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Abstract: In many assembly systems, components may exhibit different quality behaviors. By
selecting the mating part whose characteristics match with those of the main part, high precision
assemblies can be achieved. Such a process is referred to as selective assembly. Most of the
studies on selective assembly only consider the case where machines are reliable and the buffer
capacity is infinite. However, unreliable machines and finite buffers are commonly observed in
many assembly systems. This paper studies a two-component assembly system with unreliable
Bernoulli machines and finite buffers. Analytical methods based on a two-level decomposition
procedure are developed to analyze the system performance. The convergence of the procedure
is justified analytically. Numerical study shows that such a method provides a high accuracy in
performance evaluation.
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1. INTRODUCTION

Assembly systems are designed for many manufacturing
processes where two or more components are assembled to
produce a finished product. Traditional assembly systems
merely fetch parts in a default or random order assum-
ing all parts are identical. However, the characteristics of
subcomponents may not necessarily remain the same from
part to part, though they are all regarded as conforming
parts. In order to compensate such inevitable difference
and maximize the use value of all parts, selective assembly
is employed to select the mating part according to the
characteristic of the other part (main part) to be assem-
bled. Thus, high-precision assemblies could be obtained
from relatively low-precision components.

The idea of selective assembly is first presented by Man-
soor (1961) to define the natural process tolerance and
establish the relationship to the tolerance specification.
Since then, mounting research has be devoted to analyzing
the partitioning or binning strategies to reduce mismatches
mostly in dimensional issues, such as ball bearing manu-
facturing, scroll compressor shell manufacturing, sleeve-
and-shaft assembly, etc. (see, for instance, representative
papers by Fang and Zhang (1996); Coullard et al. (1998);
Mease et al. (2004); Matsuura and Shinozaki (2007); Kan-
nan et al. (2008); Tan and Wu (2012)). However, most
research typically either neglects the issue of machine re-
liability and storage capacity or only focuses on the batch
operation environment where the production rate require-
ment is not a concern. Nevertheless, selective assembly
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could also find its applicability in automatic transfer lines
with limited buffer capacities. To tackle the problem in
finite buffer cases, several simulation studies have been
carried out by Thesen and Jantayavichit (1999); Akansel
et al. (2011).

The merit of selective assembly lies in utilizing low valued
parts to produce relatively high valued finished products.
It is also suitable for quality improvement. For example,
in battery assembly manufacturing for electric vehicles
(Ju et al. (2013)), due to the structure of battery packs,
multiple battery cells need to be welded within a tight
product envelope. Cells will firstly be sorted and stacked
into sections (or modules), and then connected by welds
or mechanical joints. In order to create durable and
conductive bond between workpieces, battery cells need
to be perfectly aligned thus imposing a strict requirement
for cell dimensions within a single section (or module).
As cells can be categorized into groups according to their
dimensions, selective assembly can help to select parts so
that cells from the same group can be assembled.

Nevertheless, the selection is not limitless, especially in
production environment where buffers are finite or even
relatively small. With small inventory carried, the mat-
ing part is not guaranteed to be observed and putting
off the assembly process until a desirable mating part
comes in place will dramatically impede the throughput
of assembly systems and may even result in a deadlock.
The unreliable machines will make the issue worse. In
such systems, mismatches are inherently inevitable, and
the resulting products may exhibit lower quality grade
but still pass inspections. Therefore, a heuristic policy for
such a selective assembly system could be selecting the

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1692



closest matching of mating part as possible and keeping the
assembly process running smoothly. However, questions
arise naturally, for instance, what is the ratio of match-
ing products in such systems and what is the potential
improvement using such selection policy. The answers to
these questions still remain unclear. Therefore, to study
the selective assembly systems with unreliable machines
and finite buffers is of critical importance, yet the existing
literature remains surprisingly silent about this problem.
No analytical model on selective assembly in production
systems with unreliable machines and finite buffers has
been found in the current literature. The goal of this study
is intended to contribute to this end.

Although analytical methods on evaluating assembly sys-
tems with unreliable machines and finite buffers have been
investigated extensively in existing literature (see mono-
graphs by Gershwin (1994); Li and Meerkov (2009) and
representative papers by Mascolo et al. (1991); Gershwin
(1991); Kuo et al. (1996); Chiang et al. (2000); Ching
et al. (2008)). However, the issue of selective assembly
is not addressed. Therefore, in this paper, we study a
two-component selective assembly system with unreliable
machines and finite buffers, and propose a novel method
to evaluate/predict efficiency and efficacy measures for
selective assembly systems analytically.

The remainder of the article is organized as follows: Section
2 formulates the problem and introduces the assumptions.
In Section 3, based on the proposed two levels of decom-
position, analytical procedures are formulated and numer-
ical experiments are conducted to justify their accuracy.
Finally, the conclusions are formulated in Section 4. Due
to space limitation, all the proofs are omitted and can be
found in Ju and Li (2013).

2. PROBLEM FORMULATION

In this paper, a two-component selective assembly system
is considered (shown in Figure 1). Here the circles repre-
sent machines and the rectangles are buffers. The follow-
ing assumptions address the characteristics of machines,
buffers and product quality behaviors.

q1: group 1
Match 

Mismatch
m0m1

m2

B1

B2

q2: group 2

qM: group M

...

g1: group 1
g2: group 2

gM: group M

...

Fig. 1. Selective assembly system

1) The assembly system consists of a main line (machine
m1 and buffer B1), a mating line (machine m2 and
buffer B2), and an assembly machine m0.

2) Machines m1 and m2 produce subcomponents catego-
rized into groups 1 to M . The probability of produc-
ing a group i main part and mating part are inde-
pendent and characterized by qi and gi respectively,
i = 1, 2, . . . ,M . Therefore,

M∑
i=1

qi =
M∑
i=1

gi = 1.

3) Selection will only be conducted within the mating
line. Any part in the mating line could be selected
corresponding to the main part. When two subcom-
ponents with the same group number are assembled,
the finished product is regarded as a matching product
(assembled product with matching components). Oth-
erwise, it is identified as a mismatch.

4) All machines have an identical cycle time T , thus the
time axis is slotted with slot duration T .

5) Machine mi, i = 0, 1, 2, is characterized by probability
pi to be up and 1− pi to be down in each cycle.

6) Buffer Bi, i = 1, 2, is limited by a finite capacity
0 < Ni < ∞.

7) Machine m1 or m2 is blocked if its downstream buffer
B1 or B2 is full, respectively, and the assembly machine
m0 fails to take a part at the beginning of the current
time slot. Machine m0 itself will never be blocked.

8) Machine m0 is starved if either buffer is empty at the
beginning of the current time slot. Machines m1 and
m2 are assumed to be never starved.

9) No scrap is produced during the whole process.

Remark 1. Assumptions 5) formulates the Bernoulli relia-
bility model of the machines, which has been thoroughly
studied in Li and Meerkov (2009). Although it is relatively
simple comparing to other reliability models, it does rep-
resent many natures of production systems. Such models
are typically suitable for assembly type systems where the
machine is comparable to the cycle time. The Bernoulli
models have been successfully applied in many manufac-
turing system studies (see case studies in Li and Meerkov
(2009)). In this paper, we focus on selective assembly sys-
tem with Bernoulli machines. In future work, exponential
and other reliability models will be investigated.

In practice, such a selective assembly line is typically
automatic and could collect the group tag for all parts
stored in buffers. Taking advantage of such information,
an effective selection policy is proposed below which is
intuitive to practitioners and easy to be implemented.

a) Select the mating part with the same group number as
the current main part to be assembled if available.

b) If there is no matching part, the mating part to be
selected is prioritized in the order of 1 > 2 > . . . > M .

Remark 2. Following the above policy, even though no
matching part exists in the buffer, the assembly machine
will still take mating part in a specific order. Therefore, no
production lost will take place due to the unavailability of
matching parts.

In such a selective assembly system, the key performance
measurement is the match degree (MD) between the
main parts and the mating parts, and it is defined as:

MD=
PRmatch

PR
, (1)

where PR represents the overall production rate, while
PRmatch characterizes the production rate of finished
products with matching components.
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Therefore, the problem to be addressed in this paper is
formulated as follows: Given the assembly system defined
by assumptions 1)-9), develop a method to evaluate/predict
MD as a function of system parameters and investigate its
potential improvement compared with random assembly.

Given Equation (1), the problem of evaluating MD could
be divided into two sub-problems where PR and PRmatch

are investigated individually.

3. PERFORMANCE ANALYSIS

In this section, we focus the case where each subcomponent
is categorized into two groups.

First consider the assembly system without selection, i.e.,
random selection. In this case, subcomponents reside in
the buffer according to a random order and the assembly
machine will take the part from the beginning of the queue
to produce a finished product. So the assembly process will
not change the sequence of subcomponents. The main part
and the mating part to be assembled, in consequence, carry
group number i independently with probability qi and gi,
respectively, i = 1, 2. Therefore, the match degree MD
for such a random assembly system could be expressed as
follows.

Lemma 1. In an assembly system defined by assumptions
1)-9) with parts being categorized into two groups, if
selection is carried out randomly, the estimated match

degree, M̂D
rand

, could be expressed as

M̂D
rand

= q1g1 + q2g2.

When the selection procedure is involved, the problem
becomes more complicated since selections could change
the sequence of subcomponents which leads to a lack
of information about the part to be assembled. Keeping
track of the buffer occupancy in a close form requires
tremendous efforts, let alone the case where the group
information needs to be recorded as well. Therefore, rather
than explicating the states of buffers and machine status,
we introduce a new approach to estimate the marginal
probability of each group of parts in the buffer based
on two levels of decomposition. The decomposition pro-
cedures are described next.

3.1 Decomposition Level 1

Considering the selective assembly system described in
Section 2, the assembly machine will continue fetching
parts as long as the upstream buffer is not empty, even
though no matching mating part is available in the buffer.
In other words, the unavailability of matching mating
parts will not impede the overall production rate. There-
fore, PR of the selective assembly system is identical
to an assembly system without selection and categorical
subcomponents.

To analyze such a system, Kuo et al. (1996) introduce
an approximation method by decomposing the assembly
system into two overlapped serial lines (shown in Figure
2), where machines m1

0 and m2
0 represent the assembly

machine when it is not starved by buffers B1 and B2

respectively. Based on such a decomposition method, a

m0m1

m2

m1

m2

m0
1

m0
2

Main part

Mating part

1B

2B

1B

2B

Fig. 2. Decomposition level 1

recursive procedure is formulated and its convergence is
guaranteed. The estimates of probabilities that buffers B1

and B2 are empty can be obtained, denoted as x̂1 and

x̂2, respectively. Then the estimate of production rate P̂R
could be formulated in the following manner.

Theorem 1. In an assembly system defined by assumptions
1)-9) with random selection, the production rate can be
estimated as

P̂R= p0(1− x̂1)(1− x̂2). (2)

When the estimated production rate P̂R is obtained, the
rest of the problem is to find the production rate of
matching products PRmatch. Therefore, we introduce the
second level of decomposition to estimate PRmatch.

3.2 Decomposition Level 2

Since the selection will only be carried out in the mating
line buffer, the group number for the main part could
be still estimated by probability qi, i = 1, 2. As for the
mating line, virtual machine m2

0 has been introduced in
Subsection 3.1, we further decompose it into two serial
lines. Specifically, machine m2 splits into two virtual
machines mt1

2 and mt2
2 , producing group 1 and group 2

mating parts respectively (shown in Figure 3). Therefore,
their parameters pt12 and pt22 could be expressed as,

pt12 = p2g1,

pt22 = p2g2.

Mating part: group 1

Mating part 

Mating part: group 2

2
2
tm

1
2
tm 1

0
tm

2
0
tm

2
2
tB

1
2
tB

2m 2
0m

2B

Fig. 3. Decomposition level 2

Moreover, the virtual machine m2
0 is divided into posterity

virtual machines mt1
0 and mt2

0 , which fetch groups 1 and
2 mating parts respectively. Machine mt1

0 can “work” on
three conditions: 1) machine m0 is up, 2) buffer B1 is
nonempty and 3) the current main part is in group 1 or
it is a group 2 main part but there is no matching mating
part available in buffer B2 (so that a group 1 part has to
be selected). In other words, its parameter pt10 could be
described as:
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pt10 = p0(1− x̂1)(q1 + q2Pr{no group 2 part in B2}),
where x̂1 comes from the estimate introduced in Kuo et al.
(1996). Similarly, machine mt2

0 could be characterize as:

pt20 = p0(1− x̂1)(q2 + q1Pr{no group 1 part in B2}).

As for the buffer, B2 is decomposed into virtual buffers Bt1
2

and Bt2
2 containing groups 1 and 2 parts separately. Their

capacities, nevertheless, are highly dependent on the in-
teractions between the two decomposed lines. Specifically,
given there are i group 2 parts in buffer B2 during a cycle,
the capacity of buffer Bt1

2 should be N2 − i accordingly.
Such a buffer capacity could be regarded as a conditional
capacity. In this case, we could estimate the conditional
probability of the buffer occupancy of group 1 parts in a
close formula as follows:

Pr{no group 1 part in B2|i group 2 parts in B2}
= Q(pt12 , pt10 , N2), i = 1, . . . , N2, (3)

Pr{j group 1 parts in B2|i group 2 parts in B2}

=
Q(pt12 , pt10 , N2 − j)

1− pt10
[α(pt12 , pt10 )]j ,

i = 1, . . . , N2, j = 1, . . . , N2 − i,

where Q(·) and α(·) are defined as (see Li and Meerkov
(2009))

Q(p1, p2, N) =


(1− p1)(1− α(p1, p2))

1− p1

p2
αN (p1, p2)

, if p1 ̸= p2,

1− p

N + 1− p
, if p1 = p2 = p,

(4)

α(p1, p2) =
p1(1− p2)

p2(1− p1)
. (5)

If the marginal probabilities of group 2 parts are known,
combining them with the conditional probabilities of buffer
occupancy, the marginal probabilities of group 1 parts
could be obtained by the law of total probability, i.e.,

Pr{j group 1 parts in B2}

=

N2−j∑
i=0

Pr{i group 2 parts in B2}

·Pr{j group 1 parts in B2|i group 2 parts in B2}.

Likewise, the same method could be applied in turn to
estimate the marginal probabilities of group 2 parts. Using
such a method, the buffer capacities are probabilistic,
rather than deterministic, and can be investigated by
conditioning.

3.3 Recursive Procedure for Decomposition Level 2

Given the decomposition method described above, the
problem arises that information for marginal probabili-
ties is not available. Therefore, a recursive procedure is
presented by assuming the initial value of parameters
and updating them by iterations. Finally the procedure
converges. Such an idea is illustrated as follows:

Step 1 Set initial values for the estimates of marginal
probabilities for each group of parts in B2.

Step 2 Update the parameters of decomposed assembly
machines mt1

0 and mt2
0 using marginal probabilities

for each group of parts in B2.
Step 3 Given i group 1 (or group 2) parts in B2, calculate

the conditional probability that there is no group
2 (respectively, group 1) part in B2.

Step 4 Based on Step 3, calculate the conditional proba-
bility of buffer occupancy for each group of parts.

Step 5 Combining Steps 3 and 4 and using the marginal
probabilities of group 1 (respectively, group 2)
parts, calculate the marginal probabilities of group
2 (respectively, group 1) parts.

Step 6 If the updated estimates of marginal probabilities
are close enough to those in the previous iteration,
stop. Otherwise, return to Step 2.

Let P tr
i denote the probability of i parts from group r in

buffer B2, i = 0, 1, . . . , N2, r ∈ {1, 2}, and P tr
j,ts=i be the

probability of j group r parts in buffer B2 given i group
s parts occupied, i = 0, 1, . . . , N2, j = 0, 1, . . . , N2 − i,
r ∈ {1, 2}, s ∈ {2, 1}. Then
Procedure 1.

pt10 (n+ 1) = p0(1− x̂1)(q1 + q2P
t2
0 (n)), (6)

P t1
0,t2=i(n+ 1) =Q(pt12 , pt10 (n+ 1), N2 − i), (7)

i = 0, 1, . . . , N2,

P t1
j,t2=i(n+ 1) =

P t1
0,t2=i(n+ 1)

1− pt10 (n+ 1)
[α(pt12 , pt10 (n+ 1))]j , (8)

i= 0, 1, . . . , N2 − 1, j = 1, . . . , N2 − i,

P t1
j (n+ 1) =

N2−j∑
i=0

P t2
i (n) · P t1

j,t2=i(n+ 1), (9)

j = 0, 1, . . . , N2,

pt20 (n+ 1) = p0(1− x̂1)(q2 + q1P
t1
0 (n+ 1)), (10)

P t2
0,t1=i(n+ 1) =Q(pt22 , pt20 (n+ 1), N2 − i), (11)

i = 0, 1, . . . , N2,

P t2
j,t1=i(n+ 1) =

P t2
0,t1=i(n+ 1)

1− pt20 (n+ 1)
[α(pt22 , pt20 (n+ 1))]j , (12)

i= 0, 1, . . . , N2 − 1, j = 1, . . . , N2 − i,

P t2
j (n+ 1) =

N2−j∑
i=0

P t1
i (n+ 1) · P t2

j,t1=i(n+ 1), (13)

j = 0, 1, . . . , N2,

n= 0, 1, 2, . . . ,

where Q(·) and α(·) are defined in Equations (4) and (5),
respectively, with initial conditions

P t2
0 (0) = 1,

P t2
i (0) = 0, i = 1, . . . , N2.

Based on extensive numerical studies, we observe that
Procedure 1 always leads to convergent results. Thus, we
formulate this as a numerical fact.

Numerical Fact 1. Recursive Procedure 1 is convergent,
i.e., the following limits exist:
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P̂ t1
i = lim

n→∞
P t1
i (n), i = 0, 1, . . . , N2, (14)

P̂ t2
i = lim

n→∞
P t2
i (n), i = 0, 1, . . . , N2. (15)

3.4 Performance Evaluation

The selective assembly system with 2 groups of subcom-
ponents can produce a matching finished product under
the following conditions: (i) The assembly machine m0 is
functioning; (ii) Buffer B1 is not empty; (iii) Buffer B2

contains the matching mating part corresponding to the
current main part to be assembled. Using the marginal
probabilities of each group of parts in the mating line
estimated from recursive procedure 1, the approximation

of production rate for matching products, P̂R
sele

match, can
be obtained.

Theorem 2. In an assembly system with two groups of
subcomponents defined by assumptions 1)-9) and selection
policy a), b),

P̂R
sele

match = p0(1− x̂1)[q1(1− P̂ t1
0 ) + q2(1− P̂ t2

0 )],(16)

where calculation of x̂1 is provided in Kuo et al. (1996),

and P̂ ti
0 , i = 1, 2, are obtained from Procedure 1.

According to Equations (1), (2) and (16), the following
corollary can be obtained.

Corollary 1. In an assembly system with two groups of
subcomponents defined by assumptions 1)-9) and selection
policy a), b),

M̂D
sele

=
q1(1− P̂ t1

0 ) + q2(1− P̂ t2
0 )

1− x̂2
. (17)

To study the estimation accuracy, we implement both
the analytical and simulation approaches in MATLAB.
More than 100 experiments are conducted with system
parameters generated uniformly from the following sets.

pi ∈ [0.5, 0.99], i = 1, 2,

p0 ∈ [0.8, 0.99],

q1 ∈ [0.5, 0.8],

g1 ∈ [0.5, 0.8],

Ni ∈ [3, 13], i = 1, 2.

Then q2 and g2 could be obtained as 1 − q1 and 1 − g1
respectively. Each simulation experiment has a warmup
period of 10,000 time units and the following 50,000 time
units are used for result collection. Moreover, 20 replica-
tions are carried out for each scenario. The resulting 95%
confidence interval is typically around ±0.008. Based on
the experiments, we study the relative error of PRmatch

and MD. In addition, work-in-process (WIP ) is another
critical performance measurement which reflects the av-
erage number of parts contained in the buffer in the
steady state. Using the marginal probabilities obtained
from Equations (14) and (15), the estimate of WIP for
each group of parts is formulated as follows.

Ŵ IP
sele

tj =

N2∑
i=0

iP̂
tj
i , j = 1, 2.

The relative errors for all the performance measurements
in the ith experiment are defined as follows.

δPRmatch
(i) =

P̂R
sele

match(i)− PRsele
match,sim(i)

PRsele
match,sim(i)

× 100%,

δMD(i) =
M̂D

sele
(i)−MDsele

sim(i)

MDsele
sim(i)

× 100%,

δseleWIPt1
(i) =

Ŵ IP
sele

t1 (i)−WIP sele
t1,sim

(i)

N2(i)
× 100%,

δseleWIPt2
(i) =

Ŵ IP
sele

t2 (i)−WIP sele
t2,sim

(i)

N2(i)
× 100%,

i = 1, . . . , 100,

where PRsele
match(i), MDsele(i), WIP sele

t1 (i), WIP sele
t2 (i)

are calculated from the model in ith experiment, and
PRsele

match,sim(i), MDsele
sim(i), WIP sele

t1,sim
(i), WIP sele

t2,sim
(i)

are obtained from the ith simulation experiment.

By observing the experiment results, δPRmatch
is typi-

cally below 5%, with rare cases up to 13%. For δMD, it
is observed that the error dynamics are approximately
aligned with δPRmatch

. This is because δPR is relatively
small comparing to δPRmatch

. Thus δMD is dominated by
δPRmatch

according to Equation (1).

As for the WIP estimation, the minor difference between
simulation and estimation are typically observed in small
WIP cases. The error tends to increase in scenarios where
WIP is relatively large. Nevertheless, the difference is still
mostly less than 1 part, which is acceptable in practical
applications.

To integrate all the experiment results, the average abso-
lute relative error for the above performance measures are
listed in Table 1, which ensures that such a method could
deliver acceptable accuracy for performance evaluation.

Table 1. Average relative error of estimates

δPRmatch
δMD δWIPt1

δWIPt2

2.37% 2.36% 6.35% 5.34%

3.5 Structural Property

Corollary 2. In an assembly system with two groups of
subcomponents defined by assumptions 1)-9) and selection
policy a), b),

M̂D
sele

≥ M̂D
rand

.

Corollary 2 illustrates the fact that selective assembly is
guaranteed to improve MD of the system compared with
random assembly. It is shown that the improvement by
employing selective assembly varies from 3% up to more
than 70% depending on the parameters setting of the
system. Generally speaking, selection within the assembly
system could increase MD dramatically.
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3.6 Extension to General Case

In systems with multiple groups, a similar decomposition
method as the two-group case can be applied.

When M = 3, the problem scales up since three groups of
parts interact with each other in a single buffer. Estimating
their individual marginal probability of buffer occupancy
involves two conditioning evidences, which increase the
complexity of analysis. To make the estimation tractable,
a similar decomposition method based on two-group case
is introduced. For instance, to estimate the marginal
probability of group 1 parts, a combinatorial group 2&3
is introduced, which can be used to condition the group 1
probability in the buffer. In such a manner, the mating
line is decomposed into two sub-lines for group 1 and
group 2&3 parts. Then, the marginal probability of buffer
occupancy for group 1 parts can be estimated by applying
the procedure of the two-group case. Similarly, group 1&3
and group 1&2 are introduced to evaluate the marginal
probability for groups 2 and 3, respectively. Finally, a
recursive procedure for these three steps of the second level
decomposition is formulated, and its convergence is proved
and estimation accuracy has been justified.

When M > 3, similar to the three-group case, the mating
line could be decomposed into two sub-lines by extracting
one group and combining the rest into a single group, e.g.,
group i and group 1&2& . . .&(i − 1)&(i + 1)& . . .&M ,
i = 1, 2, . . . ,M . This type of decomposition needs to be
implemented for each group of parts in order to estimate
the marginal probability density explicitly. Therefore, a
total of M steps of decomposition are needed.

The detailed derivations and results can be found in Ju
and Li (2013).

4. CONCLUSIONS

In this paper, a selective assembly system with unreliable
machines and finite buffers is studied. Bernoulli machine
reliability model is assumed. Analytical methods, based
on a two-level decomposition approach, are introduced
to evaluate the performance (production rate and match
degree). The convergence of the iteration procedures has
been justified analytically. It is shown that such a method
results in high accuracy in performance approximation.
Such a method provides a quantitative tool to study
selective assembly in production environment.
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