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Abstract: The paper deals with a method for real-time frequency analysis of the electromyo-
gram. The method has been proposed for usage in control systems of advanced robotics
for different applications. The method includes robust real-time frequency estimation with
preliminary usage of bandwidth filters. The method is easy to program and requires no additional
resources. The paper presents an example of experimental approbation of proposed method.

1. INTRODUCTION

Fast development of information and computer technolo-
gies led to appearance of new types of devices. It has also
started evolving new control approaches. In fact, move-
ment, mind and body control has become top priority do-
mains of control devices development. This paper describes
two EMG classification methods.

EMG is a biopotential electric research method of human
being skin surface that contracts muscle fibers. With the
help of received EMG signal one can classify performed
movements and use them as source of control signals for
different devices. Particularly, applications of this type of
control for rehabilitation of patients with diseases of the
muscles and locomotion systems are attractive (Borgul
et al. [2012]; Matrone et al. [2011]; Fraiwan et al. [2011];
Majdalawieh et al. [2003]; Zimenko, Borgul and Margun
[2013]).

Today, using of EMG as a source of control signal is
not so widespread because of the high level of noise and
complex nonstationary signal form. In addition, necessity
of classification in a real time mode drastically complicates
the application of EMG signals, and this circumstance
becomes a difficult task in case of high computational
complexity of most existing methods of classification.

The classification is based on features for each type of
movement. These features may be computed in several
domains, such as time domain, frequency domain, time-
frequency and time-scale representations (Herle and Man
[2009]; Parker et al. [2006]).
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Time-frequency domain features show better performance
than other-domain features in case of assessing transient
properties of a signal. The central concept of most of the
methods is a decomposition of a signal into time-frequency
atoms:

y(t) =

k∑
i=1

ciβi(t), (1)

where βi(t) are the so called basis functions and ci a
corresponding coefficients.

The abundance of articles proves the importance of time-
frequency domain features (actually, more than 50 articles
have been published over the recent five years, for example
(Yuan et al. [2009]; Yunfeng and Krishnan [2009]; Jasper
and Othman [2010])). However, it is important to observe
that the information provided by most methods is limited
by the size of analysis window.

This paper deals with development for methods of signal
classification in a real time mode for further application
of control signal source for different types of devices, for
example, exoskeletons, active prostheses, etc. First method
is based on a robust harmonic frequency identification of
signal using cascade reduction. The second one based on
main robust frequency estimation method.

Section 2 is dedicated to research of EMG signals and
their location within frequency characteristics by means
of spectral analysis. Section 3 describes a method for the
identification of robust frequency harmonic signal. Section
4 is devoted to the experimental validation of the proposed
method. Section 5 contains the interpretation for research
results.
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Fig. 1. Nine-channel amplifier Neurobelt

2. PROBLEM STATEMENT

A series of experiments has been directed to search for
EMG signal features. EMG signals reading has been con-
ducted based on the reference scheme. The first electrode
was fixed on the forearm. The second one was placed on
the shoulder for reference comparison. The data has been
received from the electrodes with nine-channel amplifier
Neurobelt (Fig. 1). This device designed for continuous
recording of electrophysiological signals with high resolu-
tion in the frequency band from 0 through 350 Hz. The
data was transmitted to PC for processing. The exper-
iments have been performed on five healthy men with
the age varying from 19 to 24 years. Subjects performed
three types of motion: wrist flexion, rotating clockwise and
rotating counterclockwise.

After signal reception and spectral analysis had been
completed a certain number of features have been found:

1) each type of movements had its own specific spectral
characteristic;

2) frequencies containing main part of signal energy were
quite close to the same type of movement;

3) most of the signals energy have been detected in two -
three signal harmonics.

Based on the average spectral characteristics of many
times repeated movements (Fig. 2–4) one can conclude
that first harmonic is the same for all types of motion.
Other harmonics has frequencies depending on the type of
movement. Based on this, a set of bandwidth filters have
been chosen with values varying from 12 through 20 Hz.
Thus, in the further processing of the signal there was
only area with one or two different harmonics for each of
the movements: 15.6 Hz for wrist flexion, 13.7 and 17.57
Hz were registered when rotating clockwise, 13.7 Hz when
rotating counterclockwise.

Based on the detected features of the signal let’s suggest
a classification algorithm that looks in the following way:

1) separation of the signal by bandwidth filters;

2) frequency identification of each filtered output signal;

3) in case the identified frequencies with sufficient accuracy
coincide with the fundamental components of the studied

Fig. 2. Spectral density for flexion

Fig. 3. Spectral density when rotating clockwise

Fig. 4. Spectral density when rotating counterclockwise

movements, one may state that this movement has been
actually performed.

Thus, EMG signal classification is becoming an issue of
harmonic signals frequency estimation. In the next section
a method of frequency real-time identification is described.

3. IDENTIFICATION ALGORITHMS

In this section the EMG frequency identification is de-
scribed. Let’s present (1) in the following form (Zimenko,
Margun and Kremlev [2013]):

y(t) =

k∑
i=1

σi sin(ωit+ φi), (2)

where σi is an amplitude and φi is an initial phase of the
i-th harmonic.

Each movement has its own unique set of harmonics.
Therefore, identifying the frequency of the signal one can
determine what kind of movement has been performed by
a human being. Let us introduce here a brief description
of the method of identification multiharmonic signal pro-
posed in Aranovskii et al. [2010].
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It is known that for generation of a signal y(t) there is a
way to use differential equation (Aranovskii et al. [2006])

(p2 − θ1)(p2 − θ2) · · · (p2 − θk)y(t) = 0, (3)

where θi = −ω2
i , i = 1, k are constant parameters.

Rewrite (3):

p2ky(t) = θ̄1p
2k−2y(t) + · · ·+ θ̄k−1p

2y(t) + θ̄ky(t), (4)

where: 
θ̄1 = θ1 + θ2 + · · ·+ θk,
θ̄2 = −θ1θ2 − θ1θ3 − · · · − θk−1θk,
...
θ̄k = (−1)k+1θ1θ2 · · · θ1.

(5)

Tranforming to Laplace images in equation (4) we yield:

s2k4̄(s) = θ̄1s
2k−24̄(s) + · · ·+ θ̄k−1s

24̄(s)
+θ̄k4̄(s) +D(s),

(6)

where s is a complex variable, 4̄(s) = L{y(t)} is a Laplace
image of function y(t), and the polynomial D(s) denotes
sum of all terms containing initial conditions.

Multiply (6) on λ2k

(s+λ)2k
, where λ is a constant parameter,

and consider an auxiliary filter:

ξ(s) =
λ2k

(s+ λ)2k
4̄(s) (7)

After inverse Laplace transformation for (6):

ξ(2k)(t) = θ̄1ξ
(2k−2)(t) + · · ·+ θ̄kξ(t) + ε(t), (8)

where ε(t) = L−1
{

D(s)
(s+λ)2k

}
is the exponential decaying

term caused by nonzero initial conditions.

The term ε(t) = L−1
{

D(s)
(s+λ)2k

}
depend on the parameter

λ, there is a way to accelerate convergence it to zero by
increasing the parameter λ.

Neglecting term ε(t) we have

ξ(2k) = ΩT (t)Θ̄, (9)

where ΩT (t) = [ξ(2k−2)(t) . . . ξ(2)(t) ξ(t)] is regressor,
Θ̄T = [θ̄1 . . . θ̄k−1 θ̄k] is vector of unknown parameters.

Similarly to Bobtsov, Kolyubin and Pyrkin [2010] and
taking into account that Ω(t)ξ(2k) = Ω(t)ΩT (t)Θ̄(t) pa-
rameter vector Θ̄ estimation are set in the following way:

˙̄̂
Θ(t) = KΩ(t)(ξ(2k) − ΩT (t) ˆ̄Θ(t)), (10)

where K = diag{ki > 0}, i = 1, k, and ki is some param-
eter, the increase of that can speed up the convergence of
ˆ̄θi to θ̄i.

Since the frequency spectrum of the EMG varies rapidly
when performing any movement, we use large values of k
and λ (e.g. λ > 5, k > 1000) to define the frequencies.

Now consider the system presented in (5). Equations of
the system (5) are Viet’s formulas. Therefore parameters
θi, i = 1, k are roots of p2k + θ̄1p

2k−2 + · · ·+ θ̄k−1p
2 + θ̄k.

Based on the parameters θ̄i, i = 1, k we can unambiguously
define roots θi, i = 1, k.

Thus, we have the hybrid identification scheme of θi i =
1, k. Frequencies of multiharmonic signal we yield from
equation (3):

ω̂i(t) =

√
|θ̂i(t)|, i = 1, k (11)

Basic research of Pearson [1987] found that muscle EMG
consists mainly of low-frequency vibrations. In order to use
the method described above it is proposed to pass EMG
signal through a bandwidth filter. This is done for two
reasons:

1) select frequency area required for application in control
system and movement identification;

2) avoid the effect of noise (e.g. the most frequent type
of noise is 50 Hz coming from devices that operate from
industrial power).

Selection of the bandwidth filter is based on preliminary
spectrum analysis.

It should be noted that the method is sensitive to noise
and external disturbances. Therefore modification has
been developed. That modification provides robust main
frequency estimation of noisy harmonic signal, with regard
to lower amplitude signals and noise (Aranovskii et al.
[2010]).

In this case let us consider the following variable

χ(t) = θ̂(t)− k1ξ̇(t)y(t), (12)

or

θ̂(t) = χ(t) + k1ξ̇(t)y(t), (13)

where with k = 1 following to (7) ξ = λ
s+λy(t). Differenti-

ating equation (12) we yield:

χ̇(t) =
˙̂
θ(t)− k1ξ̈(t)y(t)− k1ξ̇(t)(t)

= k1ξ̇(t)(ẏ(t)− 2λξ̈(t)− λ2ξ̇(t))− k1ξ̇2θ̂(t)
−k1ξ̈(t)y(t)− k1ξ̇(t)(t)
= k1ξ̇(t)(−2λξ̈(t)− λ2ξ̇(t))− k1ξ̇2(t)θ̂(t)

−k1ξ̈(t)y(t).

(14)

Equations (12) and (14) form realizable identification algo-
rithm. Lets consider issue of robustness of this algorithm:

χ̇(t) = k1ξ̇(t)(−2λξ̈(t)− λ2ξ̇(t))− k1ξ̇2(t)θ̂(t)

−k1ξ̈(t)y(t)− k̄2θ̂(t),
(15)

where k2 ≥ 0.

The modification of identification algorithm (14) assumes
that outside bounded region in the state-space the deriva-
tive of Lyapunov function becomes negative. The main
drawback is that a bias term is added to the parameter
update equation, therefore zero residual error cannot be
guaranteed when the disturbances are removed (Bobtsov
[2008]). In this case we can use the following approach:

ka = k̄a(θ̂) =


0, |θ̂| < θ0,(
|θ̂|
θ0

)
, θ0 ≤ |θ̂| ≤ 2θ0,

1, |θ̂| > 2θ0.

(16)
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Examples of using the above methods are presented in
Section 4.

4. SIMULATION RESULTS

To demonstrate the efficiency of the proposed method
consider real-time classification of movements problem.
Series of experiments have been made to verify operability
of proposed method. EMG signals experiments conducted
are similar to those presented in Section 2.

As was mentioned above based on the spectral character-
istics (Fig. 2–4) we can conclude that most of the energy
signals contain in two - three harmonics. First harmonic
is the same for all types of movements. Other harmonics
has frequencies depending on type of movement. Based on
this we choose a bandwidth filter with a band varying 12
to 20 Hz. Thus, in the further processing of the signal
the only area with one or two different harmonics for
each of the movements: 15.6 Hz for wrist flexion, 13.7 and
17.57 Hz when rotating clockwise, 13.7 Hz when rotating
counterclockwise.

Thus presenting (2) as a sum of two harmonics:

y(t) = A1 sin(ω1t+ ϕ1) +A2 sin(ω2t+ ϕ2), (17)

where A1, ω1, ϕ1, A2, ω2, ϕ2 are unknown constant param-
eters.

According to (4), (5):

p4y(t) = θ1p
2y(t) + θ2y(t), (18)

where θ̄1 = −ω2
1 − ω2

2 , θ̄2 = −ω2
1ω

2
2 are unknown parame-

ters to be identified.

After introducing auxiliary filter ξ(s) = λ4

(s+λ)4 we yield:

z(t) = ξ(4)(t) =
λ4s4

(s+ λ)
4 y(t), ς1(t) = ξ(2)(t)

=
λ4s2

(s+ λ)
4 y(t), ς2(t) = ξ(t) =

λ4

(s+ λ)
4 y(t).

(19)

Then using (18) and (19) for model (17) the equation (9)
will look like:

z(t) = θ̄1ς1(t) + θ̄2ς2(t) + ε(t) = ςT θ, (20)

where θ̄ = col
{
θ̄1, θ̄2

}
, ς = col {ς1, ς2}.

Similarly to (10) and neglecting ε(t) we can use an algo-
rithm of identification that has the following look:

˙̄̂
θ = −kςςT ˆ̄θ + kςz, (21)

where ˆ̄θ is an estimate of the vector θ̄ and k > 0 is some
coefficient either chosen during a synthesis or is set during
the operation.

In the scalar case the increase of k > 0 implies increas-
ing of the convergence speed. But generally it is not the
case. The solution to this problem can be found using a
hybrid scheme of parameters setting based on the method
of cascade reduction (Pyrkin et al. [2013]). Let’s trans-
form (20)applying this method. For this, multiply (20) by
ς1 and integrate the yielded equation:

Fig. 5. Transients of estimates of the frequency ω1 of wrist
flexion

ς1 = θ̄1ς
2
1 + θ̄2ς2ς1,

t∫
0

zς1dτ = θ̄1

t∫
0

ς21dτ + θ̄2

t∫
0

ς2ς1dτ.
(22)

Denote γ1 =
∫ t
0
zς1dτ, γ2 =

∫ t
0
ς21dτ and γ3 =

∫ t
0
ς2ς1dτ .

First we consistently divide the relation relation above by
ξ2. Next we integrate it having the following:

γ̇1γ
−1
2 − γ1γ̇2γ−22 = θ2

(
γ̇3γ
−1
2 − ξ3γ̇2γ−22

)
(23)

or

γ̇1γ2 − γ1γ̇2 = θ2 (γ̇3γ2 − γ3γ̇2) . (24)

Denote z̄(t) = γ̇1γ2−γ1γ̇2 and ς̄2 = γ̇3γ2−γ3γ̇2. Then the
equation (24) will look like the following:

z̄(t) = θ̄2ς̄2. (25)

Out of (25) it is easy to get the identification algorithm of
parameter θ̄2:

˙̄̂
θ2 = −k2ς̄22 ˆ̄θ2 + k2ς̄2z̄, (26)

where k2 > 0 is some parameter, the increase of it can

speed up the convergence of ˆ̄θ2 to θ̄2. Neglecting term ε(t)
in the equation (20), to identification of the parameter θ̄1
we use an algorithm in the following form:

˙̄̂
θ1 = −k1ς21 ˆ̄θ1 + k1ς1z

′, (27)

where z′ = z− ˆ̄θ2ς2 and k1 > 0 is a parameter, the increase
of it, as in the previous case, allows to increase the speed

of convergence of ˆ̄θ1 to θ̄1.

Thus, we have the hybrid identification scheme of θ̄1 =
−ω2

1 − ω2
2 and θ̄2 = ω2

1ω
2
2 that involves the reduced

model (25) and parametric setting with algorithms (26)
and (27). Resolving the quadratic equation, it is easy to
obtain estimation of the frequencies of the original signal’s

harmonics from the estimation for ˆ̄θ1 and ˆ̄θ2.

Write the equations of the frequencies explicitly:

ω1 =

√
θ̄1 +

√
|θ̄21 − 4θ̄22|
2

, (28)

ω2 =
√
|θ̄1 − ω2

1 |. (29)

Taking into account that f = ω
2π , graphs (Fig. 5–10) have

been obtained.

Similar series of experiments was performed for the mod-
ified method of robust estimation to identify fundamental
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Fig. 6. Transients of estimates of the frequency ω2 of wrist
flexion

Fig. 7. Transients of estimates of the frequency ω1 when
rotating clockwise

Fig. 8. Transients of estimates of the frequency ω2 when
rotating clockwise

Fig. 9. Transients of estimates of the frequency ω1 when
rotating counterclockwise

Fig. 10. Transients of estimates of the frequency ω2 when
rotating counterclockwise

Fig. 11. Transients of estimates of the frequency ω1 of wrist
flexion based on the method of cascade reduction

Fig. 12. Transients of estimates of the frequency ω1 when
rotating clockwise based on the method of cascade
reduction

Fig. 13. Transients of estimates of the frequency ω2 when
rotating clockwise based on the method of cascade
reduction

Fig. 14. Transients of estimates of the frequency ω1 when
rotating counterclockwise based on the method of
cascade reduction

frequency of harmonic signal. The results indicate a higher
accuracy of this approach compared with the previous one
(Fig. 11–14).

Thus cascade reduction and robust main frequency estima-
tion methods have been used for real-time identification of
multiharmonic signal frequencies. The yielded results are
in line with spectral analysis with high accuracy. The table
below shows a comparison of performance for proposed
methods. Thus, proposed methods based on data from
EMG may be used for real-time classification of move-
ments.
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Comparison of methods
Cascade reduction method

Movement Frequency Identification Average
time (s) error (Hz)

Wrist f1 0.61 0.11
flexion

Rotating f1 0.69 0.07
clockwise
Rotating f2 1.05 0.11
clockwise
Rotating f1 0.6 0.071
counter-
clockwise

Main frequency estimation method
Movement Frequency Identification Average

time (s) error (Hz)
Wrist f1 0.58 0.04
flexion

Rotating f1 0.59 0.044
clockwise
Rotating f2 0.55 0.042
clockwise
Rotating f1 0.55 0.04
counter-
clockwise

5. CONCLUSIONS

The method of classification of EMG signals as a source of
control of different engineering devices has been developed.
The spectral decomposition of the signal gives way to iden-
tify the frequency characteristics for use in classification.

Using the method of robust frequency identification and
harmonic frequency bandwidth filters allows it’s applica-
tion even in very noisy measurements in real time mode.
Experimental testing confirmed the performance of the
proposed approach with a high degree of accuracy. The
results are applicable in biomedical engineering and reha-
bilitation devices also.
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