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Abstract: We propose and analyze passification-based adaptive controller for linear uncertain
systems with quantized measurements. Since the effect of the quantization error is similar to the
effect of a disturbance, the adaptation law with σ-modification is used. To ensure convergence
to a smaller set, the parameters of the adaptation law are being switched during the evolution of
the system and a dynamic quantizer is used. It is proved that if the quantization error is small
enough then the proposed controller ensures convergence of the state of a hyper-minimum-phase
system to an arbitrarily small vicinity of the origin. Applicability of the proposed controller to
polytopic-type uncertain systems and its efficiency is demonstrated by the example of yaw angle
control of a flying vehicle.

1. INTRODUCTION

Adaptive control plays an important role in the real
world problems, where exact system parameters are of-
ten unknown. One of the possible methods for adaptive
control synthesis is passification method (Andrievskii and
Fradkov (2006)). Starting from the works Fradkov (1974,
1976) this method proved to be very efficient and use-
ful. Nevertheless, while implementing passification-based
adaptive control, several issues may arise. First of all,
disturbances inherent in most systems can cause infinite
growth of the control gain. This issue may be overcome by
introducing the so-called “σ-modification” (Lindorff and
Carroll (1973); Ioannou and Kokotovic (1984)). Secondly,
the measurements can experience time-varying unknown
delay. This problem has been recently studied in Selivanov
et al. (2013). The objective of this paper is to design
and investigate passification-based adaptive control with
quantized measurements.

Control with limited information has attracted growing
interest in the control research community lately, largely
motivated by the control over networks paradigm (Wong
and Brockett (1997, 1999); Brockett and Liberzon (2000);
Matveev and Savkin (2004)). Since the capacity of a com-
munication channel is limited, sensor signals are digitized
before being sent. Additional constraints can be imposed
by defects of sensors. Both communication constraints and
limited sensing capabilities can be modeled by quantiza-
tion (Liberzon (2009)).

Although adaptive control of uncertain systems received
considerable interest and has been widely investigated,
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there are few works devoted to adaptive control with quan-
tized measurements. In Fradkov and Andrievsky (2008)
the performance of an adaptive observer-based chaotic
synchronization system under information constrains has
been analyzed. A binary coder-decoder scheme has been
proposed and studied in Fradkov et al. (2009) for synchro-
nization of passifiable Lurie systems via limited-capacity
communication channel. In Hayakawa et al. (2009) a di-
rect adaptive control framework for systems with input
quantizers has been developed. In Vu and Liberzon (2012)
supervisory control scheme for uncertain systems with
quantized measurements has been proposed. In supervi-
sory control schemes only a finite family of candidate
controllers is employed together with an estimator-based
switching logic to select the active controller at every time.

Differently from these works, the control scheme proposed
here does not require any observer and the quantizer
has the general form. Unlike Vu and Liberzon (2012) we
consider adaptive tuning of the controller gain, rather then
switching between several known controllers. At the same
time, to ensure convergence to a smaller set, our controller
switches parameters of the adaptation law (for details see
(5), (11)-(13)).

2. SYSTEM DESCRIPTION

Consider a linear system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

where x ∈ Rn is the state, u ∈ R is the control input,
y ∈ Rl is the output, unknown matrices A, B, and
C have appropriate dimensions. Following Andrievskii
and Fradkov (2006) we introduce the notion of hyper-
minimum-phase (HMP) systems.
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Definition 1. For a given g ∈ Rl the transfer function
gTW (s) = gTC(sI − A)−1B is called hyper-minimum-
phase (HMP) if the polynomial gTW (s) det(sI − A) is
Hurwitz and gTCB > 0.

Further we will assume that unknown matrices A, B, and
C belong to some known compact set of uncertainties Ξ
and we know some g ∈ Rl such that for all (A,B,C) ∈ Ξ
the function gTW (s) = gTC(sI −A)−1B is HMP.

Note that if there exists g such that gTW (s) is HMP
then ∥g∥−1gTW (s) is also HMP. Therefore, without loss
of generality, we assume that ∥g∥ = 1.

2.1 Passification lemma

Lemma 1. (Passification lemma). For existence of a ma-
trix P > 0 and a number κ > 0 such that

PAκ +AT
κP < 0, PB = CT g,

where Aκ = A−BκgTC, it is necessary and sufficient that
gTW (s) = gTC(sI −A)−1B is HMP.

Proof. See Fradkov (1974, 2003).

Remark 2. If the transfer function gTW (s) = gTC(sI −
A)−1B is HMP then there exists κ > 0 such that the
control law u = −κỹ + v, where v is a new control signal,
makes the system ẋ(t) = Ax(t) + Bu(t), ỹ(t) = gTCx(t)
strictly passive with respect to a new input v, i. e. there
exists a nonnegative scalar function V (x) and a scalar
function φ(x), where φ(x) > 0 for x ̸= 0, such that

V (x) ≤ V (x0) +

∫ t

0

[
ỹT (t)v(t)− φ(x(t))

]
dt

for any solution satisfying x(0) = x0. Appropriate value
for κ is any positive number such that

κ > κ0 = − inf
ω∈R

Re
{
gTW (iω)−1

}
. (2)

Note that if gTW (s) is HMP and λ < 0 is the maximum
real part of its zeros then for any α ∈ (0,−2λ) the function
gTWα(s) = gTW (s − α

2 ) = gTC(sI − Aα)
−1B, where

Aα = A + α
2 I, is also HMP. Therefore there exists P > 0

and κ > 0 such that PA0+A
T
0 P < 0 and PB = CT g with

A0 = A + α
2 I − BκgTC. Thus, the following corollary is

true.

Corollary 3. If gTC(sI − A)−1B is HMP, λ < 0 is the
maximum real part of its zeros, and α ∈ (0,−2λ), then
there exists a matrix P > 0 and a number κ > 0 such that

PAκ +AT
κP + αP < 0, PB = CT g, (3)

where Aκ = A−BκgTC.

2.2 Dynamic quantization

In the remaining part of the paper we assume that the
controller receives quantized measurements. Suppose that
∥y(0)∥ ≤ M , where M is a known positive number.
Following Liberzon (2009) we introduce a quantizer with
the quantization rangeM and the quantization error bound
∆ as a mapping q : y 7→ q(y) from Rl to a finite subset of
Rl such that

∥y∥ ≤M ⇒ ∥q(y)− y∥ ≤ ∆.

We will refer to the quantity e = q(y) − y as the
quantization error. By dynamic quantizer we will mean
the mapping

qµ(y) = µq

(
y

µ

)
, (4)

where µ > 0. The quantization range for this quantizer is
µM and the quantization error bound is ∆µ = µ∆. We can
think of µ as the “zoom” variable: increasing µ corresponds
to zooming out and essentially obtaining a new quantizer
with larger quantization range and quantization error
bound, whereas decreasing µ corresponds to zooming in
and obtaining a quantizer with a smaller quantization
range but also a smaller quantization error bound.

2.3 Adaptive algorithm structure

Suppose we know some g ∈ Rl, ∥g∥ = 1 for which
gTW (s) = gTC(sI −A)−1B is HMP for all (A,B,C) ∈ Ξ.
We will consider the adaptive algorithm

u(t) = −k(t)gT qµ(t)(y(t)),
k̇(t) = γ[gT qµ(t)(y(t))]

2 − a(t)k(t),
(5)

where γ > 0, a(t) is the switched piecewise constant
regularization parameter, qµ(t) is the switched (dynamical)
quantizer with piecewise constant “zooming” parameter
µ(t). Initial value of k(t) is an arbitrary chosen number
(usually k(0) = 0). The motivation for the use of such
a controller is that the effect of the quantization error is
similar to the effect of a disturbance. For disturbed systems
a similar controller ensures ultimate boundedness of the
trajectories (see Andrievskii and Fradkov (2006)), that is,
all trajectories enter some compact set Ω in finite time.
The size of Ω depends on the magnitude of disturbance
(∆µ(t) in our case) and the value of a(t). The idea of the
controller that is proposed here is as follows. We define
a sequence of switching instants t0 < t1 < t2 < . . .
and choose such µ0, a0 that if µ(t) = µ0, a(t) = a0
for t ∈ [t0, t1) then the system output y(t) enters some
compact set Ω1  {y ∈ Rl| ∥y∥ ≤ M} on [t0, t1). Then it
becomes possible to choose µ(t) = µ1 and a(t) = a1 for
t ∈ [t1, t2) so that the output enters a smaller set Ω2  Ω1

on [t1, t2). By repeating this tuning procedure we ensure
convergence of the trajectory to some Ω∞ =

∩∞
i=1 Ωi.

Below the tuning procedure for µ(t) and a(t) is described.

We recall that g ∈ Rl is such that for all (A,B,C) ∈ Ξ the
function gTW (s) is HMP. Let λ < 0 be the maximum real
part of zeros of gTW (s) over all (A,B,C) ∈ Ξ, i. e.

λ = max{Re(s)|gTW (s) = 0, (A,B,C) ∈ Ξ}. (6)

Let us fix some α ∈ (0,−2λ). According to Corollary 3
and formula (2) for any (A,B,C) ∈ Ξ and κ such that

κ > − inf
ω∈R

Re
{
gTWα(iω)

−1
}
, (7)

where gTWα(s) = gTW (s − α
2 ), there exists P > 0 such

that (3) are true. We choose κ∗ such that

κ∗ > sup
(A,B,C)∈Ξ

(
− inf

ω∈R
Re
{
gTWα(iω)

−1
})

, (8)

which exists since Ξ is compact. Let us fix some γ > 0 and
suppose there is a known estimate V0 > 0 such that

xT (0)Px(0) + γ−1(k(0)− k∗)
2 ≤ V0,
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where
k∗ = κ∗ +

κ∗√
2
. (9)

Without loss of generality we assume that xT (0)Px(0) ≤
V0 ⇒ ∥y(0)∥ ≤ M , where M is a known quantization
range. Otherwise we can take such µ0 that xT (0)Px(0) ≤
V0 ⇒ ∥y(0)∥ ≤ µ0M and then redefine the quantizer
q̃(y) = µ0q(

y
µ0
). Denote

ρ1 =

(
1 +

1√
2

)2 κ2
∗
γ
, ρ2 =

(
3 + 2

√
2
) 2κ∗

α
. (10)

Let us fix some ν > 0. This parameter will determine the
frequency of switching. We choose instants for switching
as

ti+1 = ti +
1

α
ln
Vi − ρ1 − ρ2

Vi

V0
∆2

ν
, t0 = 0, (11)

where Vi are calculated recursively by

Vi+1 = ρ1 + ρ2
Vi
V0

∆2 + ν. (12)

Further we will show that the logarithm in (11) is well
defined and ti+1 > ti. Meanwhile, it may happen so that
ti −−−→

i→∞
t∞ < ∞, i. e. when i → ∞ the controller (5) has

to switch infinitely often. To prevent this we assume that
the switching stops when the value of Vi is small enough
(see Remark 6).

In the next section we analyze adaptive controller (5)
where the quantizer is defined by (4) and for t ∈ [ti, ti+1)

µ(t) = µi =

√
Vi
V0
,

a(t) = ai = α+ γµ2
i∆

2

(
1

√
γρ1

+

√
2

κ∗

)
.

(13)

3. MAIN RESULT

To prove the main result we will use the following
Lyapunov-like function:

V (x, k) = xTPx+ γ−1(k − k∗)
2. (14)

Here k∗ is determined by (9) with κ∗ given by (8) and
P = P(A,B,C) is such that (3) are valid with κ = κ∗. In
what follows we assume that x(0) belongs to some known
compact setX. Though the values of (A,B,C) ∈ Ξ are not
given and, therefore, the value of P(A,B,C) is unknown, it is
always possible to find an upper bound V0 for V (x(0), k(0))
satisfying

xT (0)P(A,B,C)x(0)+γ
−1(k(0)−k∗)2 ≤ V0 ∀(A,B,C) ∈ Ξ,

(15)
since X and Ξ are known compact sets.

Theorem 4. Let there exist g ∈ Rl, ∥g∥ = 1, such that
gTW (s) = gTC(sI −A)−1B is HMP for all (A,B,C) ∈ Ξ
and λ < 0 is given by (6). For a fixed α ∈ (0,−2λ) let a
number κ∗ > 0 satisfy (8). Suppose that a number V0 is
such that (15) is true and the quantization error bound
∆ is such that ∆2 < V0ρ

−1
2 , where ρ2 is defined in (10).

Then for any ε > 0 there exists γ > 0 and ν > 0 such that
the controller (5) with the switching algorithm (11)-(13)
ensures existence of such i that

∀t ≥ ti ∥x(t)∥ < ε.

Moreover, the tuning coefficient k(t) is bounded for t ≥ 0.

Lemma 5. For any positive scalars ρ1, ρ2, ∆, ν if V0 is
such that

ρ1 + ρ2∆
2 + ν < V0

then the sequence

Vi+1 = ρ1 + ρ2
Vi
V0

∆2 + ν

monotonically decreases to the value

V∞ =
ρ1 + ν

1− ρ2∆2V −1
0

.

Proof of Lemma 5 is induction on i. For i = 0 we have

V1 = ρ1 + ρ2∆
2 + ν < V0.

Suppose that i > 0 and for j < i it is proved that
Vj < Vj−1. Then

Vi = ρ1+ρ2
Vi−1

Vi−2

Vi−2

V0
∆2+ν < ρ1+ρ2

Vi−2

V0
∆2+ν = Vi−1.

Therefore Vi is a monotonically decreasing sequence of
positive numbers, and so it has a limit value, which is
a solution of the equation

V = ρ1 + ρ2
V

V0
∆2 + ν,

i. e. V = V∞. �
Proof of Theorem 4. Since ∆2 < V0ρ

−1
2 and κ∗, α, V0 are

fixed it is possible to find such γ > 0 and ν > 0 that

ρ1 + ρ2∆
2 + ν < V0. (16)

Then from Lemma 5 we have Vi < Vi−1, therefore µi <
µi−1. Then

(Vi − ρ1 − ρ2µ
2
i∆

2)ν−1 = (ρ2∆
2(µ2

i−1 − µ2
i ) + ν)ν−1 > 1.

Consequently, ti+1 > ti.

Denote qi(y) = µiq(
y
µi
), ∆i = µi∆ and calculate derivative

of (14) along the trajectories of the system (1), (5) for
t ∈ [ti, ti+1):

V̇ = xT [PA+ATP ]x− 2xTPBkgT qi(y)+

2(k − k∗)(g
T qi(y))

2 − 2aiγ
−1(k − k∗)k =

xT [PA+ATP ]x− 2xTPBk∗g
T qi(y)−

2xTPB(k − k∗)g
T qi(y) + 2(k − k∗)(g

T qi(y))
2−

2aiγ
−1(k − k∗)k.

Denote A∗ = A−Bk∗gTC. Using the equality PB = CT g
from (3) and relation ei(t) = qi(y(t))− y(t) we obtain:

V̇ = xT [PA∗ +AT
∗ P ]x− 2xTPBk∗g

T ei−
2yT g(k − k∗)g

T qi(y) + 2(k − k∗)(g
T qi(y))

2−
2aiγ

−1(k − k∗)k = xT [PA∗ +AT
∗ P ]x− 2k∗x

TCT ggT ei+

2(k − k∗)e
T
i gg

T qi(y)− 2aiγ
−1(k − k∗)

2−
2aiγ

−1(k − k∗)k∗.

Suppose that

∀t ∈ [ti, ti+1) : x
T (t)Px(t) ≤ Vi. (17)

Then ∥y(t)∥ ≤ µiM and therefore ∥ei(t)∥ ≤ ∆i. In this
case using easily verifiable inequality 2yT z ≤ yTQy +
zTQ−1z (for Q > 0) we estimate mixed products as follows
(recall that ∥g∥ = 1)
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− 2k∗x
TCT ggT ei ≤ σ(gTCx)2 + σ−1k2∗∆

2
i ,

2(k − k∗)e
T
i gg

T qi(y) ≤ 2∆2
i (k − k∗) + σ−1∆2

i (k − k∗)
2+

σ(gTCx)2 ≤ k∗∆
2
i + k−1

∗ (k − k∗)
2∆2

i + σ−1∆2
i (k − k∗)

2+

σ(gTCx)2,

− 2aiγ
−1(k − k∗)k∗ ≤ aiγ

−1(k − k∗)
2 + aiγ

−1k2∗.

Thus,

V̇ + aiV − βi ≤ xT [PA∗ +AT
∗ P + 2σCT ggTC + aiP ]x+

σ−1k2∗∆
2
i + k∗∆

2
i +

(
k−1
∗ + σ−1

)
(k − k∗)

2∆2
i+

aiγ
−1k2∗ − βi.

Define
βi = σ−1k2∗∆

2
i + k∗∆

2
i + aiγ

−1k2∗.

Now we select σ = κ∗√
2

and using representation (k −
k∗)

2 = γV − γxTPx we obtain:

V̇ + αV − βi ≤ xT [PA∗ +AT
∗ P + 2σCT ggTC + αP ]x =

xT [PAκ∗ +AT
κ∗
P + αP ]x ≤ 0.

By comparison principle (see Khalil (2002)) for t ∈
[ti, ti+1]:

V (x(t), k(t)) ≤
(
V (x(ti), k(ti))−

βi
α

)
e−α(t−ti) +

βi
α
.

Using formulas (9) and (13) for k∗ and ai one may check
that

βi
α

= ρ1 + ρ2µ
2
i∆

2. (18)

Further, by induction on i, we show that

V (x(ti), k(ti)) ≤ Vi. (19)

For t0 = 0 the inequality V (x(0), k(0)) ≤ V0 is fulfilled
by construction. Suppose i ≥ 1 and for j < i (19) is true.
Then

V (x(ti), k(ti)) ≤
(
Vi−1 −

βi−1

α

)
e−α(ti−ti−1) +

βi−1

α
.

Using (11) and (18) we obtain the desired inequality.

Since for t ∈ [ti, ti+1] : V (x(t), k(t)) ≤ V (x(ti), k(ti)) and
Vi+1 < Vi we finally have:

∀t ≥ ti V (x(t), k(t)) ≤ Vi.

Now we prove that (17) is always true. Suppose that t∗ is
the smallest nonnegative instant such that

t∗ ∈ [ti, ti+1), V (x(t∗), k(t∗)) = Vi,

∃ d > 0: ∀t ∈ (t∗, t∗ + d) V (x(t), k(t)) > Vi.
(20)

Then for t ∈ [0, t∗] all above estimates are true. In

particular V̇ (x(t∗), k(t∗)) ≤ −αV (x(t∗), k(t∗)) + βi =

−αVi + βi. In case t∗ = 0, V̇ stands for the right
derivative. Since Vi = ρ1 + ρ2µ

2
i∆

2 + ν > βi

α , we find

that V̇ (x(t∗), k(t∗)) ≤ 0. This contradicts with the second
part of (20). Since xT (t∗)Px(t∗) ≤ V (x(t∗), k(t∗)), (17)
and, therefore, all previous estimates are valid for t ≥ 0.

Now note that, since κ∗, α, and V0 are fixed, it is possible
to choose such γ > 0 and ν > 0 that (16) is fulfilled and

ρ1 + ν

1− ρ2∆2V −1
0

< ε2λmin(P ).

Then, according to Lemma 5, there exists such i that
Vi < ε2λmin(P ). Thus, for t ≥ ti

λmin(P )∥x(t)∥2 ≤ V (x(t), k(t)) ≤ Vi < ε2λmin(P ).

Boundedness of k(t) follows from the boundedness of
V (t). �
Remark 6. In practice one should choose such γ and ν that

ρ1 + ν

1− ρ2∆2V −1
0

< ε2Λ,

where
Λ = min

(A,B,C)∈Ξ
λmin(P(A,B,C)),

and the switching should be stopped when Vi < ε2Λ. Then
it follows from the proof of Theorem 4 that V (x(t), k(t)) ≤
Vi for t ≥ ti and, therefore, ∥x(t)∥ < ε for t ≥ ti.

Remark 7. Results of Theorem 4 are applicable to poly-
topic-type uncertainties. If

A =

M∑
j=1

µj(t)A
(j), 0 ≤ µj(t) ≤ 1,

M∑
j=1

µj(t) = 1,

and for any A of this form the function gTW (s) =
gTC(sI − A)−1B is HMP, then one can solve (3) simul-
taneously for all the M vertices A(j), applying the same
decision variables P and κ. This technique is demonstrated
by an example in the next section.

4. EXAMPLE: YAW ANGLE CONTROL

In this section we demonstrate the applicability and effi-
ciency of the proposed control algorithm by the example
of yaw angle control. Under some simplifying assumptions,
dynamics of the lateral motion of the aircraft can be de-
scribed by the equations (Fradkov and Andrievsky (2011))

β̇(t) = r(t) + c1β(t) + b1u(t),

ṙ(t) = c2β(t) + c3r(t) + b2u(t),

ψ̇(t) = r(t),

y(t) =

(
r(t)
ψ(t)

)
,

(21)
where ψ(t), r(t) are the yaw angle and the yaw rate,
respectively, and β(t) denotes the sideslip angle; u(t) is the
rudder angle; ci, bi denote the aircraft model parameters.
Following Fradkov and Andrievsky (2011) we take c1 =
0.75, c2 = 33, c3 = 1.3, b1 = 19/15, b2 = 19 and suppose
that for some system parameters only upper and lower
bounds are known, namely,

c1 ∈ [0.1, 1.5], c2 ∈ [25, 40]. (22)

For g = 1√
2
(1, 1)T the transfer function

gTW (s) =
b2s

2 + (b1c2 − b2c1 + b2)s+ b1c2 − b2c1

s
√
2(s2 − (c1 + c3)s+ c1c3 − c2)

is HMP for all c1, c2 from (22). Moreover, for α = 0.08 the
function gTW (s− α

2 ) is HMP on the set (22). Therefore (3)
are feasible. Possible values of decision variables (rounded
to the second decimal digit) are

P ≈

(
2.52 −0.17 −1.89
−0.17 0.05 0.16
−1.89 0.16 3.36

)
, κ∗ = 3.4.

These values of P and κ∗ satisfy (3) (where κ = κ∗)
for all (A,B,C) ∈ Ξ, where Ξ is determined by (22). We
choose γ = 50 and using (9) calculate k∗ ≈ 5.8. Suppose
that ∆ = 0.1, k(0) = 0, and x(0) = (β(0), r(0), ψ(0))T

is such that V (x(0), k(0)) ≤ V0 = 30. Then we have
∆2 < V0ρ

−1
2 . Choosing ν = 0.1 we find that V∞ ≈ 0.9268,

thus for ϵ = 0.2 there should exist such ti ≥ 0 that
V (x(t), k(t)) ≤ V∞ + ϵ ≈ 1.1268 for t ≥ ti.
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i ti Vi µi ai
0 0 30 1 0.374

1 68.7 5.73 0.437 0.136

2 115.15 1.72 0.239 0.097

3 140.53 1.06 0.188 0.090

4 149.76 0.95 0.178 0.089

Table 1. Parameters of switching: ti — in-
stants of switching, Vi — upper bound for
V (x(t), k(t)) on [ti, ti+1), µi — zooming pa-

rameter, ai — regularizing parameter.

Fig. 1. Evolution of state: (a) – t ∈ [t0, t1], (b) – t ∈ [t1, t2],
(c) – t ∈ [t2, t3], (d) – t ∈ [t3, t4].

Results of numerical simulations are presented in Figs. 1-
3. The values of switched parameters are given in Table 1.
Note that the intervals between consecutive switchings
are decreasing, i. e. ti+1 − ti < ti − ti−1. Therefore, to
ensure convergence of V to a small vicinity of V∞ the
system should be able to switch fast enough. In our case
Vi < V∞ + ϵ after 3 switchings, that is for t ≥ t3,
V (x(t), k(t)) ≤ V∞ + ϵ. In Fig. 1 plots of x(t) on each
interval [ti, ti+1] are depicted. One can notice that the
trajectories are getting smoother. This happens due to the
fact that the right side of (1), (5) gets “less discontinuous”
when µ(t) decreases.

One may wonder why not to use k(t) ≡ k∗? In fact
this is possible. The advantage of the adaptive control
over the static one is that, while insuring the ultimate
boundedness for the particular system of interest, adaptive
controller results in a smaller control gain. In our case
limt→∞ k(t) < 1.2, while k∗ ≈ 5.8.

5. CONCLUSION

For hyper-minimum-phase linear uncertain systems with
quantized measurements, a new passification-based adap-
tive controller has been proposed. The novelty of the con-
troller is in the switching procedure for quantizer zooming
and particular parameters that are involved in the adap-
tation law. The switching instants and values of switched
parameters can be calculated “a priori” using available
information. It has been proved that if an estimate of
the initial conditions is known and the quantization er-
ror bound that is calculated from this estimate is small

Fig. 2. Evolution of k(t).

Fig. 3. Evolution of V (x(t), k(t)) given by (14).

enough then the state of a hyper-minimum-phase system
can be made arbitrarily small. Moreover, when applying to
polytopic-type uncertain systems, the proposed adaptive
controller results in a smaller controller gain, what gives
it an advantage over the static feedback control. This was
demonstrated by the example of yaw angle control of an
aircraft.
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