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Abstract: In this paper, the linear-quadratic optimal control problem is considered for discrete-
time stochastic systems with indefinite weight matrices in the cost function and mean-field terms
in both the cost function and system dynamics. A set of generalized difference Riccati equations
(GDREs) is introduced in terms of algebraic equality constraints and matrix pseudo-inverse.
It is shown that the solvability of the GDRE is not only sufficient but also necessary for the
well-posedness of the indefinite mean-field linear-quadratic optimal control problem and the
existence of optimal feedback as well as open-loop controls.
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1. INTRODUCTION

In this paper, we consider the linear-quadratic (LQ) opti-
mal control problem of mean-field type in a finite horizon.
Precisely, the dynamic model of the system is: xk+1 = (Akxk + ĀkExk +Bkuk + B̄kEuk)

+ (Ckxk + C̄kExk +Dkuk + D̄kEuk)wk,
xl = ζ, k ∈ Nl,

(1)

where Ak, Āk, Ck, C̄k ∈ Rn×n, and Bk, B̄k, D, D̄k ∈ Rn×m

are given deterministic matrices; Nl denote the set {l, l +
1, · · · , N − 1} for a given positive integrer N and l ∈
{0, 1, · · · , N − 1}. In the sequel, {l, l + 1, · · · , N} will be
denoted by N̄l, and when l = 0, Nl and N̄l will be simply
denoted by N and N̄, respectively. In (1), {xk, k ∈ N̄},
{uk, k ∈ N} and {wk, k ∈ N} are the state, control and
disturbance process, respectively; {wk} is assumed to be
a martingale difference sequence defined on a probability
space (Ω,F , P ), and

E[wk+1|Fk] = 0, E[(wk+1)2|Fk] = 1, (2)
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with Fk being the σ-algebra generated by {x0, wl, l =
0, 1, · · · , k}. The initial value ζ is measurable with respect
to Fl−1, and is square integrable. The cost functional
associated with (1) is

J(l, ζ, u) = E
[N−1∑

k=l

(
xTkQkxk + (Exk)T Q̄kExk + uTkRkuk

+ (Euk)T R̄kEuk
)]

+ E
(
xTNGNxN

)
+ (ExN )T ḠNExN , (3)

where Qk, Q̄k, Rk, R̄k, k ∈ Nl, GN , ḠN are deterministic
symmetric matrices with appropriate dimensions. We in-
troduce the following admissible control setu = (u0, u1, · · · , uN−1)

∣∣∣∣∣∣∣
uk is Fk−1-measurable,
N−1∑
k=l

E|uk|2 <∞.


denoted by Uad. The optimal control problem considered
in this paper is stated as follows:

Problem (MF-LQ). For any given initial pair (l, ζ)
with ζ being Fl−1-measurable and square-integrable, find
a u∗ ∈ Uad such that

J(ζ, u∗) = inf
u∈Uad

J(l, ζ, u). (4)

We then call u∗ an optimal control for Problem (MF-LQ).
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The above formulation is similar to that of Elliott et al.
(2013). But in this paper, the weight matrices Rk, Rk+R̄k,
k ∈ N in (3) are allowed to be negative in some sense.
In other words, here what we are concerned with is an
indefinite version of Elliott et al. (2013), which is termed
as indefinite mean-field stochastic LQ control problem.
The classical indefinite LQ control was first studied by
Chen et al. (1998), and then, has been attracting more
and more researchers from the control community (Ait
Rami et al. (2000, 2001); Chen and Zhou (2000); Yao
et al. (2004). This kind of control theory turns out to be
useful in solving the well-known mean-variance portfolio
selection problems. In Zhou and Li (2000); Lim and
Zhou (2002), the analytical results on multi-period mean-
variance model comparable to those in the single-period
model are firstly achieved. The new feature of (1) and (3)
is that both the system dynamics and the cost functions
are influenced by mean-field terms. Thus, the problem is
essentially a combination of mean-field theory and LQ
optimization problem. Mean-field theory was developed to
study the collective behaviors resulting from individuals’
mutual interactions in various physical and sociological dy-
namic systems, according to which the interactions among
agents can be modeled by a mean-field term. When the
number of individuals goes to infinity, the mean-field term
will approach the expectation. An exact derivation of this
can be achieved by the classical McKean-Vlasov argument.
For details, readers may see, for example, Bemsoussan
et al. (2011); Mckean (1966); Sznitman (1989) and the
references therein. Just as Yong (2013) points out that, in
order to make the state process and the control process
insensitive to the random disturbances, it is an efficient
way to include the variations var(xk) and var(uk) into the
cost functional. This motivates the inclusion of Exk and
Euk into the cost functional (3). An example of this case is
the well known mean-variance portfolio selection problems
(Li and Ng (2000); Zhou and Li (2000)), in which the risk
is quantified by using variance.

Large population stochastic dynamical games (LPSDGs)
or mean-field games Huang et al. (2003, 2007); Lasry and
Lions (2007) relate to the topic of this paper, which come
from the study of multi-agent systems. In Huang et al.
(2003, 2007), the authors propose a method of state ag-
gregation and the Nash certainty equivalence principle to
construct decentralized ε-Nash equilibria to decrease the
computational complexity. Further, Huang et al. (2010)
studies LQG mixed games with continuum-parameterized
minor players; Li and Zhang (2008) propose ε-Nash equi-
libria for stochastic cost functionals with both non-coupled
and coupled dynamics; Wang and Zhang (2012) discusses
the case when each agent’s dynamics has random coeffi-
cients. Independently, Lasry and Lions (Lasry and Lions
(2007)) introduce similar problems from the viewpoint of
mean-field theory directly. Compared to mean-field games,
the centralized optimal control problem will be studied in
this paper.

In this paper, we introduce a set of new type of differ-
ence Riccati equations—called the generalized difference
Riccati equations (GDREs), which involves matrix pseudo-
inverse and algebraic constraints, and turns out to be quite
suitable for studying Problem (MF-LQ). This is because
that the solvability of this set of equations is not only

sufficient but also necessary for the well-posedness of the
LQ problem and the attainability of the corresponding
optimal controls. Moreover, all the corresponding optimal
controls can be derived via the solutions of the GDREs.
The obtained results extends those in Elliott et al. (2013).

The remainder of this paper is organized as follows. In
Section 2, the optimal control within the set of all the
mean-field-type linear feedback controls is searched. This
is referred as the closed-loop formulation, where two cou-
pled GDREs are introduced. In Section 3, the solvability
of GDREs is shown to be necessary and sufficient for the
well-posedness of Problem (MF-LQ) and the existence of
an optimal control. Section 4 presents some extension of
Problem (MF-LQ). Finally, in Section 5, we give some
concluding remarks.

2. CLOSED-LOOP FORMULATION

In this section, we shall search the optimal control within
the set of all the mean-field-type linear feedback controls.
This is referred as the closed-loop formulation of Problem
(MF-LQ). It is shown in this section that if Problem (MF-
LQ) is solved by a linear feedback control, then a set of
GDREs is existent and solvable. This will be undertaken
via matrix minimum principle (Athans (1968)).

Define now the value function of Problem (MF-LQ)

V (l, ζ) = inf
u∈Uad

J(l, ζ, u).

Since the weighting matrices Qk, Q̄k, Rk, R̄k, k ∈ N, G, Ḡ
are possibly negative define, Problem (MF-LQ) may be
ill-posed. In the following, several notions about this are
given.

Definition 2.1. (i) Problem (MF-LQ) is said to be finite
or well-posed at (l, ζ) if

V (l, ζ) > −∞.
Problem (MF-LQ) is said to be finite or well-posed if it is
finite or well-posed at any (l, ζ).

(ii) Problem (MF-LQ) is said to be (uniquely) solvable or
attainable at (l, ζ) if there exists a (unique) u∗ ∈ Uad such
that (4) holds at (l, ζ). Problem (MF-LQ) is said to be
(uniquely) solvable or attainable if it is solvable at any
(l, ζ).

We recall the pseudo-inverse of a matrix. By Penrose
(1955), for a given matrix M ∈ Rn×m, there exists a
unique matrix in Rm×n denoted by M† such that{

MM†M = M, M†MM† = M†,
(MM†)T = MM†, (M†M)T = M†M.

(5)

This M† is called the Moore-Penrose inverse of M . If M
is symmetric, by (Ait Rami et al. (2001)), M† = (M†)T ,
MM† = M†M , and M ≥ 0 if and only if M† ≥ 0.

Let us start from a generic linear feedback control

uk = Lkxk + L̄kExk, Lk, L̄k ∈ Rm×n, k ∈ N. (6)

Under (6), the closed-loop system (1) becomes
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

xk+1

= (Ak +BkLk)xk + [BkL̄k + Āk + B̄k(Lk + L̄k)]Exk
+ (Ck +DkLk)xkwk

+
[
[DkL̄k + C̄k + D̄k(Lk + L̄k)]Exk

]
wk,

xl = ζ,

(7)

and the cost functional (3) is

J(l, ζ, u)

=

N−1∑
k=l

E
[
xTkQkxk + (Exk)T Q̄kExk

+ (Lkxk + L̄kExk)TRk(Lkxk + L̄kExk)

+((Lk + L̄k)Exk)T R̄k(Lk + L̄k)Exk
]

+ E
(
xTNGNxN

)
+ (ExN )T ḠNExN

=

N−1∑
k=l

{
Tr
[(
Qk + LT

kRkLk

)
E
(
xkx

T
k

)]
+Tr

[
Φ̄k

(
Exk(Exk)T

)]}
+ Tr

[
GNE

(
xNx

T
N

)]
+ Tr

[
ḠN

(
ExN (ExN )T

)]
,

(8)

where

Φ̄k = Q̄k + (Lk + L̄k)T R̄k(Lk + L̄k)

+ LT
kRkL̄k + L̄T

kRkLk + L̄T
kRkL̄k.

From the form (6) of the control, we can view {(Lk, L̄k), k ∈
N} as the new control input. Also (8) reminds us that
Exk(Exk)T , E

(
xkx

T
k

)
can be regarded as the new sys-

tem states. Write Xl = E(ζζT ), Xk = E
(
xkx

T
k

)
, X̄l =

Eζ (Eζ)
T

and X̄k = Exk(Exk)T . Then, by (7) we have

Xk+1

= (Ak +BkLk)Xk(Ak +BkLk)T

+ (Ak +BkLk)X̄k

[
Āk +BkL̄k + B̄k(Lk + L̄k)

]T
+
[
Āk +BkL̄k + B̄k(Lk + L̄k)

]
X̄k(Ak +BkLk)T

+
[
Āk +BkL̄k + B̄k(Lk + L̄k)

]
X̄k

·
[
Āk +BkL̄k + B̄k(Lk + L̄k)

]T
+ (Ck +DkLk)Xk(Ck +DkLk)T

+ (Ck +DkLk)X̄k

[
C̄k +DkL̄k + D̄k(Ll + L̄k)

]T
+
[
C̄k +DkL̄k + D̄k(Lk + L̄k)

]
X̄k(Ck +DkLk)T

+
[
C̄k +DkL̄k + D̄k(Lk + L̄k)

]
X̄k

·
[
C̄k +DkL̄k + D̄k(Lk + L̄k)

]T
≡ Xk(Lk, L̄k), (9)

and

X̄k+1 =
[
(Ak + Āk) + (Bk + B̄k)(Lk + L̄k)

]
X̄k

·
[
(Ak + Āk) + (Bk + B̄k)(Lk + L̄k)

]T
≡ X̄k(Lk, L̄k). (10)

Using X̄ and X̄, J(l, ζ, u) with u defined in (6) can be
represented as

J(l, ζ, u)

=

N−1∑
k=l

{
Tr
[(
Qk + LT

kRkLk

)
Xk

]
+ Tr

(
Φ̄kX̄k

)}
+ Tr (GNXN ) + Tr

(
ḠN X̄k

)
≡ J (Xl, X̄l,L), (11)

where L ≡ {Lk, L̄k, k ∈ N}. Therefore, Problem (MF-LQ)
is equivalent to the following problem:

Problem (MDO) :

{
min

Lk,L̄k∈Rm×n,k∈Nl

J (Xl, X̄l,L)

subject to (9)(10).
(12)

Clearly, this is a matrix dynamic optimization problem.
The formulation from (9) to (12) has appeared in Elliott
et al. (2013), where the definite Mean-field LQ problem is
studied.

A natural way to deal with Problem (MDO) is to resort
to the matrix minimum principle. For details about this
principle, readers may refer to Athans (1968). Following
the framework above, we have the following results.

Theorem 2.1. If Problem (MF-LQ) is attained by a linear
feedback control of the form

uk = Lkxk + L̄kExk, Lk, L̄k ∈ Rm×n, k ∈ N
with Lk, L̄k, k ∈ N being constant deterministic matrices,
then the following GDREs have solution {(Pk, Tk), k ∈ N̄}

Pk = Qk +AT
k Pk+1Ak + CT

k Pk+1Ck −HT
k W

†
kHk,

Tk = Qk + Q̄k + (Ck + C̄k)TPk+1(Ck + C̄k)

+ (Ak + Āk)TTk+1(Ak + Āk)− H̄T
k W̄

†
k H̄k,

PN = GN , TN = GN + ḠN ,

Wk, W̄k ≥ 0, WkW
†
kHk −Hk = 0,

W̄kW̄
†
k H̄k − H̄k = 0,

k ∈ N,

(13)

with

Wk = Rk +BT
k Pk+1Bk +DT

k Pk+1Dk,
Hk = BT

k Pk+1Ak +DT
k Pk+1Ck,

W̄k = Rk + R̄k + (Bk + B̄k)TTk+1(Bk + B̄k)
+ (Dk + D̄k)TPk+1(Dk + D̄k),

H̄k = (Bk + B̄k)TTk+1(Ak + Āk)
+ (Dk + D̄k)TPk+1(Ck + C̄k),

k ∈ N.

(14)

Proof. The proof is omitted here due to the space limita-
tion. �

3. NECESSITY AND SUFFICIENCY OF THE GDRES

Though the GDREs (13) is derived for the closed-loop for-
mulation, we shall show in this section that the solvability
of the GDREs (13) is not only sufficient but also necessary
to the well-posedness of Problem (MF-LQ).

3.1 Sufficiency

By taking expectation on both sides of System (1) we have
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{
Exk+1 = (Ak + Āk)Exk + (Bk + B̄k)Euk,
Exl = Eζ. (15)

Subtracting (15) from (1) leads to

xk+1 − Exk+1

= [Ak(xk − Exk) +Bk(uk − Euk)]

+ [Ck(xk − Exk) + (Ck + C̄k)Exk
+Dk(uk − Euk) + (Dk + D̄k)Euk]wk,

xl − Exl = ζ − Eζ.

(16)

Theorem 3.1. If the GDREs (13) admit solution (P·, T·),
then Problem (MF-LQ) is well-posed and solvable. Fur-
ther,

uk = −W̄ †k H̄kExk −W †kHk (xk − Exk) , k ∈ N, (17)

is an optimal control, and the corresponding value function
is

V (ζ) = E
[

(xl − Exl)T Pl (xl − Exl)
]

+ (Exl)T TlExl.(18)

Proof. The proof follows easily from the method of com-
pleting the square. �

Corollary 3.1. If Qk, Qk + Q̄,GN , GN + ḠN ≥ 0, Rk, R +
R̄k > 0 in Theorem 3.1, then there is a unique optimal
control

uk = −W̄−1
k H̄kExk −W−1

k Hk (xk − Exk) , k ∈ N̄l.

Proof. Under the given condition, we can get that
Wk, W̄k > 0. Thus, the GDREs (13) is solvable. This
completes the proof. �

3.2 Necessity of the GDREs

Consider the following convex set of coupled symmetric
matrices on N.

M =Pk, Tk

∣∣∣∣∣∣∣
[
J̄k H̄T

k

H̄k W̄k

]
≥ 0,

[
Jk HT

k
Hk Wk

]
≥ 0,

k ∈ N, PN ≤ GN , TN ≤ GN + ḠN

 ,(19)

where

J̄k = Qk + Q̄k + (Ck + C̄k)TPk+1(Ck + C̄k)
+ (Ak + Āk)TTk+1(Ak + Āk)− Tk,

H̄k = (Bk + B̄k)TTk+1(Ak + Āk)
+ (Dk + D̄k)TPk+1(Ck + C̄k)

W̄k = Rk + R̄k + (Dk + D̄k)TPk+1(Dk + D̄k)
+ (Bk + B̄k)TTk+1(Bk + B̄k),

Jk = Qk +AT
k Pk+1Ak + CT

k Pk+1Ck − Pk,
Hk = BT

k Pk+1Ak +DT
k Pk+1Ck,

Wk = Rk +BT
k Pk+1Bk +DT

k Pk+1Dk.

(20)

Theorem 3.2. If M is nonempty, Problem (MF-LQ) is
well-posed.

Proof. Similar to Theorem 3.1, we have

J(l, ζ, u)

=

N−1∑
k=l

{[
Exk
Euk

]T [
J̄k H̄T

k

H̄k W̄k

] [
Exk
Euk

]

+E

([
xk − Exk
uk − Euk

]T [
Jk HT

k
Hk Wk

] [
xk − Exk
uk − Euk

])}
+ E

[
(xN − ExN )

T
GN (xN − ExN )

]
+ (ExN )

T
(GN + ḠN )ExN

+ E
[

(xl − Exl)T Pl (xl − Exl)
]

+ (Exl)T TlExl.
Therefore,

J(l, ζ, u) ≥ E
[

(xl − Exl)T Pl (xl − Exl)
]

+ (Exl)T TlExl
= E

[
(ζ − Eζ)

T
Pl (ζ − Eζ)

]
+ (Eζ)

T
TlEζ >∞.

Hence, Problem (MF-LQ) is well-posed. �

We now state the main result of this section.

Theorem 3.3. The following statements are equivalent

(i) Problem (MF-LQ) is well-posed;

(ii) Problem (MF-LQ) is attainable;

(iii) M (19) is nonempty;

(iv) the GDREs (13) are solvable.

Moreover, when any of the above statements is satisfied,
Problem (MF-LQ) is attainable by

uk = −W̄ †k H̄kExk −W †kHk (xk − Exk) , k ∈ N. (21)

Proof. The proof is omitted here due to the space limita-
tion. �

4. EXTENSIONS

This section extends results of the previous sections to the
case with uncertainties from multi-channels. In this case,
the system equation is
xk+1 = (Akxk + ĀkExk +Bkuk + B̄kEuk)

+

p∑
i=1

(Ci,kxk + C̄i,kExk +Di,kuk + D̄i,kEuk)wi,k

+ wk,
xl = ζ, k ∈ Nl,

(22)

where wi,k ∈ R, wk ∈ Rn. In (22), the noises wi =
{wi,k, k ∈ N}, i = 1, 2, · · · , p, satisfy the following con-
ditions:

E[wi,k+1|Fk] = 0, E[(wi,k+1)2|Fk] = ρiik+1,

E[wi,k+1wi,k+1|Fk] = ρijk+1, i, j = 1, · · · , p, i 6= j,

E[wk+1|Fk] = 0, E[wk+1w
T
k+1|Fk] = Vk+1,

E[wi,k+1wk+1|Fk] = vik+1, i = 1, 2, · · · , p.

(23)

Taking expectations on both sides of (22), we have{
Exk+1 = (Ak + Āk)Exk + (Bk + B̄k)Euk,
Exl = Eζ. (24)

Therefore,
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

xk+1 − Exk+1

= [Ak(xk − Exk) +Bk(uk − Euk)]

+

p∑
i=1

[Ci,k(xk − Exk) + (Ci,k + C̄i,k)Exk

+Di,k(uk − Euk) + (Di,k + D̄i,k)Euk]wi,k + wk

≡ [Ak(xk − Exk) +Bk(uk − Euk)]

+

p∑
i=1

Ai,kwi,k + wk,

xl − Exl = ζ − Eζ.

(25)

To use the method of completing the square, we need some
calculations. Precisely, we have

E
[
(xk+1 − Exk+1)TPk+1(xk+1 − Exk+1)

]
= E

[
(xk − Exk)TAT

k Pk+1Ak(xk − Exk)

+ (xk − Exk)T
(
AT

k Pk+1Bk +BT
k Pk+1Ak

)
(uk − Euk)

]
+E
[
(uk − Euk)TBT

k Pk+1Bk(uk − Euk)

+

p∑
i=1

p∑
j=1

(
AT

i,kPk+1Aj,kwi,kwj,k

)]
+E
[ p∑
i=1

(
AT

i,kPk+1wkwi,k + wT
k Pk+1Ai,kwi,k

)]
+E
[
wT

k Pk+1wk

]
.

By properties of the noises, we can have an expression of
E
[
(xk+1 − Exk+1)TPk+1(xk+1 − Exk+1)

]
, with which we

then can get the following:

J(l, ζ, u) + E
[
(xN − ExN )TPN (xN − ExN )

]
−E

[
(xl − Exl)TPl(xl − Exl)

]
+(ExN )TTNExN − (Exl)TTlExl
+2(ExN )TφN − 2(Exl)Tφl

=

N∑
k=l

E
{

(xk − Exk)T
(
Qk +AT

k Pk+1Ak

+

p∑
i=1

p∑
j=1

(
CT

i,kPk+1Cj,kρ
ij
k

)
− Pk

)
(xk − Exk)

+(xk − Exk)T
(
AT

k Pk+1Bk +BT
k Pk+1Ak

+

p∑
i=1

p∑
j=1

ρijk
(
CT

i,kPk+1Dj,k + Cj,kPk+1Di,k

))
(uk − Euk)

+(uk − Euk)T
[
Rk +BT

k Pk+1Bk

+

p∑
i=1

p∑
i=1

(
ρijk D

T
i,kPk+1Dj,k

)]
(uk − Euk)

+(Exk)T
[
Qk + Q̄k + (Ak + Āk)TTk+1(Ak + Āk)

+

p∑
i=1

p∑
j=1

ρijk (Ci,k + C̄i,k)TPk+1(Cj,k + C̄j,k)− Tk
]
Exk

+2(Exk)T
[
(Ak + Āk)TTk+1(Bk + B̄k)

+

p∑
i=1

p∑
j=1

ρijk (Ci,k + C̄i,k)TPk+1(Dj,k + D̄j,k)
]
Euk

+(Euk)T
[
Rk + R̄k + (Bk + B̄k)TTk+1(Bk + B̄k)

+

p∑
i=1

p∑
j=1

ρijk (Di,k + D̄i,k)TPk+1(Dj,k + D̄j,k)
]
Euk

+2(Exk)T
[ p∑
i=1

(Ci,k + C̄i,k)TPk+1v
i
k

+(Ak + Āk)φk+1 − φk
]

+2(Euk)T
[ p∑
i=1

(Di,k + D̄i,k)TPk+1v
i
k

+(Bk + B̄k)Tφk+1

]
+ Tr[Pk+1Vk]

}
+E

[
(xN − ExN )TGN (xN − ExN )

]
+(ExN )T (GN + ḠN )ExN . (26)

Now, we introduce a set of GDREs

Pk = Qk +AT
k Pk+1Ak +

p∑
i=1

p∑
j=1

(
CT

i,kPk+1Cj,kρ
ij
k

)
−HT

k W
†
kHk,

Tk = Qk + Q̄k + (Ak + Āk)TTk+1(Ak + Āk)

+

p∑
i=1

p∑
j=1

ρijk (Ci,k + C̄i,k)TPk+1(Cj,k + C̄j,k)

− H̄T
k W̄

†
k H̄k,

PN = GN , TN = GN + ḠN ,

Wk, W̄k ≥ 0, WkW
†
kHk −Hk = 0,

W̄kW̄
†
k H̄k − H̄k = 0,

k ∈ N,

(27)

where

Wk = Rk +BT
k Pk+1Bk +

p∑
i=1

p∑
i=1

(
ρijk D

T
i,kPk+1Dj,k

)
,

Hk = BT
k Pk+1Ak +

p∑
i=1

p∑
j=1

(
ρijk D

T
i,kPk+1Cj,k

)
,

W̄k = Rk + R̄k + (Bk + B̄k)TTk+1(Bk + B̄k)

+

p∑
i=1

p∑
j=1

ρijk (Di,k + D̄i,k)TPk+1(Dj,k + D̄j,k),

H̄k = (Bk + B̄k)TTk+1(Ak + Āk)

+

p∑
i=1

p∑
j=1

ρijk (Dj,k + D̄j,k)TPk+1(Ci,k + C̄i,k),

k ∈ N.

(28)

Let

φk = (Ak + Āk)φk+1 +

p∑
i=1

(Ci,k + C̄i,k)TPk+1v
i
k

− H̄T
k W̄

†
kψk,

W̄kW̄
†
kψk − ψk = 0,

φN = 0,

(29)

with
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ψk =

p∑
i=1

(Di,k + D̄i,k)TPk+1v
i
k + (Bk + B̄k)Tφk+1. (30)

Then, we have the following theorem which provides the
optimal solution to LQ problem for general system (22)
with performance functional (3).

Theorem 4.1. Suppose that the GDREs (27) and equation
(29) are solvable. Then Problem (MF-LQ) with system
(22) is attained by an optimal control in the form

uk = −W̄ †k (H̄kExk + ψk)−W †kHk (xk − Exk) , (31)

where the matrices are defined in (27)-(30). Further, the
optimal cost value is given by

V (l, ζ) =

N−1∑
k=l

[
Tr[Pk+1Vk − ψT

k W̄
†
kψk

]
+ E

[
(xl − Exl)T Pl (xl − Exl)

]
+ (Exl)T TlExl + 2φTl Exl.

Proof. The proof is omitted here due to the space limita-
tion. �

5. CONCLUSION

It is shown in this paper that the solvability of the GDRE
is not only sufficient but also necessary for the well-
posedness of the indefinite mean-field LQ optimal control
problem and the existence of optimal feedback as well as
open-loop controls. For future research, we may study the
definite and indefinite mean-field LQ control with regime
switching (or Markov jump parameter).
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