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Abstract: A well-known problem in the application of the Interconnection and Damping
Assignment technique for the stabilization of underactuated mechanical systems is dissipation
in unactuated coordinates, since it may impede the definiteness requirements for the closed-loop
system. Recently, the expansion of the closed-loop Hamiltonian function by a cross term between
coordinates and momenta has been explored showing promising results. However, the large
number of free parameters is an issue for the tuning of the closed-loop system, and the solution
of the matching partial differential equations (PDEs) remains a difficult task. In this work,
we aim at giving the closed-loop augmented Hamiltonian more structure in order to simplify
the controller parametrization. The result is desired behavior at the equilibrium avoiding the
solution of PDEs. Simulations and experiments demonstrate the applicability of the method.

1. INTRODUCTION

Total energy shaping control techniques like Interconnec-
tion and Damping Assignment Passivity-Based control
(IDA-PBC) and the method of Controlled Lagrangians
(CL) have become popular during the last years. These
methods shape the energy of the system but preserve its
physical structure and have thus become attractive for the
stabilization of (underactuated 2 ) mechanical systems (see
Acosta et al. [2005], Ortega and Spong [2000], Bloch et al.
[2000]). The controller design can be summarized in two
simple steps: energy shaping of the conservative system
in order to assign a local minimum of the closed-loop
energy at the desired equilibrium and damping injection
to asymptotically stabilize the equilibrium. The role of
damping for the stability of mechanical systems is am-
biguous, though: it either has a stabilizing or destabilizing
effect. Krechetnikov and Marsden [2007] describe with
several examples the phenomenon of dissipation-induced
instabilities - for systems stabilized by gyroscopic forces.
Physical dissipation is mostly neglected in IDA-PBC or CL
for the sake of simplicity and mathematical elegance. Yet,
it plays a crucial role in the applicability of energy shaping
control techniques to real physical systems: as shown in
Gómez-Estern and van der Schaft [2004], physical dissi-
pation in unactuated degrees of freedom can impede the
implementation of an IDA-PBC controller. The so-called
dissipation condition determines if required definiteness
properties for the closed-loop system can be fulfilled in
the presence of dissipation or not. For a related analysis of
the effect of physical damping from the CL point of view
see for example Woolsey et al. [2004].

1 The authors are with the Institute of Automatic Control (Prof.
Boris Lohmann).
2 A mechanical system is said to be underactuated, if not all degrees
of freedom can be controlled directly.

To overcome the dissipation condition, the desired Hamil-
tonian function can be augmented by a cross term between
coordinates and momenta as reported in Kotyczka and
Delgado L. [2012]. This leads to a more general representa-
tion of the closed-loop port-Hamiltonian (pH) system and
a considerable amount of free parameters. The tuning of
the desired system is no longer intuitive: it is not possible
to achieve a physically motivated choice of the design pa-
rameters, since the approach breaks the physical structure
of the system. Transparency with respect to achievable dy-
namics can however be provided by local linear dynamics
assignment presented in Kotyczka [2011]. The resulting
nonlinear controller guarantees desired local behavior and
provides an estimate of the domain of attraction based on
standard IDA-PBC arguments.

In the most common version of IDA-PBC for underactu-
ated mechanical systems, the structure of the intercon-
nection and damping matrices is fixed, and all assignable
energy functions are characterized by the solution of a set
of PDEs (see e.g. Ortega and Spong [2000]). Here, we show
a systematic way to compute the controller without solving
any PDEs: we fix the desired Hamiltonian and parametrize
the closed-loop system based on the solution of one Lya-
punov and some algebraic equations. In Acosta and Astolfi
[2009], another approach is pursued to obviate the solution
of PDEs for general input-affine systems by designing an
approximating integral together with a dynamic extension
to replace the PDEs with algebraic inequalities.

The remaining of the paper is organized as follows. Section
2 recalls the main idea of IDA-PBC for underactuated
mechanical systems and introduces the dissipation con-
dition. In Section 3 the issues of the dissipation condition
are exemplarily explained on a linear mechanical system.
Therefrom, an intuitive solution can be derived for the
nonlinear system in case the dissipation condition is not
satisfied. The main results of this note are presented in
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Section 4 and Section 5. The controller design procedure,
simulations and experimental results are finally shown in
Section 6 to demonstrate its practicability.

Remark 1. In this paper we only consider the IDA-PBC
framework. The CL case can be tackled in a similar
manner, since both formulations are equivalent as shown
in Blankenstein et al. [2002] and Chang et al. [2002].

Notation: If obvious from the context, arguments are
dropped for simplicity. The index 0 as in x0 denotes an
initial state; in the case of a matrix (e.g. W0), it denotes
W (q) evaluated at the equilibrium. The column vector of
partial derivatives with respect to x is represented as ∇x.

2. IDA-PBC FOR UNDERACTUATED MECHANICAL
SYSTEMS

Let us first briefly introduce the common IDA-PBC ap-
proach for underactuated mechanical systems as presented
in Ortega and Spong [2000]. We consider Hamiltonian
systems of the form

[

q̇
ṗ

]

=

[

0 I
−I −R(q)

] [

∇qH(q, p)
∇pH(q, p)

]

+

[

0
G(q)

]

u, (1)

where q ∈ Rn and p ∈ Rn are the generalized coordinates
and momenta, respectively, u ∈ Rm is the input, and
G(q) ∈ Rn×m the input matrix with rank(G(q)) = m < n.
The dissipation matrix R(q) = RT (q) ≥ 0 is assumed to
satisfy G⊥R = 0 3 . The Hamiltonian

H(q, p) =
1

2
pTM−1(q)p+ V (q) (2)

corresponds to the total energy with inertia matrix
M(q) > 0 and potential energy V (q). The state feedback

u = G†
(

∇qH +RM−1p−MdM
−1∇qHd

)

+ G†
(

(J2 −R2)M
−1
d p

) (3)

with G† = (GTG)−1GT , transforms (1) into a pH system
[

q̇
ṗ

]

=

[

0 M−1Md

−MdM
−1 J2 −R2

] [

∇qHd

∇pHd

]

(4)

with new (shaped) energy

Hd(q, p) =
1

2
pTM−1

d (q)p+ Vd(q) (5)

if the projected matching equations

G⊥

(

MdM
−1∇q(p

TM−1
d p)− 2J21M

−1
d p

)

−G⊥∇q(p
TM−1p) = 0

(6)

G⊥

(

∇qV −MdM
−1∇qVd

)

= 0 (7)

are satisfied. Here, G⊥ ∈ R(n−m)×n is a full rank left
annihilator satisfyingG⊥G = 0, and J2 = J20(q)+J21(q, p)
is a skew-symmetric matrix with J21 linear in p 4 . The
inertia matrix PDE (6) and the potential energy PDE
(7) correspond to the terms that are quadratic in p or
independent from p, respectively. If further

q∗ = arg minVd(q), Md(q) > 0 and R2(q) ≥ 0 (8)

in a neighborhood of q∗, then the equilibrium (q∗, 0) is (lo-
cally) stable with Lyapunov function Hd(q, p). Asymptotic
stability can be shown by invoking LaSalle’s invariance
principle. See Gómez-Estern and van der Schaft [2004],
and Ortega and Spong [2000] for proofs and details.

3 no dissipation in unactuated coordinates
4 Note that J20 is chosen such that G⊥J20 = 0 and R2 = GKdG

T

for a positive semidefinite matrix Kd(q) ∈ Rm×m, since G⊥R = 0.

2.1 Dissipation Condition

In contrast to above, we consider the case G⊥R 6= 0.
Thus, we additionally get a new set of algebraic matching
equations (corresponding to the terms that are linear in p)

G⊥

(

RM−1p+ (J20 −R2)M
−1
d p

)

= 0. (9)

Gómez-Estern and van der Schaft [2004] derive from (9)
the dissipation condition

G⊥

(

RM−1Md +MdM
−1R

)

GT
⊥ ≥ 0, (10)

and show, that it is a necessary and sufficient condition for
the existence of a passive closed-loop system with positive
definite storage function Hd. It is yet known, that in
the presence of physical damping in unactuated degrees
of freedom for many mechanical systems - such as the
Acrobot system, the Furuta and the inverted pendulum
among others - it is not possible to find a solution of the
matching equations (6), (7), and (9) which satisfies the
definiteness requirements (8) (see for example Kotyczka
and Delgado L. [2012], Gómez-Estern and van der Schaft
[2004], or Woolsey et al. [2004] for the CL point of view).

3. MOTIVATING EXAMPLE

The idea of the present note is easily motivated by looking
at a linear mechanical system. A substantial analysis of
IDA-PBC for linear time-invariant (LTI) systems can be
found in Prajna et al. [2002] and Ortega and Liu [2012].
The CL case is treated in Zenkov [2002]. We consider LTI
mechanical systems represented in Hamiltonian form

ẋ =

[

q̇
ṗ

]

=

[

0 I
−I −R

] [

∇qH(q, p)
∇pH(q, p)

]

+

[

0
G

]

u = Ax+Bu,

(11)
where the constant system matrices can be written as:

A =

[

0 M−1

−Q −RM−1

]

, B =

[

0
G

]

. (12)

The Hamiltonian in (11) takes the quadratic form

H(q, p) =
1

2
pTM−1p+

1

2
qTQq. (13)

As in the previous section, the goal is to transform (11)
by state feedback into a new LTI mechanical system
[

q̇
ṗ

]

=

[

0 M−1Md

−MdM
−1 J2 −R2

] [

Qd 0
0 M−1

d

] [

q
p

]

= Adx

(14)
with shaped energy function

Hd(q, p) =
1

2
pTM−1

d p+
1

2
qTQdq. (15)

The applicability of IDA-PBC to LTI systems is equivalent
to the solvability of the LMIs (Proposition 3.1 in Ortega
and Liu [2012] and Proposition 7 in Prajna et al. [2002])

P > 0 (16)

sym{B⊥AP
−1BT

⊥} ≤ 0, (17)

where B⊥ is a full rank left annihilator of B (B⊥B = 0).
The matrix P is the Hessian of the desired quadratic
energy function which in this case has a predefined block-
diagonal structure arising from (15):

P =

[

Qd 0
0 M−1

d

]

. (18)

The matching of (11) and (14) is satisfied if there exists
a solution of the set of LMIs (16) and (17) restricted to
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(18) (see e.g. Zenkov [2002] and Kotyczka and Delgado L.
[2012]). The LMI (17) can also be written as

G⊥(MdM
−1 −QQ−1

d ) = 0 (19)

−G⊥(RM−1Md +MdM
−1R)GT

⊥ ≤ 0, (20)

which represent the matching of the potential energy (7),
and the dissipation condition (10), respectively. LTI Sys-
tems trivially satisfy the kinetic energy matching equation.
For the inverted pendulum, there exist no Md, Qd > 0
which solve (19) and (20) in the case G⊥R 6= 0.

The central question which is addressed in this note is
whether or not it is possible to transform a damped me-
chanical system into a closed-loop pH system by static
feedback if the dissipation condition is not satisfied. Ortega
and Liu [2012] showed that IDA-PBC is equivalent to
stabilizability. The (damped) inverted pendulum is con-
trollable and thus stabilizable. By allowing off diagonal
entries in the matrix P - representing a cross term between
coordinates and momenta in the energy function (15) - the
set of LMIs (16) and (17) can be easily solved.

Remark 2. In Zenkov [2002], the stabilization of (con-
servative) linear mechanical systems using only position
feedback in the CL framework is discussed. Therein, the
closed-loop Hamiltonian is initially assumed to have a non-
block-diagonal Hessian, which corresponds to the structure
of the closed-loop Hamiltonian (21) in the present note.

4. MAIN RESULT

In Kotyczka and Delgado L. [2012] the violation of the
dissipation condition in applying the IDA procedure for
mechanical systems has been overcome by assuming a
closed-loop Hamiltonian, augmented by a mixed term of
coordinates and momenta pTn(q). The approach was mo-
tivated by the existence of a stabilizing linear state feed-
back. The Lyapunov function related to the stabilization
problem is shown to possess a non-block-diagonal solution.
However, a series of difficulties arises in the application of
the proposed augmented IDA-PBC approach: The solution
of additional PDEs for the new functions ni(q) is required,
the estimate of the region of attraction is poor, and the
controller becomes confusingly complicated. The present
work aims at solving some of these issues. It turns out
that the choice pTn(q) = −pTK(q)∇qVd(q) for a regular
matrixK(q) simplifies the augmented IDA-PBC approach.
Consider the Hamiltonian 5

Hd(q, p) =
1

2
pTMd

−1p+ Vd(q)− pTK∇qVd(q) (21)

for the generalized target pH system

F ∇Hd =

[

W (q) X(q)
Y (q) Z(q) + J21(q, p)

] [

∇qHd(q, p)
∇pHd(q, p)

]

, (22)

with J21(q, p) = −J21(q, p)
T linear in p. Note that

the closed-loop interconnection and damping matrices in
F(q, p) = J (q, p) − R(q) are of a more general form as
in the classic approach. The goal is to find a static state
feedback which renders (1) the modified pH system (22).
For a given closed-loop Hamiltonian (21), W (q) and X(q)
can be explicitly calculated: The matching of the first rows
of (1) and (22) leads to - splitting the equation in terms
independent and linear in p:

5 The matrices K and Md are chosen to be constant for simplicity.

W (∇2
qVdK

T )−XM−1
d +M−1 = 0 (23)

(W −XK)∇qVd = 0. (24)

With Vd, Md and K fixed, (23) and (24) are satisfied by

X = M−1
(

M−1
d −K∇2

qVdK
T
)−1

, (25)

W = XK = M−1
(

M−1
d −K∇2

qVdK
T
)−1

K. (26)

Furthermore, the unactuated part of the second rows of
(1) and (22) must match. A sufficient condition is the
solution of the new matching equations (splitting the
equation in different dependencies on p - quadratic, linear
and independent):

G⊥

(

Y∇q(p
TM−1

d p) + 2J21M
−1
d p

)

+G⊥∇q(p
TM−1p) = 0 (27)

G⊥

(

RM−1 + ZM−1
d − Y∇2

qVdK
T
)

p

−G⊥J21K∇qVd = 0 (28)

G⊥ (∇qV + (Y − ZK)∇qVd) = 0. (29)

Assumption 1. The inertia matrix M does not depend on
unactuated coordinates, i.e. G⊥∇q(p

TM−1p) = 0.

Proposition 1. Given the solution L(q) of

G⊥

(

∇qV + (L+R)M−1MdK∇qVd

)

= 0 (30)

for a given mechanical system (1) with inertia matrix M ,
potential energy V and dissipation matrix R, and for fixed
Vd, Md and K, the state feedback

u = G†
(

∇qH +RM−1p+ Y∇qHd + Z∇pHd

)

(31)

with G† = (GTG)−1GT , Y = LW , and

Z =
(

Y∇2
qVdK

T −RM−1
)

Md +GvT ,

transforms (1) into the closed-loop system (22).

Proof. Let J21 = 0 and Md be constant, such that (27) is
satisfied. The matching of the actuated part of (1) and (22)
yields the control law (31). The solution of (28) requires

Z =
(

Y∇2
qVdK

T −RM−1
)

Md +GvT (32)

for an arbitrary vector v = v(q) ∈ Rn. With Z as in (32),
equation (29) takes the form

G⊥(∇qV +Σ∇qVd) = 0, (33)

where Σ = Y −
(

Y∇2
qVdK

T −RM−1
)

MdK, or after some
simple calculations

Σ =
(

Y K−1
(

M−1
d −K∇2

qVdK
T
)

+RM−1
)

MdK

=
(

YW−1 +R
)

M−1MdK. (34)

according to (26). Defining L = YW−1 and rewriting
equation (33) with (34) finishes the proof.

5. STABILITY AND CONTROLLER DESIGN
PROCEDURE

One of the fundamental difficulties of IDA-PBC is the
parametrization of the closed-loop system: For the desired
equilibrium to be stable, (q∗, 0) needs to be an isolated
minimum of the desired Hamiltonian, and R(q) ≥ 0 is
required around q∗. The vast amount of degrees of freedom
of the presented approach makes it hard to choose an
appropriate parametrization. Stability and desired local
behavior for the closed-loop system can be guaranteed,
however, by matching the linearized closed-loop pH system
with a desired LTI system.
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Assumption 2. (q∗, 0) is an admissible equilibrium, i.e.
G⊥∇qV (q)|q∗ = 0 holds.

Let ∆ẋ = A∆x+Bu be the linearized mechanical system
around the equilibrium x∗ = (q∗T , 0T )T , (∆x = x −
x∗ = (q − q∗, p)) and let the pair (A,B) be controllable.
Design a linear state feedback u = −D∆x such that
the state matrix Ad = A − BD is Hurwitz. Then there
exists a unique positive definite matrix P , which solves
the Lyapunov equation

AdP
−1 + P−1AT

d = −2R0 (35)

for any R0 > 0 (see e.g. Boyd et al. [1994]).

Proposition 2. Let the linear feedback u = −D∆x for the
damped underactuated mechanical system (1) result in
a closed-loop system locally approximated by the state
matrix Ad. Take a positive definite matrix R0 > 0 and
compute the solution

P =

[

P11 P12

PT
12 P22

]

> 0 (36)

of (35). Set

Qd = P11, Md = P−1
22 , K = −PT

12P
−1
11 (37)

and

[

W0 X0

Y0 Z0

]

= AdP
−1. (38)

Fix Vd(q) with ∇qVd|q∗ = 0 and ∇2
qVd|q∗ = Qd and

suppose one can find a solution L(q) of (30), satisfying
L(q∗) = Y (q∗)W (q∗)−1 = Y0W

−1
0 . Then, the nonlinear

control law (31) asymptotically stabilizes the equilibrium
(q∗, 0). From the largest bounded level set of Hd(q, p)
where R(q) > 0 holds, an estimate of the domain of
attraction can be derived. The closed-loop system is locally
approximated by

∆ẋ = Ad∆x. (39)

Proof. The control law (31) transforms (1) into a port-
Hamiltonian system (22) under the conditions of the
proposition and with W , X and Z according to (25), (26)
and (32), respectively. From the parameter choice in (37)
and the structure of the closed-loop energy (21),

∂2Hd

∂x2
|x∗ = P > 0 (40)

can be deduced, i.e. positive definiteness of Hd in an open
neighborhood of (q∗, 0) is guaranteed. The dissipation
matrix at the equilibrium is

R(q∗) = −
1

2
(AdP

−1 + P−1Ad) = R0 > 0. (41)

Since the elements of R(q) are continuous functions in q,
strong dissipativity in an open neighborhood of (q∗, 0) is
guaranteed. An estimate of the region of attraction follows
from usual Lyapunov arguments. The linearization of the
closed-loop pH system around (q∗, 0) yields directly (39).

Six steps summarize the controller design procedure

Step 1: Linearize the mechanical system around the de-
sired equilibrium (q∗, 0) and design a linear state feedback
u = −D∆x, such that the closed-loop dynamics are given
by

∆ẋ = Ad ∆x, ∆x = (q − q∗, p) ∈ R2n (42)

with Ad Hurwitz. Desired local performance properties can
be formulated in terms of the eigenvalues of Ad or an LQR
design to determine D.

Step 2: Fix R0 = RT
0 > 0 and calculate the solution P−1

of the Lyapunov equation

AdP
−1 + P−1AT

d = −2R0. (43)

The matrix P is the Hessian of the desired Hamiltonian
function at the equilibrium:

∇2Hd(q, p)|(q∗,0) =

[

Qd −QdK
T

−KQd M−1
d

]

= P. (44)

Further, calculate the interconnection and damping ma-
trices at the equilibrium:

[

W0 X0

Y0 Z0

]

= AdP
−1. (45)

Step 3: Fix the potential energy of the closed-loop system
Vd(q), such that

∇2
qVd(q)|q∗ = Qd, ∇qVd(q)|q∗ = 0

Step 4: Solve

G⊥

(

∇qV + (L+R)M−1MdK∇qVd

)

= 0

for an arbitrary matrix L satisfying L(q∗) = Y0W
−1
0

Step 5: Calculate

Y = LW = LM−1
(

K−1M−1
d −∇2

qVdK
T
)−1

and
Z =

(

Y∇2
qVdK

T −RM−1
)

Md +GvT

with an arbitrary vector v = v(q) such that Z(q∗) = Z0.

Step 6: Compute the control law (31)

The approach is quite systematic and therefore easy to
implement. Only Step 4 should be done with care: Some
elements of Lmight need to be smartly fixed in order to get
a suitable solution. In Step 5, the vector v can be further
used to inject nonlinear damping (see e.g. example below).
Furthermore, the choice of R0 has some implications
regarding the estimate of the region of attraction. How
to optimally choose R0 is still an open question.

6. EXAMPLE - INVERTED PENDULUM ON A CART

ϕ

su

Fig. 1. The inverted pendulum on a cart. Scheme (left)
and test rig (right).

To illustrate the approach, consider the pendulum on a
cart depicted in Figure 1. This is a classical example of an
underactuated mechanical system: it has one single input u
and two degrees of freedom corresponding to the horizontal
motion of the cart and the rotation of the pendulum,
represented in local coordinates by q = (s, ϕ)T . The
equations of motion after a partial feedback linearization
(PFL) (see Spong [1994]) are given by (1) with

M = I2×2, V (ϕ) = ag cosϕ,

G =

[

1
a cosϕ

]

, R =

[

0 0
0 rϕ

]

,
(46)
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where I2×2 denotes the identity matrix (i.e. p = q̇), g is the
gravity constant and rϕ the normalized viscous damping
coefficient for the unactuated coordinate (the damping in
the actuated coordinate is assumed to be compensated).
The parameter a is given by

a =
mplp

mpl2p + θp
, (47)

where lp is the distance from the rotation axis to the
center of gravity of the pendulum, and mp and θp are the
pendulum mass and moment of inertia, respectively. The
system parameters of the test rig are shown in Table 1 6 .

Parameter Value

a 3.9
g 9.81
rϕ 3.34 · 10−4

Table 1. System parameters

6.1 Controller Design

The linearized system around the unstable equilibrium is
controllable. It is thus possible to design a linear state
feedback, such that the equation of motion of the closed-
loop system is locally approximated by ẋ = Adx, where
x = (∆s,∆ϕ, ṡ, ϕ̇)T and Ad is Hurwitz. The assumptions
above are valid for the inverted pendulum after a PFL: The
inertia matrix does not depend on unactuated coordinates,
and the desired equilibrium is admissible. We can therefore
apply the six steps presented in Section 5 to design a
nonlinear stabilizing controller for the system.

The steps 1-3 are implemented using a LQR controller
(eigenvalues at −163.6,−1.03,−6.2,−6.1) and with

R0 = diag{1, 1,
1

3
,
1

3
} and Vd =

1

2
qTQdq. (48)

Fix the elements of the first row of L to the constant values
L(q)11 = L(q∗)11 and L(q)12 = L(q∗)12 to calculate the
solution of (30) (Step 4). Equation (30) results in

0 = (c1 L2,1 + c2 cosϕ+ c3 L2,2 + c4) s+

c5ϕ cosϕ+ (c6 L2,2 + c7 L2,1 + c8)ϕ+ c9 sinϕ (49)

for some constants ci. The remaining two elements L2,1

and L2,2 are chosen depending only on the angle ϕ. The
matrices Y and Z are calculated in Step 5 with

vT = vT0 +Kdi(ϕ)G
T , (50)

where the constant vector v0 is chosen such that Z(q∗) =

Z0 and Kdi = 200
(

1
cosϕ − 1

)

: It turns out, that adding

more damping for larger values of ϕ improves the transient
behavior. Step 6 is straightforward.

6.2 Simulations

Figure 2 shows the response of the system controlled
with the LQR controller of the previous section, with
an IDA-PBC controller as found in Acosta et al. [2005]
for the undamped system as an exponent of the classical
passivity-based control approach for mechanical systems 7 ,
6 The system has been non-dimensionalized
7 The IDA-PBC controller has been parametrized with the aim of
a large estimate of the region of attraction. Other parametrizations
(and approaches) show different responses, the oscillations and the
relative slow convergence of the cart’s position, however, remain. See
e.g. Woolsey et al. [2004] for the CL case.

and with the augmented IDA-PBC controller presented
in this paper. Near the desired equilibrium, the systems

−0.2

−0.1

0

s

q0 =

(

0
0.2

)

0 1 2 3 4
−0.1

0

0.1

0.2

t
ϕ

A-IDA

IDA

LQR

0 1 2 3 4
-1

0

1

t

-1

0

q0 =

(

0
0.95

)

Fig. 2. Response of the cart position s (top) and angle
of the pendulum ϕ (bottom) for two different initial
angles ϕ0 = 0.2 rad (left) and ϕ0 = 0.95 rad (right)
and s0 = ṡ0 = ϕ̇0 = 0 .

controlled with the augmented IDA-PBC and with the
LQR controller behave equal. The first one shows, how-
ever, a slightly smoother response for larger initial angles.
Figure 3 shows level sets of the augmented closed-loop
Hamiltonian Hd in the (s, ϕ)-plane, where Rd > 0 . The
region bounded by the largest level set is an estimate of the
domain of attraction of the equilibrium point: Since the
energy function is of quadratic form and the dissipation
solely depends on the angle ϕ, the 4-dimensional sublevel
set of Hd completely contained in the region where Rd > 0
is an estimate of the domain of attraction. Table 2 shows

Rd > 0

Rd ≯ 0

Rd ≯ 0

−2 −1 0 1 2
-1

-0.75

0

0.75

1

s

ϕ

Fig. 3. Level sets of Hd in the plane p = 0 and level set
where the smallest eigenvalue of Rd equals 0.

the maximal stabilizable initial angle ϕ0 when starting at
rest for the different controller types. These values have
been determined by simulation 8 .

8 In Woolsey et al. [2004] the equilibrium is asymptotically stable
for |ϕ0| <

π
2
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Stabilizable initial angles in radians

Classic IDA −1.45 < ϕ0 < 1.45
Augmented IDA −1.20 < ϕ0 < 1.20

LQR −0.96 < ϕ0 < 0.96

Table 2. Simulative estimate of the stabilizable
initial angles ϕ0 for (s0 = 0, ϕ0, ṡ0 = 0, ϕ̇0 = 0)

Remark 3. The fact that the dissipation condition is not
satisfied does not imply instability of the closed-loop sys-
tem. It is in fact possible to prove stability for the system
controlled by the classical IDA-PBC approach in the pres-
ence of physical damping by a spectral stability analysis as-
sociated with the linearized dynamics as shown in Woolsey
et al. [2004]. However, the analysis is cumbersome and one
loses the Lyapunov function, and therewith the proof of
the region of attraction. On the other hand, Woolsey et al.
[2004] confirm that physical damping degrades the local
performance of the energy shaping controller, whereas a
(well-tuned) linear static state feedback ensures good local
performance eliminating undesired oscillations.

6.3 Experimental results

Figure 4 shows the behavior of the augmented IDA-PBC
controlled test rig. The same controller parametrization
from the simulation has been also used for the experiments,
which has been chosen rather ”slow” to clearly visualize
the results. The desired position of the cart changes from
−0.1m to 0.1m at 0.85s. As shown in the plot, the cart
smoothly reaches the desired position as expected, keeping
the pendulum close to its desired equilibrium and showing
a similar transient to that of the simulations.

0 1 2 3 4

−0.1

0

0.1

t

s

−0.1

0

0.1

ϕ

Fig. 4. Position control of the inverted pendulum: the dash-
dotted line shows the behavior of the pendulum’s
angle ϕ and the solid line represents the position of
the cart s

.

7. CONCLUSION

This note presents an IDA-PBC controller design approach
for underactuated mechanical systems based on a more
general closed-loop Hamiltonian function which a) is easy
to parametrize b) does not get affected by physical damp-
ing, since dissipation is considered in the controller design
and c) does not require the solution of any PDE. A frame-
work of 6 steps has been presented for the controller design
for a class of mechanical systems. Simulations and exper-
imental results confirm the applicability of the method.
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