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Abstract: This paper presents an internal model-based approach for trajectory tracking in
the discrete time-varying setting. A newly designed parallel kinematics servo gantry is well
suited for high precision contouring at high speed ranges. The discrete time-varying internal
model-based control is developed for controlling the servo gantry system to track complicated
trajectories generated by linear time-varying systems. Based on a novel parallel time-varying
internal model structure, a low order robust discrete time-varying stabilizer is synthesized. The
proposed tracking control architecture is deployed on the novel parallel kinematics servo gantry
system to achieve high precision contour tracking performance for frequency-varying signals
generated by high order time-varying autonomous system.
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1. INTRODUCTION

With the rapid increase of advanced machatronics, the de-
sign of a motion stage and high precision tracking control
are key enabling techniques for improving the trajectory
and contour accuracy. There are wild applications in high
precision machine tools [1, 6], and energy based direct
writing technology [4, 5].

Among these applications, tracking control algorithm also
play important role to achieve high performance especially
for complicated trajectories high speed ranges. Note that
significant efforts have been devoted to various aspects
of tracking control theory in the past several decades.
As one of the most investigated approaches, the inter-
nal model-based control method has emerged as a fun-
damental technique for tracking and/or rejecting period-
ic signals generated by autonomous systems. Although
the internal model-based control theory for LTI (Linear
Time-Invariant) systems has been well established [3], the
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design for LTV (Linear Time-Varying) systems remains
open, due to the fundamental challenges of constructing
a time-varying internal model to render the error-zeroing
subspace invariant, and a robust time-varying stabilizer.
We refer to [11] and the reference therein for some general
results of internal model-based design for LTV systems.

More recently, a systematic design method for a time-
varying internal model unit has been provided in [9, 12]
in both input/output and state-space settings. However,
the implementations of the above method still face great
challenge lies in a low-order robust stabilizer design. To
tackle this difficulty some attempts have been made via
LPV (Linear Parameter-Varying) based approaches in
continuous time settings, for example [13, 7, 14]. Due to the
obvious benefits to reduce the computational burdens and
avoid numerical issues, it is desirable to design the internal
model-based control for tracking sophisticated signals in a
discrete time setting. Very recently, discrete time tracking
controller designs have been proposed in [8, 15], which
are non-trivial extension of the results in continuous time
settings [7, 14].

In the present work, we investigate the discrete time-
varying internal model-based control by resorting to the
recently developed parallel structure for time-varying in-
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ternal model control [14], which can be considered as the
counter part of the continuous time results in [14]. The
robust performance of the stabilizer against disturbances
is also discussed. The proposed tracking algorithm is then
deployed on a newly developed parallel kinematics X-Y
servo gantry system for complex trajectory (by high order
exosystem) tracking and high precision contouring.

The rest of the paper is organized as follows: In Section 2,
we present the modeling of the novel parallel kinematics
servo gantry system. In Section 3, the controller structure
and some preliminaries on a time-varying internal model
design are briefly discussed. In Section 4, the discrete
time-varying robust stabilizer design is discussed based on
the parallel connection with the internal model unit. The
experimental results are given in Section 5 to demonstrate
the performance of proposed control algorithm on the
designed gantry system, followed by conclusions.

2. DESIGN AND MODELING OF A NOVEL HIGH
SPEED PARALLEL KINEMATICS SERVO GANTRY

Due to the inherent unbalanced axial dynamics of serial
configuration motion stages, we in this work consider
a newly designed parallel kinematics gantry shown in
Figure 2 (Parallel Motion Stage). Its major advantages lie
in symmetric configuration and balanced axial dynamics
(the detailed design is referred to [16]). Therefore by design
the servo gantry is suitable to achieve high speed and high
precision contour performance.

The performance demand of the above designed mecha-
nism is as follows: The platform has a workspace of 15 ×
15mm2. The system is required to track high-frequency
signals up to 50 Hz in each axis, hence the platform can
reach to the maximum velocity of 750 mm/s.

2.1 Analytical results

The XY parallel servo gantry consists of six linear guide-
ways. To meet the design requirements of working frequen-
cy of 50 Hz, we need to avoid resonances in the frequencies
range of interest. For the analysis of the dynamic behav-
iors, a linear spring was widely used to simulate the contact
feature of the ball between the carriage and guide way.

We present the modeling of the servo gantry system below.
The main parts of the servo gantry that impacts dynamic
characters is the internal contact of the linear guideway.
The mathematical model of each contact structure is
assumed as a spring-mass system, where the rail and
carriage are treated as rigid bodies and connect a series
of linear spring elements with adequate axial stiffness.
We use 22 groups of perpendicular distribution of the
linear springs to simulate one guideway and each degree of
freedom are simplified to a two-degree-mass-spring system.

From Lagrangian model we have the motion equations
corresponding to yaw degree of freedom, i.e. the torque
in yaw direction of the motion stage:

J1zψ̈1 +Kcψ1

8∑
j=5

Nb∑
i=1

l̄ 2ji

−Kcψ2

Nb∑
i=1

[(l̄5i − lb)
2 + (l̄6i − lb)

2] = 0 ,

(1)

Table 1. Nomenclature

Symbol Definition

Kc Contact stiffness

Nb The number of contacted rolling ball

J1z The rotational inertia of the motion
stage (MS) in yaw direction

J2z The rotational inertia of the decoupling
components (DC) in yaw direction

The distance between the i-th rolling ball
l̄ji of the j-th guide way of MS (DC) and

the center of the mass of DC (MS)

lb The distance between MS and DC

ψi The yawing angle of MS and DC

and the torque in yaw direction of the decoupling compo-
nents:

J2zψ̈2 +Kcψ2

6∑
j=1

Nb∑
i=1

l̄ 2ji

−Kcψ1

Nb∑
i=1

[(l̄5i − lb)
2 + (l̄6i − lb)

2] = 0 .

(2)

By substituting the geometric parameters into above e-
quations, we obtain natural frequency in yaw as 121.2 Hz
(see [16] in details).

2.2 Dynamical modeling

The major dynamics of the servo gantry system consists
of the current amplifier and the mechanical part. For the
current amplifier, two custom built linear power amplifier
modules with bandwidth 2000 Hz are employed to generate
driving currents, which is well above the frequency range
of the motion control. Hence the dynamics from control
voltage to the amplifier current can be assumed by a DC
gain. The mechanical part of each axis can be characterized
by:

ẍi +
ci
mi

ẋi +
ki
mi

xi =
Fi

mi
− Fc,i

mi
sign(ẋi) + ∆̄i ,

where i = x, y, and mi, ci, ki represents the moving mass,
the equivalent damping coefficient, and the equivalent
stiffness in i axis respectively, and Fc,i (for compensate
the nonlinear parts of the damping) and Fi are Coulomb
viscous friction and the driving force of the VCM (voice
coil motor) in i axis respectively, and ∆̄i represents un-
modeled lumped nonlinear dynamics such as magnetic lag,
eddy current loss, and other disturbances in i axis, but the
Coulomb viscous friction is far greater than the impact of
the modeling accuracy of ∆̄i.

Note that Fi = KFiIi, where KFi is the force constant
and Ii is the coil current of each axis. Also notice that
the Coulomb viscous friction term Fc,i can be experimen-
tally compensated. Therefore the system dynamics from
the control voltage to the position measurement can be
characterized by the following transfer functions:

Gi(s) =
Xi(s)

Ii(s)

Ii(s)

Ui(s)
=

KFiKui/mi

s2 + (ci/mi)s+ ki/mi
. (3)

The natural frequency of each axis can be experiemntally
obtained as fx = 115.1 Hz and fy = 120.5 Hz, which
agree well with the theoretical ones (121.2 Hz). Then the
discrete-time representation of (3) reads as
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Gi(z) =
z−1bi1 + z−2bi0

1 + z−1ai1 + z−2ai0
, (4)

where aij , and bij , i = X, Y axis, j = 0, 1 are readily
obtained by the discretization.

3. CONTROLLER STRUCTURE AND
PRELIMINARIES

The discrete time-varying tracking control of the above
gantry system can be formulated in the following form

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

e(k) = y(k) + r(k) ,

(5)

with plant state x ∈ Rn, control input u ∈ R, output
y ∈ R, reference r ∈ R, and regulated error e ∈ R
satisfying:

Assumption 3.1. The triplet (A, B, C) is controllable and
observable.

The reference r(k) to be tracked is generated by an LTV
autonomous system, called by exosystem, of the form

w(k + 1) = S(k)w(k)

r(k) = Q(k)w(k)
(6)

with exogenous state w ∈ Rρ. The exosystem under
consideration is characterized by the following assumption:

Assumption 3.2. The trajectories w(k) in the forward and
backward directions of time are stable in the sense of Lya-
punov, and the pair (Q(·), S(·)) is uniformly observable.

The goal is to achieve bounded closed-loop trajectories and
limk→∞ e(k) = 0.

Remark 3.1. The above formulation represents a typical
tracking problem for a wild class motion control appli-
cations where the output y of the actuation system is re-
quired to track a reference r which is periodic with respect
to rotational angle or linear position but not periodic to
temporal variable due to a varying speed. In this circum-
stance the reference r can be treated as an output of an
autonomous time-varying system (see for instance [13] for
detailed explanation). It is worth noting that either plant
model (5) or exosystm (6) is time-varying, the internal
model is time-varying.

The problem of asymptotically tracking complicated sig-
nals generated by the time-varying exosystem (6) has yet
to be completely solved due to its difficulty of time-varying
internal model and robust stabilizer. Towards a real-time
implementation orientated solution, a novel controller ar-
chitecture is proposed in Figure 1, which consists of a time-
varying internal model unit and a time-varying robust
stabilizer.

And the design of the time-varying internal model can be
constructed by a two-step [9, 12]. Along this thread, the
design of a simple and low order stabilizer for the resulting
time-varying systems remains a great challenge. Aiming at
resolving this difficulty, we consider a novel compensator
structure where the internal model unit and the stabilizer
are interconnected in parallel (see Figure 1). The detailed
design of the time-varying internal model can be referred
to [12] (see also the illustrative example in Section 5 for
the reader’s convenience).

ξ1(k + 1) = Φ1(k)ξ1(k) + Ψ1(k)u(k)

+
x(k + 1) = Ax(k) +Bu(k)

+

w(k + 1) = S(k)w(k)

− ur

ust u

Time-Varying Internal Model

Plant Model

y

r

e

uim

Stabilizer

y(k) = Q(k)w(k)

y(k) = Cx(k)

ur(k) = Γ1(k)ξ1(k)

ξ2(k + 1) = Φ2(k)ξ2(k)−Ψ1(k)ur(k)

uim(k) = Φ2(k)ξ2(k)−D2(k)ur(k)

ξst(k + 1) = Φst(k)ξst(k) + Ψst(k)u(k)

ust(k) = Γst(k)ξst(k) +Kst(k)e(k)

Fig. 1. The block diagram of a parallel connected time-
varying internal model-based controller.

4. DISCRETE LTV ROBUST STABILIZER

With the internal model unit available, the remaining task
is to design a time-varying stabilizer for the augmented
system (the plant model and time-varying internal model).
Note that the interconnection of the plant model (5) and
the internal models is not controllable as

ξ̃1(k + 1) = Ao ξ̃1(k)

with ξ̃1 = ξ1 − x. Therefore the interconnected system
is stabilizable only if the above system is asymptotically
stable. Since the plant (actuator) is design by ourselves,
we can assume that the plant model is already stabilized.

Assumption 4.1. Suppose that system x(k+ 1) = Ao x(k)
is asymptotically stable.

The augmented system to be stabilized reads as(
ξ2(k + 1)

x(k + 1)

)
=

(
Φ2(k) −Ψ2(k)Co

BoΓ2(k) Ao −BoD2(k)Co

)(
ξ2(k)

x(k)

)
+

(
0

Bo

)
ust(k)

(7)
where quadruplet (Φ2(·), Ψ2(·), Γ2(·), D2(·)) is in con-
troller canonical form by design.

It is worth noting that if one considers a serial interconnec-
tion between the internal model and stabilizer, the order
of the dynamic stabilizer is of dim(x) + dim(ξ2). The rest
of the paper shows that a low order discrete time-varying
stabilizer of dim(x) can be designed by leveraging on the
proposed parallel compensator structure.

4.1 A low order time-varying stabilizer

We start of providing the following lemma on stabilization
of system (7).

Lemma 4.1. If the above assumptions hold, a sufficient
condition of stabilizing system (7) is to stabilize the
following system

xo(k + 1) = A(k)xo +B(k)ust(k)

y(k) = (1 0 · · · 0) xo(k) ,
(8)

where

A(k) =

(
−α(k)

I

0

)
, B(k) = B ,

with α(k) collecting the coefficients of the first column of
exosystem in its observer canonical form So(k).

The proof is omitted due to the space limit.

Remark 4.1. The above lemma shows that by leveraging
on the proposed structure, the stabilization of the aug-
mented system (7) can be reduced to a system with order
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of dim (x). Moreover the resulting system to be stabilized
is of observer canonical form, which further simplifies the
observer design.

Notice that system (8) can be split as

x1(k + 1) = A11(k)x1(k) +A12xb(k) +B1ust(k)

xb(k + 1) = A21(k)x1(k) +A22xb(k) +B2ust(k)

y(k) = x1(k) ,

(9)

where x1 is the first state of xo, and xb collects the rest
elements of xo, and A11(k) = −αρ−1(k), A12 = (10 · · · 0),

A21(k) =


−αρ−2(t)

...

−α0(t)

 , A22 =


0 1 · · · 0
...
...
. . .

...
0 0 · · · 1
0 0 · · · 0

 ,

B1 = bρ−1 , B2 = (bρ−2 · · · b0) ′ .

In light of the special structure of system (9), and the
availability of y for feedback, we introduce a reduced order
observer of the state xb as follows

ẑ(k + 1) =(A22 −HA12)ẑ(k) + (B2 −HB1)ust(k)

+((A22 −HA12)H +A21 −HA11(k))y(k)

x̂b(k + 1) = ẑ(k) +Hy(k) ,
(10)

with z = xb −Hx1 and ẑ = x̂b −Hx1 .

Remark 4.2. The output injection gainH can be chosen as
a time-invariant vector by leveraging on the time-invariant
observable pair (A12 , A22) .

With the estimation of xb(k), we further apply ust(k) =

K(k)

(
x1(k)

x̂b(k)

)
to stabilize system (9). That is, make

xo(k + 1) = (A(k) +BK(k))xo(k) (11)

asymptotically stable.

In what follows, we discuss the discrete time-varying
stabilization. It is known that the feedback gain K(k)
can be designed by finding a symmetric matrix P (k) > 0
satisfying (

Q (AcQ) ′

AcQ Q(k + 1)

)
> 0 . (12)

where the index k is dropped in the corresponding matri-
ces, and Ac(k) = A(k) + BK(k), Q = P−1. Notice that
the presence of both indices k and k+1 in inequality (12)
poses a computational difficulty. A particularly interesting
method in the literature is to use a polytope based rep-
resentation for the description of linear parameter-varying
systems. See references [2] and the references therein. Fol-
lowing the same route, we assume:

Assumption 4.2. The terms of A(k) are parameter σ-
dependent, and σ belongs to a polytope, i.e.

A(k) = A(σ(k)) =
N∑
i=1

σi(k)Ai ,

where σi(k) ≥ 0 ,
∑N

i=1 σi(k) = 1, and Ai’s are constant
matrices.

Accordingly, Ac(k) =
∑N

i=1 σi(k)Ai(k)+Bu(k) . Note that
B is constant in our design,ence we can apply the following
result to design the feedback gain K(k) .

Lemma 4.2. [2] If there exist symmetric matrices Qi > 0,
Qj > 0, and matrices Gi, K̄i, and the following inequality(

Gi +G ′
i −Qi (AiGi +BK̄i)

′

AiGi +BK̄i Qj

)
> 0 (13)

for all i = 1, 2, · · · , N and j = 1, 2, · · · , N are feasible,

then K(k) = K̄(k)P (k), with K̄(k) =
N∑
j=1

σj(k)K̄j and

P =

N∑
j=1

σj(k)Pj , is the gain to stabilize system (11).

By solving (13), the (k+1)-index in matrix Q of (12) can
be removed and the feedback gain K(k) can be obtained.

Now we are in position to state the observer-based time-
varying stabilizer.

Theorem 4.3. If all the above assumptions hold, then the
augmented system (7) can be stabilized by the following

ẑ(k + 1) = (A22 −HA12)ẑ(k) + (B2(k)−HB1(k))ust(k)

+((A22 −HA12)H +A21 −HA11(t)) e(k)

x̂b(k) = ẑ(k) +He(k)

ust(k) = K1(k)x1(k) +K2(k)x̂b(k) .
(14)

And the gain K(k) = (K1(k) K2(k)) can be explicitly
given if matrix inequalities (13) are solvable.

The proof is omitted due to the space limit.

4.2 Robust stabilization

Considering disturbances and model uncertainties existed
in reality, we further investigate the robust stabilization as

d(k) = ∆y(k)

e(k) = y(k) + d(k) ,

and assume that ∥∆∥ ≤ δd . Note that d represents ex-
ternal disturbances or model uncertainties. More rigorous
analysis with respect to robust control against system
uncertainties deserves a separate study.

In the above setting, the result in Lemma 4.2 can be
extended to the robust case, that is,

Lemma 4.4. If there exist symmetric matrices Qi > 0,
Qj > 0, and matrices Gi, K̄i, and the following inequality

−Gi −G ′
i +Qi ⋆ ⋆ ⋆

AiGi +BK̄i −Qj ⋆ ⋆

CGi 0 −I ⋆

CGi 0 0 −(γ2 − 1)I

 < 0 (15)

for all i = 1 , 2 , · · · , N and j = 1 , 2 , · · · , N are feasible,

then K(k) = K̄(k)P (k) with K̄(k) =
∑N

i=1 σi(k)K̄i and

P =
∑N

i=1 σi(k)Pi is a feedback gain to stabilize (11).

The proof is omitted due to the space limit.

With the above robust stabilization design, the discrete
time-varying compensator can be synthesized accordingly.

5. EXPERIMENTS

In this section, we investigate the tracking performance of
the newly designed parallel kinematics X-Y servo gantry
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Fig. 2. The parallel kinematics VCM actuated X-Y servo
gantry.

system by the proposed control algorithm. The experimen-
tal setup is depicted in Figure 2, where two linear optical
encoders with 50 nm resolution are adopted for position
measurement.

One benchmark is to let the gantry track swept frequency
references. In specific, we adopt the reference signals
containing two frequency-varying “harmonics” generated
by the following 4-th order discrete exosystem:

S(k) =
cos(ω1(k)Ts) sin(ω1(k)Ts) 0 0

− sin(ω1(k)Ts) cos(ω1(k)Ts) 0 0

0 0 cos(ω2(k)Ts) sin(ω2(k)Ts)

0 0 − sin(ω2(k)Ts) cos(ω2(k)Ts)


Q(k) = (1 0 1 0) ,

where the time-varying terms are induced by ωi,min ≤
ωi(k) ≤ ωi,max, i = 1, 2. The corresponding observer
canonical form of the above system reads as:

So(k) =


−α3(k) 1 0 0

−α2(k) 0 1 0

−α1(k) 0 0 1

−α0(k) 0 0 0

 , Qo = (1 0 0 0) ,

where the explicit expressions of the time-varying coeffi-
cients αi(k), i = 1, · · · , 4 are not shown here due to the
space limit. In this study, the angular frequency varies
from 6π to 36π, with ωi(k) = ωi(0) + Ts k∆ωi, with
ω1(0) = 6π, ω2(0) = 8π.

The linear part of system model (3) admits the following
discrete state-space representation:

Ao =

(
−a1 1

−a0 0

)
, Bo =

(
b1
b0

)
, Co = (1 0) ,

where the nominal values of coefficients are a1 = −f11 −
f22, a0 = f11f22−f12f21, b1 = g1 , b0 = f12g2−f22g1, with

F = eAs Ts =

(
f11 f12
f21 f22

)
, G = (eAsTs−I)A−1

s Bs =

(
g1
g2

)
,

As =

(
−cx/mx 1

−kx/mx 0

)
, Bs =

(
0

KFKui/mx

)
.

The sampling time is chosen as Ts = 5e− 4 secs.

By design, the internal model subsystem 1 reads as

ξ1(k + 1) = Ao ξ1(k) +Bou(k)

and the internal model subsystem 2 reads as

1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
x 10

−4

po
si

tio
n(

m
)

 

 

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
x 10

−6

tr
ac

ki
ng

 e
rr

or
(m

)

 

 

reference 
measurement

tracking error

Fig. 3. Tracking references containing 2 varying “harmon-
ics” in experiments.

ξ2(k + 1) = Φ2(k)ξ2(k)−Ψ2Coξ1(k)

uim(k) = Γ2(k)ξ2(k) +D2(k)[−Coξ1(k)]

where

Φ2(k) =

0 1 0

0 0 1

0 0 −q2(k)

 , Ψ2 =

0

0

1

 , D2(k) = p3(k) ,

Γ2(k) = (p0(k) p1(k − 1) p2(k − 2)− p3(k)q2(k)) ,
and pi(k), i = 1, · · · , 3, and q2(k) are calculated by solving
the following algebraic Sylvester equation:
a1 1

a0 a1
0 a0
0 0

0 0

b1 0 0 0

b0 b1 0 0

0 b0 b1 0

0 0 b0 b1
0 0 0 b0




1

q2(k)
p3(k)
p2(k)
p1(k)
p0(k)

=


α3(k) 1

α2(k) α3(k)

α1(k) α2(k)

α0(k) α1(k)

0 α0(k)


(

1

q2(k)

)
.

The system to be stabilized reads as (8), where

A(k) = A(ω(k)) =


−α3(k) 1 0 0

−α2(k) 0 1 0

−α1(k) 0 0 1

−α0(k) 0 0 0

 , B =


b1
b0
0

0

 .

In this example, the polytopic representation of A(ω(k))

can be written as A(ω(k)) =

8∑
i=1

σi(k)Ai . The reduced

order observer for state xo reads as (10), where the output
injection gain H = [h2 h1 h0]

′ is invariant. The feedback
gain K(σ) can be designed by solving (15).

5.1 Experimental results

The same control algorithm is deployed on the servo gantry
experimentally, where a dSPACE R⃝ 1103 rapid prototyping
system is utilized for controller implementation and real
time control executions with the sampling rate of 2k Hz.

The first experiment is conducted to test the tracking
performance of swept frequency references (containing two
varying harmonics) for each single axis as depicted in
Figure 3, where the tracking error of 0.23 µm in RMS
(Root Mean Square) value is achieved for the frequency-
varying periodic reference with RMS value of 71 µm. Note
that we use RMS value instead of peak-peak value to
quantify the performance due to the existence of various
disturbances and noises.

Then the performance of tow-axis contouring is tested.
As shown in Figure 4, circular contour tracking error is
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Fig. 4. Tracking a circular contour in experiments.
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Fig. 5. Tracking error of circle in experiments.

2.1 µm of 500 µm radius, and the contour error can be
further illustrated by the cross-axis error plot in the polar
coordinates (Figure 5). It can be seen that the contour
error is symmetric which agrees well with the design of
the paralleled kinematics mechanism.

6. CONCLUSIONS

In this paper, we have proposed a discrete time-varying
internal model-based control for tracking complicated ref-
erences generated by linear time-varying systems. Based
on a novel parallel connection structure of the time-varying
compensator, we have developed a low-order robust sta-
bilizer in the discrete setting. Then we have deployed
the proposed control design on a newly design parallel
kinematics servo gantry system. The experimental results
demonstrate that by design the parallel servo gantry is
well suited for high precision contour tracking and the
proposed tracing controller achieves good tracking per-
formance for varying frequency signals in multiple axis.
The further improvement of frictions compensation and
the implementation of higher order signal references are
currently under investigation.
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