
think that a distributed parameter model of the system is
more suitable to properly describe the oscillation phenom-
ena.

The wave equation is widely used to reproduce the oscilla-
tory behavior of physical systems. In the 1960s, some anal-
yses have been carried out using the classical wave equa-
tion to describe the torsional behavior of drillstring assem-
blies [2], [11]. This modeling strategy was also adopted in
[8] and [35].

The purely torsional excitations of a drillstring of length
L, described by the rotary angle Φ(ξ, t) can be modeled
by the wave equation [4], [5], [8], [13], [35]:

GJ
∂2Φ

∂ξ2
(ξ, t)− I ∂

2Φ

∂t2
(ξ, t)− β ∂Φ

∂t
(ξ, t) = 0, ξ ∈ (0, L),(1)

with the twist angle Φ depending on the length coordinate
ξ and time t. The parameters I, G and J are the inertia,
the shear modulus and the geometrical moment of inertia
respectively. A damping β ≥ 0 which includes the viscous
and structural damping, is assumed along the structure.

The boundary conditions are chosen according to the
dynamics taking place at the upper and lower ends of the
drill string. In [8], the following boundary conditions are
considered:

Φ(0, t) = Ωt, (2)

GJ
∂Φ

∂ξ
(L, t) + IB

∂2Φ

∂t2
(L, t) =−T

(
∂Φ

∂t
(L, t)

)
. (3)
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A lumped inertia IB is chosen to represent the assembly
at the bottom hole. It is assumed that the speed at the
surface (ξ = 0) is restricted to a constant value Ω, the
other extremity (ξ = L), which symbolizes the bit, being
subject to a torque T, which is a function of the bit speed.

The boundary condition (3) satisfactorily reproduces the
behavior at the ground level, however (2) does not reflect
an important dynamic occurring at the top extremity.
The angular velocity coming from the rotor Ω does not
match the rotational speed of the load ∂Φ

∂t (0, t), this sliding
speed results in the local torsion of the drillstring. In
order to take into account this phenomenon, the following
boundary condition is considered in [30] and [31]:

GJ
∂Φ

∂ξ
(0, t) = ca

(
∂Φ

∂t
(0, t)− Ω(t)

)
. (4)

Alternative boundary conditions to represent the drilling
behavior at the upper extremity are derived from the clas-
sical Newton equation such as the following one introduced
in [9]:

JT
∂2Φ

∂t2
(0, t) + Θ(t) = −Ttop (t) (5)

where JT is the effective moment of inertia of the top-
drive, the forcing function Θ(t) denotes the external torque
delivered by the top-drive, taken as control input with the
following feedback structure:

Θ(t) = κp

(
∂Φ

∂t
(0, t)− Ω0

)
+ κi (Φ(0, t)− Ω0t)

where κp and κi are the rotary speed control parameters
and Ω0 is the target angular speed. The function Ttop,
describes the transmitted torque and damping due to
viscous effects, it is given by:

Ttop = k
∂Φ

∂ξ
(0, t) + βv

∂Φ

∂t
(0, t),

where k > 0 is the spring constant of the drillstring
regarded as a torsional spring and βv > 0 is a viscous
damping constant.

Normally, when a distributed parameter model is subject
to nonlinearities and uncertainties (in our case study, those
arising from the rock-bit interaction), analysis and simula-
tions are not easy tasks. However, it is possible to derive a
simpler model involving only the variables of main interest.
By means of a direct transformation, an input-output
model described by a neutral-type time-delay equation
which clearly simplifies the analysis and simulations, is
obtained. The procedure allowing to transform the PDE
model to a delay system of neutral type was presented for
the first time in [1], see also [4], [5], [12] and [30].

Integration along characteristics of the hyperbolic PDE
allows the association of certain system of functional dif-
ferential equations to the mixed problem, more precisely, a
one-to-one correspondence may be established and proved
between the solutions of the mixed problem for hyperbolic
PDE and the initial value problem for the associated
system of functional equations [26], [27].

By reducing the boundary value problem to a neutral-
type time-delay equation, we are able to exploit techniques

from dynamic systems theory to gain insight into the
complexity involved in the analysis and simulation of
infinite dimensional systems.

Since most of the energy dissipation in drilling systems
is taking place at the bit-rock interface, we consider
that the damping along the structure β is negligible.
The distributed parameter model (1) then reduces to the
unidimensional wave equation:

∂2Φ

∂ξ2
(ξ, t) = p2 ∂

2Φ

∂t2
(ξ, t), ξ ∈ (0, L), (6)

where p =
√

I
GJ . A direct transformation of the wave

equation model (6) with boundary conditions (3)-(4) al-
lows to obtain the following neutral-type time-delay model
describing the drilling behavior [30]:

Φ̈b(t)−ΥΦ̈b(t− 2Γ) = −ΨΦ̇b(t)−ΥΨΦ̇b(t− 2Γ)

− 1

IB
T
(

Φ̇b(t)
)

+
1

IB
ΥT

(
Φ̇b(t− 2Γ)

)
+ ΠΩ(t− Γ),

(7)

where Φ̇b is the angular velocity at the bottom extremity,

and Π = 2Ψca
ca+
√
IGJ

, Υ = ca−
√
IGJ

ca+
√
IGJ

, Ψ =
√
IGJ
IB

, Γ =
√

I
GJL.

In [30], the transformation techniques (D’Alembert and
Laplace methods) allowing the simplified model derivation
are explained in detail.

A similar reduction of analogous PDE boundary value
problems to time-delay equations, and the techniques ex-
ploited here, have relevance to a broad range of other
engineering, physical and biological problems. These in-
clude power transmission line networks [6], laser optical
fibres, sonar/radar ranging technologies [3], cardiovascular
system dynamics and many other applications.

3.1 Modeling of the rock-bit interaction

Torsional vibrations are characterized by stick phases, dur-
ing which the rotation stops completely, and slip phases,
during which the angular velocity of the tool increases up
to more than twice the nominal angular velocity. This phe-
nomenon occurs when a section of the rotating drillstring
is momentarily caught by friction against the borehole,
then released. The bit might eventually get stuck and then,
after accumulating energy in terms of torsion, be suddenly
released, the collar rotation speeds up dramatically and
large centrifugal accelerations occur.

It is usually assumed that the growth of instabilities
eventually leading to stick-slip oscillations arises from the
friction model, which empirically captures the bit-rock
interaction.

There are different modeling strategies to reproduce the
bit-rock interaction, we present below some of the main
ones:

- Velocity weakening law.

In [8], the model:

T (U̇ , Φ̇b) = ζU̇e−αΦ̇b

is chosen to represent the rock-bit interaction, U̇ , and Φ̇b
stand for the axial and angular velocities at the bottom
extremity and ζ denotes the ability of the rock to be cut.
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- Stiction plus Coulomb friction.

In [16], [34], the torque on the bit is modeled with the
expression:

T (Φ̇b(t)) = cbΦ̇b(t) + Tfb(Φ̇b(t))

where cb is the damping viscous coefficient at the bit level
and Tfb is the classical Coulomb plus static friction (dry
friction) model, that is,

Tfb(Φ̇b(t)) =

 Tcbsign(Φ̇b(t)) if Φ̇b(t) 6= 0

|Tfb| ≤ Tsb if Φ̇b(t) = 0
(8)

with Tsb = µsbWobRb and Tcb = µcbWobRb the static and
Coulomb friction torques, µsb, µcb ∈ (0, 1) the static and
Coulomb friction coefficients, Wob is the weight on the bit
and Rb is the bit radius.

The use of this modeling strategy is explained in [34] as
follows: the maximum torque Tsb clamping the bit to zero
speed is substantially larger than the Coulomb friction
Tcb experienced when the bit is rotating . If Φ̇b = 0, the
friction torque will adjust to the torque in the drillstring
maintaining a static equilibrium of the bit (see Figure 2).

Tfb TfbTsb

Tcb

Tsb

Φb = 0 
.

Φb ≠ 0 
.

Φb 

.
Drillstring 

 torque

Figure 2. Coulomb and static friction.

- Dry friction plus Karnopp’s model.

Another common model for Tfb(Φ̇b(t)) is defined below

Tfb(Φ̇b(t)) =



Teb
if
∣∣∣Φ̇b(t)∣∣∣ < Dv, |Teb| ≤ Tsb

(stick)

Tsbsign(Teb)
if
∣∣∣Φ̇b(t)∣∣∣ < Dv, |Teb| > Tsb

(stick-to-slip transition)

Tcbsign(Φ̇b(t))
if
∣∣∣Φ̇b(t)∣∣∣ ≥ Dv,

(slip)

where Dv > 0 specifies a small enough neighborhood of
Φ̇b(t) = 0 and Teb is the applied external torque that must
overcome the static friction torque Tsb to make the bit
move, Teb is modeled as follows:

Teb = c
(

Φ̇r − Φ̇b

)
+ k (Φr − Φb)− cbΦ̇b.

This model combines the dry friction model (8) with the
Karnopp’s model introduced in [17] and introduces a zero
velocity band (see Figure 3).

TfbTsb

Tcb

Transition from 
stick to slip 

2Dv 

Transition from 
stick to slip 

-Tsb

-Tcb

Φb 

.

Figure 3. Dry friction plus Karnopp’s model.

- Karnopp’s model with a decaying friction term.

The function governing friction in the slip phase is chosen
as a decaying function inspired by the experimental results
given in [7]:

Tfb(Φ̇b(t)) =


min{|Teb, Tsb|}sign(Teb) if

∣∣∣Φ̇b(t)∣∣∣ < Dv

fb(Φ̇b(t))sign(Φ̇b(t)) if
∣∣∣Φ̇b(t)∣∣∣ ≥ Dv

with

fb(Φ̇b(t)) =WobRbµb(Φ̇b(t))

µb(Φ̇b(t)) =
µsb − µcb

1 + γb

∣∣∣Φ̇b(t)∣∣∣ + µcb

where µb is the dry friction coefficient at the bit and γb
is a positive constant defining the decaying velocity of Tfb
(see Figure 4).

TfbTsb

Tcb

2Dv 

-Tsb

-Tcb

Φb 

.

Figure 4. Karnopp’s model with a decaying friction term.

- Karnopp’s model with an exponential decaying
friction term.

An alternative model for the torque on the bit defines
an exponential decaying term in the slip phase [25]. It
consider the expression for Tfb defined above with:

fb(Φ̇b(t)) =WobRbµb(Φ̇b(t))

µb(Φ̇b(t)) = µcb + (µsb − µcb)e−γb|Φ̇b(t)|.
Simulations results presented in [29] validate the proposed
model.

- Simplified torque on bit model.

In [18] the following model is introduced:

T (Φ̇b(t)) =
2kΦ̇b(t)

Φ̇2
b(t) + k2
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where k is a positive parameter. This model is simpler
than those presented above and effectively reproduces the
behavior of the friction at the bit level (see Figure 5).

T

-k k

-1

1

Φb 

.

Figure 5. Simplified torque on bit model.

4. AXIAL-TORSIONAL COUPLED DYNAMICS

Axial and torsional vibrations are generally quite complex
in nature. They are self-excited oscillations intimately cou-
pled together and may occur simultaneously. For example,
the high bit speed level caused by stick-slip torsional mo-
tion can excite severe axial vibrations in the BHA, which
may cause bit-bounce, excessive bit wear and reduction in
the penetration rate.

Axial and torsional excitations of a drillstring of length
L, described by the longitudinal position U(s, t) and the
rotary angle Φ(s, t) can be modeled by a pair of coupled
wave equations [4], [5], [18]:

∂2U

∂t2
(s, t) = c2

∂2U

∂s2
(s, t), c =

√
E

ρ

EΓ
∂U

∂s
(0, t) = α

∂U

∂t
(0, t)−H(t)

M
∂2U

∂t2
(L, t) = −EΓ

∂U

∂s
(L, t)− pF

(
∂U

∂t
(L, t)

) (9)

and

∂2Φ

∂t2
(s, t) = c̃ 2 ∂

2Φ

∂s2
(s, t), c̃ =

√
G

ρ

GΣ
∂Φ

∂s
(0, t) = β

∂Φ

∂t
(0, t)− Ω(t)

J
∂2Φ

∂t2
(L, t) = −GΣ

∂Φ

∂s
(L, t)− p̃ F

(
∂U

∂t
(L, t)

) (10)

where, in equation (9), H(t) is the brake motor control and
α∂U∂t (L, t) represents a friction force of viscous type. For
equation (10), the right hand side of the second equation
designates the difference between the motor speed and
rotational speed of the first pipe. The spatial variable
s is chosen such that s = 0 denotes the top of the
drillstring and s = L its bottom. The physical parameters
of the model (9)-(10) are: G is the shear modulus of
the drillstring steel, E the elasticity Young’s modulus,
ρ is the density, M is the BHA mass, J = Mr2 is the
inertia, r is taken as the averaged radius of drillpipe, Γ is
the drillstring’s cross-section and Σ its second moment of
area. The parameters p and p̃ together with the function

F , appearing in the boundary conditions at the bottom,
account for the friction resulting from the interaction
between the drill bit and the rock.

An alternative modeling strategy is presented in [28], the
following dymanical model allows to represent the coupled
axial-torsional drilling vibrations:

I
d2Φ

dt2
+ C(Φ− Φ0) = T0 − T

(
t
0Φ,t0 U

)
,

M
d2U

dt2
= W0 −W

(
t
0Φ,t0 U

)
,

(11)

where U and Φ stand for the vertical and angular po-
sitions of the bit, respectively. The mechanical elements
representing the BHA are: M the point mass and I the
moment of inertia; C is the spring stiffness representing
the torsional stiffness of the drillpipe. In this modeling
strategy a drag bit consisting of n identical radial blades
regularly spaced by an angle equal to 2π/n is considered.
When such a bit is drilling rock, the depth of cut per blade
dn (i.e., the thickness of the rock ridge in front of the blade)
is constant along the blade and identical for each blade.
Furthermore, dn is related to the vertical position of the
bit U according to dn(t) = U(t) − U(t − tn), where tn is
the time required for the bit to rotate by an angle 2π/n to
its current position at time t. The delay tn(t) is solution
of Φ(t)−Φ(t− tn) = 2π/n. The combined depth of cut of
the bit is simply d = ndn or d = n [U(t)− U(t− tn)] . The
torque function T and the weight on bit W are functions
of the history of Φ (denoted by t

0Φ) and the history of U
(denoted by t

0U), indeed the cutting components of T and
W are proportional to the depth of cut d. Φ0, T0 and W0

are the stationary quantities associated with the trivial
solution of (11). Notice that (11) constitutes a retarded
dynamical model characterized by a state-dependent delay
tn.

The damped harmonic oscillator equation:

m0Ü + c0U̇ + k0(U −ROPt) = −µ1T
(

Φ̇b(t)
)
, (12)

is another modeling technique to represent axial vibrations
[8]. U, U̇ and Ü stand for the axial variables: position,
velocity and acceleration respectively, ROP is the rate
of penetration and m0, c0, and k0 represent the mass,
damping and spring constant, µ1 is a constant depending
on the bit geometry.

REFERENCES

[1] Abolinia, V.E., Myshkis, A.D. (1960). A mixed prob-
lem for an almost linear hyperbolic system in the
plane. Matematicheskii Sbornik, 50(92), 423–442.

[2] Bailey, J.J., Finnie, I. (1960). An analytical study
of drillstring vibration. Journal of Engineering for
Industry, Transactions of the ASME, 82(2), 122–128.

[3] Bauer, A. (1996). Utilisation of chaotic signals for
radar and sonar purposes. Norwegian Signal Process-
ing Society NORSIG, 96, 33–6.

[4] Boussaada, I., Mounier, H., Niculescu, S.I., Cela, A.
(2012). Analysis of drilling vibrations: a time delay
system approach. 20th Mediterranean Conference on
Control and Automation MED, Barcelona, Spain.

[5] Boussaada, I., Cela, A., Mounier, H., Niculescu, S.I.
(2013). Control of drilling vibrations: a time-delay

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5173



system-based approach 11th Workshop on Time-
Delay Systems Part of 2013 IFAC Joint Conference
SSSC, Grenoble, France.

[6] Brayton R.K. (1966). Bifurcation of periodic solu-
tions in a non-linear difference-differential equation
of neutral type. Quarterly of Applied Mathematics,
24, 215–224.

[7] Brett, J.F. (1992). The genesis of torsional drillstring
vibrations. SPE Drilling Engineering, 7(3), 168–174.

[8] Challamel, N. (2000). Rock destruction effect on the
stability of a drilling structure. Journal of Sound and
Vibration, 233(2), 235–254.

[9] Cull, S.J., Tucker, R.W. (1999). On the modelling of
Coulomb friction. Journal of Physics A: Mathemat-
ical and General, 32(11), 2103–2113.

[10] Dunayevsky, V., Abbassian, F., Judzis, A. (1993).
Dynamic stability of drillstrings under fluctuating
weight on bit. SPE Drilling and Completion, 8(2),
84–92.

[11] Finnie, I., Bailey, J.J. (1960). An experimental study
of drill-string vibration. Journal of Engineering for
Industry, Transactions of the ASME, 82(2), 129–135.

[12] Fliess, M., Mounier, H., Rouchon, P., Rudolph, J.
(1995). Controllability and motion planning for lin-
ear delay systems with an application to a flexible
rod. Proceedings of the 34th Conference on Decision
& Control, TA16 10:40 New Orleans, LA.
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